Properties

Label 1008.6.a.bl
Level $1008$
Weight $6$
Character orbit 1008.a
Self dual yes
Analytic conductor $161.667$
Analytic rank $1$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1008,6,Mod(1,1008)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1008, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1008.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1008 = 2^{4} \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 1008.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(161.666890371\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{7}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 7 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 63)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = 2\sqrt{7}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + 7 \beta q^{5} + 49 q^{7}+O(q^{10}) \) Copy content Toggle raw display \( q + 7 \beta q^{5} + 49 q^{7} - 43 \beta q^{11} - 518 q^{13} - 147 \beta q^{17} + 1484 q^{19} + 723 \beta q^{23} - 1753 q^{25} - 20 \beta q^{29} + 2604 q^{31} + 343 \beta q^{35} + 402 q^{37} + 119 \beta q^{41} - 6956 q^{43} - 5166 \beta q^{47} + 2401 q^{49} - 5766 \beta q^{53} - 8428 q^{55} + 8526 \beta q^{59} - 22610 q^{61} - 3626 \beta q^{65} + 13124 q^{67} - 9111 \beta q^{71} - 82866 q^{73} - 2107 \beta q^{77} + 81112 q^{79} - 12600 \beta q^{83} - 28812 q^{85} + 23947 \beta q^{89} - 25382 q^{91} + 10388 \beta q^{95} - 10626 q^{97} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 98 q^{7}+O(q^{10}) \) Copy content Toggle raw display \( 2 q + 98 q^{7} - 1036 q^{13} + 2968 q^{19} - 3506 q^{25} + 5208 q^{31} + 804 q^{37} - 13912 q^{43} + 4802 q^{49} - 16856 q^{55} - 45220 q^{61} + 26248 q^{67} - 165732 q^{73} + 162224 q^{79} - 57624 q^{85} - 50764 q^{91} - 21252 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−2.64575
2.64575
0 0 0 −37.0405 0 49.0000 0 0 0
1.2 0 0 0 37.0405 0 49.0000 0 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(3\) \( +1 \)
\(7\) \( -1 \)

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1008.6.a.bl 2
3.b odd 2 1 inner 1008.6.a.bl 2
4.b odd 2 1 63.6.a.g 2
12.b even 2 1 63.6.a.g 2
28.d even 2 1 441.6.a.p 2
84.h odd 2 1 441.6.a.p 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
63.6.a.g 2 4.b odd 2 1
63.6.a.g 2 12.b even 2 1
441.6.a.p 2 28.d even 2 1
441.6.a.p 2 84.h odd 2 1
1008.6.a.bl 2 1.a even 1 1 trivial
1008.6.a.bl 2 3.b odd 2 1 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{6}^{\mathrm{new}}(\Gamma_0(1008))\):

\( T_{5}^{2} - 1372 \) Copy content Toggle raw display
\( T_{11}^{2} - 51772 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( T^{2} \) Copy content Toggle raw display
$5$ \( T^{2} - 1372 \) Copy content Toggle raw display
$7$ \( (T - 49)^{2} \) Copy content Toggle raw display
$11$ \( T^{2} - 51772 \) Copy content Toggle raw display
$13$ \( (T + 518)^{2} \) Copy content Toggle raw display
$17$ \( T^{2} - 605052 \) Copy content Toggle raw display
$19$ \( (T - 1484)^{2} \) Copy content Toggle raw display
$23$ \( T^{2} - 14636412 \) Copy content Toggle raw display
$29$ \( T^{2} - 11200 \) Copy content Toggle raw display
$31$ \( (T - 2604)^{2} \) Copy content Toggle raw display
$37$ \( (T - 402)^{2} \) Copy content Toggle raw display
$41$ \( T^{2} - 396508 \) Copy content Toggle raw display
$43$ \( (T + 6956)^{2} \) Copy content Toggle raw display
$47$ \( T^{2} - 747251568 \) Copy content Toggle raw display
$53$ \( T^{2} - 930909168 \) Copy content Toggle raw display
$59$ \( T^{2} - 2035394928 \) Copy content Toggle raw display
$61$ \( (T + 22610)^{2} \) Copy content Toggle raw display
$67$ \( (T - 13124)^{2} \) Copy content Toggle raw display
$71$ \( T^{2} - 2324288988 \) Copy content Toggle raw display
$73$ \( (T + 82866)^{2} \) Copy content Toggle raw display
$79$ \( (T - 81112)^{2} \) Copy content Toggle raw display
$83$ \( T^{2} - 4445280000 \) Copy content Toggle raw display
$89$ \( T^{2} - 16056846652 \) Copy content Toggle raw display
$97$ \( (T + 10626)^{2} \) Copy content Toggle raw display
show more
show less