Properties

Label 1008.4.bt.d.593.8
Level $1008$
Weight $4$
Character 1008.593
Analytic conductor $59.474$
Analytic rank $0$
Dimension $48$
CM no
Inner twists $4$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 1008 = 2^{4} \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1008.bt (of order \(6\), degree \(2\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(59.4739252858\)
Analytic rank: \(0\)
Dimension: \(48\)
Relative dimension: \(24\) over \(\Q(\zeta_{6})\)
Twist minimal: no (minimal twist has level 504)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 593.8
Character \(\chi\) \(=\) 1008.593
Dual form 1008.4.bt.d.17.8

$q$-expansion

\(f(q)\) \(=\) \(q+(-3.34783 + 5.79860i) q^{5} +(12.7404 + 13.4418i) q^{7} +O(q^{10})\) \(q+(-3.34783 + 5.79860i) q^{5} +(12.7404 + 13.4418i) q^{7} +(-28.2958 + 16.3366i) q^{11} +67.9019i q^{13} +(-15.3179 - 26.5313i) q^{17} +(21.8820 + 12.6336i) q^{19} +(68.6216 + 39.6187i) q^{23} +(40.0841 + 69.4277i) q^{25} -109.668i q^{29} +(-238.527 + 137.714i) q^{31} +(-120.596 + 28.8753i) q^{35} +(160.221 - 277.511i) q^{37} -184.846 q^{41} -364.766 q^{43} +(-25.7730 + 44.6402i) q^{47} +(-18.3666 + 342.508i) q^{49} +(532.671 - 307.538i) q^{53} -218.769i q^{55} +(-207.843 - 359.995i) q^{59} +(411.761 + 237.730i) q^{61} +(-393.736 - 227.324i) q^{65} +(-142.188 - 246.277i) q^{67} +965.404i q^{71} +(225.387 - 130.127i) q^{73} +(-580.093 - 172.214i) q^{77} +(-219.163 + 379.602i) q^{79} -76.4726 q^{83} +205.126 q^{85} +(356.559 - 617.579i) q^{89} +(-912.728 + 865.095i) q^{91} +(-146.514 + 84.5900i) q^{95} +410.607i q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48q + 24q^{7} + O(q^{10}) \) \( 48q + 24q^{7} - 540q^{19} - 924q^{25} - 648q^{31} - 132q^{37} + 792q^{43} + 672q^{49} + 12q^{67} + 2412q^{73} - 1680q^{79} + 480q^{85} - 1404q^{91} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1008\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(577\) \(757\) \(785\)
\(\chi(n)\) \(1\) \(e\left(\frac{5}{6}\right)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −3.34783 + 5.79860i −0.299439 + 0.518643i −0.976008 0.217736i \(-0.930133\pi\)
0.676569 + 0.736379i \(0.263466\pi\)
\(6\) 0 0
\(7\) 12.7404 + 13.4418i 0.687915 + 0.725792i
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −28.2958 + 16.3366i −0.775593 + 0.447789i −0.834866 0.550453i \(-0.814455\pi\)
0.0592734 + 0.998242i \(0.481122\pi\)
\(12\) 0 0
\(13\) 67.9019i 1.44866i 0.689452 + 0.724331i \(0.257851\pi\)
−0.689452 + 0.724331i \(0.742149\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −15.3179 26.5313i −0.218537 0.378517i 0.735824 0.677173i \(-0.236795\pi\)
−0.954361 + 0.298656i \(0.903462\pi\)
\(18\) 0 0
\(19\) 21.8820 + 12.6336i 0.264215 + 0.152544i 0.626256 0.779618i \(-0.284587\pi\)
−0.362041 + 0.932162i \(0.617920\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 68.6216 + 39.6187i 0.622113 + 0.359177i 0.777691 0.628647i \(-0.216391\pi\)
−0.155578 + 0.987824i \(0.549724\pi\)
\(24\) 0 0
\(25\) 40.0841 + 69.4277i 0.320673 + 0.555422i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 109.668i 0.702236i −0.936331 0.351118i \(-0.885802\pi\)
0.936331 0.351118i \(-0.114198\pi\)
\(30\) 0 0
