Properties

Label 1008.6.a.a
Level $1008$
Weight $6$
Character orbit 1008.a
Self dual yes
Analytic conductor $161.667$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1008,6,Mod(1,1008)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1008, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1008.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1008 = 2^{4} \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 1008.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(161.666890371\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 21)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q - 94 q^{5} + 49 q^{7}+O(q^{10}) \) Copy content Toggle raw display \( q - 94 q^{5} + 49 q^{7} + 52 q^{11} - 770 q^{13} + 2022 q^{17} - 1732 q^{19} - 576 q^{23} + 5711 q^{25} - 5518 q^{29} - 6336 q^{31} - 4606 q^{35} - 7338 q^{37} + 3262 q^{41} - 5420 q^{43} + 864 q^{47} + 2401 q^{49} - 4182 q^{53} - 4888 q^{55} - 11220 q^{59} - 45602 q^{61} + 72380 q^{65} - 1396 q^{67} + 18720 q^{71} + 46362 q^{73} + 2548 q^{77} - 97424 q^{79} - 81228 q^{83} - 190068 q^{85} + 3182 q^{89} - 37730 q^{91} + 162808 q^{95} + 4914 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
0 0 0 −94.0000 0 49.0000 0 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(3\) \( -1 \)
\(7\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1008.6.a.a 1
3.b odd 2 1 336.6.a.i 1
4.b odd 2 1 63.6.a.b 1
12.b even 2 1 21.6.a.c 1
28.d even 2 1 441.6.a.c 1
60.h even 2 1 525.6.a.b 1
60.l odd 4 2 525.6.d.c 2
84.h odd 2 1 147.6.a.f 1
84.j odd 6 2 147.6.e.d 2
84.n even 6 2 147.6.e.c 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
21.6.a.c 1 12.b even 2 1
63.6.a.b 1 4.b odd 2 1
147.6.a.f 1 84.h odd 2 1
147.6.e.c 2 84.n even 6 2
147.6.e.d 2 84.j odd 6 2
336.6.a.i 1 3.b odd 2 1
441.6.a.c 1 28.d even 2 1
525.6.a.b 1 60.h even 2 1
525.6.d.c 2 60.l odd 4 2
1008.6.a.a 1 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{6}^{\mathrm{new}}(\Gamma_0(1008))\):

\( T_{5} + 94 \) Copy content Toggle raw display
\( T_{11} - 52 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T \) Copy content Toggle raw display
$3$ \( T \) Copy content Toggle raw display
$5$ \( T + 94 \) Copy content Toggle raw display
$7$ \( T - 49 \) Copy content Toggle raw display
$11$ \( T - 52 \) Copy content Toggle raw display
$13$ \( T + 770 \) Copy content Toggle raw display
$17$ \( T - 2022 \) Copy content Toggle raw display
$19$ \( T + 1732 \) Copy content Toggle raw display
$23$ \( T + 576 \) Copy content Toggle raw display
$29$ \( T + 5518 \) Copy content Toggle raw display
$31$ \( T + 6336 \) Copy content Toggle raw display
$37$ \( T + 7338 \) Copy content Toggle raw display
$41$ \( T - 3262 \) Copy content Toggle raw display
$43$ \( T + 5420 \) Copy content Toggle raw display
$47$ \( T - 864 \) Copy content Toggle raw display
$53$ \( T + 4182 \) Copy content Toggle raw display
$59$ \( T + 11220 \) Copy content Toggle raw display
$61$ \( T + 45602 \) Copy content Toggle raw display
$67$ \( T + 1396 \) Copy content Toggle raw display
$71$ \( T - 18720 \) Copy content Toggle raw display
$73$ \( T - 46362 \) Copy content Toggle raw display
$79$ \( T + 97424 \) Copy content Toggle raw display
$83$ \( T + 81228 \) Copy content Toggle raw display
$89$ \( T - 3182 \) Copy content Toggle raw display
$97$ \( T - 4914 \) Copy content Toggle raw display
show more
show less