\(31\) −238.527 + 137.714i −1.38196 + 0.797875i −0.992391 0.123123i \(-0.960709\pi\)
−0.389568 + 0.920998i \(0.627376\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −120.596 + 28.8753i −0.582415 + 0.139452i
\(36\) 0 0
\(37\) 160.221 277.511i 0.711898 1.23304i −0.252246 0.967663i \(-0.581169\pi\)
0.964144 0.265380i \(-0.0854975\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −184.846 −0.704100 −0.352050 0.935981i \(-0.614515\pi\)
−0.352050 + 0.935981i \(0.614515\pi\)
\(42\) 0 0
\(43\) −364.766 −1.29363 −0.646817 0.762645i \(-0.723900\pi\)
−0.646817 + 0.762645i \(0.723900\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −25.7730 + 44.6402i −0.0799868 + 0.138541i −0.903244 0.429127i \(-0.858821\pi\)
0.823257 + 0.567669i \(0.192154\pi\)
\(48\) 0 0
\(49\) −18.3666 + 342.508i −0.0535471 + 0.998565i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 532.671 307.538i 1.38053 0.797048i 0.388306 0.921531i \(-0.373060\pi\)
0.992222 + 0.124483i \(0.0397271\pi\)
\(54\) 0 0
\(55\) 218.769i 0.536341i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −207.843 359.995i −0.458625 0.794362i 0.540263 0.841496i \(-0.318325\pi\)
−0.998889 + 0.0471340i \(0.984991\pi\)
\(60\) 0 0
\(61\) 411.761 + 237.730i 0.864271 + 0.498987i 0.865440 0.501012i \(-0.167039\pi\)
−0.00116918 + 0.999999i \(0.500372\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −393.736 227.324i −0.751338 0.433785i
\(66\) 0 0
\(67\) −142.188 246.277i −0.259269 0.449068i 0.706777 0.707436i \(-0.250148\pi\)
−0.966046 + 0.258369i \(0.916815\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 965.404i 1.61370i 0.590759 + 0.806848i \(0.298828\pi\)
−0.590759 + 0.806848i \(0.701172\pi\)
\(72\) 0 0
\(73\) 225.387 130.127i 0.361364 0.208633i −0.308315 0.951284i \(-0.599765\pi\)
0.669679 + 0.742651i \(0.266432\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −580.093 172.214i −0.858543 0.254878i
\(78\) 0 0
\(79\) −219.163 + 379.602i −0.312124 + 0.540615i −0.978822 0.204713i \(-0.934374\pi\)
0.666698 + 0.745328i \(0.267707\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −76.4726 −0.101132 −0.0505660 0.998721i \(-0.516103\pi\)
−0.0505660 + 0.998721i \(0.516103\pi\)
\(84\) 0 0
\(85\) 205.126 0.261753
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 356.559 617.579i 0.424665 0.735542i −0.571724 0.820446i \(-0.693725\pi\)
0.996389 + 0.0849045i \(0.0270585\pi\)
\(90\) 0 0
\(91\) −912.728 + 865.095i −1.05143 + 0.996556i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −146.514 + 84.5900i −0.158232 + 0.0913553i
\(96\) 0 0
\(97\) 410.607i 0.429803i 0.976636 + 0.214901i \(0.0689430\pi\)
−0.976636 + 0.214901i \(0.931057\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −953.656 1651.78i −0.939527 1.62731i −0.766355 0.642418i \(-0.777931\pi\)
−0.173173 0.984891i \(-0.555402\pi\)
\(102\) 0 0
\(103\) −1177.37 679.756i −1.12631 0.650276i −0.183306 0.983056i \(-0.558680\pi\)
−0.943004 + 0.332780i \(0.892013\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −1555.77 898.226i −1.40563 0.811540i −0.410666 0.911786i \(-0.634704\pi\)
−0.994963 + 0.100246i \(0.968037\pi\)
\(108\) 0 0
\(109\) 42.0727 + 72.8720i 0.0369709 + 0.0640355i 0.883919 0.467640i \(-0.154896\pi\)
−0.846948 + 0.531676i \(0.821562\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 117.441i 0.0977688i −0.998804 0.0488844i \(-0.984433\pi\)
0.998804 0.0488844i \(-0.0155666\pi\)
\(114\) 0 0
\(115\) −459.466 + 265.273i −0.372569 + 0.215103i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 161.475 543.918i 0.124390 0.418999i
\(120\) 0 0
\(121\) −131.730 + 228.163i −0.0989707 + 0.171422i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −1373.74 −0.982965
\(126\) 0 0
\(127\) 510.925 0.356986 0.178493 0.983941i \(-0.442878\pi\)
0.178493 + 0.983941i \(0.442878\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −991.274 + 1716.94i −0.661130 + 1.14511i 0.319189 + 0.947691i \(0.396589\pi\)
−0.980319 + 0.197419i \(0.936744\pi\)
\(132\) 0 0
\(133\) 108.966 + 455.091i 0.0710416 + 0.296702i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −857.943 + 495.334i −0.535029 + 0.308899i −0.743062 0.669223i \(-0.766627\pi\)
0.208033 + 0.978122i \(0.433294\pi\)
\(138\) 0 0
\(139\) 369.921i 0.225729i 0.993610 + 0.112864i \(0.0360026\pi\)
−0.993610 + 0.112864i \(0.963997\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −1109.29 1921.34i −0.648694 1.12357i
\(144\) 0 0
\(145\) 635.922 + 367.149i 0.364210 + 0.210277i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −1054.73 608.947i −0.579910 0.334811i 0.181188 0.983449i \(-0.442006\pi\)
−0.761098 + 0.648637i \(0.775339\pi\)
\(150\) 0 0
\(151\) 764.206 + 1323.64i 0.411856 + 0.713355i 0.995093 0.0989470i \(-0.0315474\pi\)
−0.583237 + 0.812302i \(0.698214\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 1844.17i 0.955658i
\(156\) 0 0
\(157\) −2610.74 + 1507.31i −1.32713 + 0.766220i −0.984855 0.173379i \(-0.944531\pi\)
−0.342277 + 0.939599i \(0.611198\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 341.715 + 1427.16i 0.167273 + 0.698607i
\(162\) 0 0
\(163\) −822.212 + 1424.11i −0.395096 + 0.684326i −0.993113 0.117157i \(-0.962622\pi\)
0.598018 + 0.801483i \(0.295955\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −2783.64 −1.28985 −0.644923 0.764248i \(-0.723111\pi\)
−0.644923 + 0.764248i \(0.723111\pi\)
\(168\) 0 0
\(169\) −2413.67 −1.09862
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −64.1081 + 111.038i −0.0281737 + 0.0487983i −0.879768 0.475402i \(-0.842302\pi\)
0.851595 + 0.524201i \(0.175636\pi\)
\(174\) 0 0
\(175\) −422.551 + 1423.34i −0.182525 + 0.614825i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 1676.79 968.093i 0.700161 0.404238i −0.107246 0.994233i \(-0.534203\pi\)
0.807408 + 0.589994i \(0.200870\pi\)
\(180\) 0 0
\(181\) 1596.97i 0.655810i 0.944711 + 0.327905i \(0.106343\pi\)
−0.944711 + 0.327905i \(0.893657\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 1072.79 + 1858.12i 0.426340 + 0.738442i
\(186\) 0 0
\(187\) 866.863 + 500.484i 0.338991 + 0.195717i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 715.285 + 412.970i 0.270975 + 0.156448i 0.629331 0.777138i \(-0.283329\pi\)
−0.358356 + 0.933585i \(0.616662\pi\)
\(192\) 0 0
\(193\) 927.072 + 1605.74i 0.345762 + 0.598878i 0.985492 0.169722i \(-0.0542870\pi\)
−0.639730 + 0.768600i \(0.720954\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 2938.42i 1.06271i −0.847150 0.531355i \(-0.821683\pi\)
0.847150 0.531355i \(-0.178317\pi\)
\(198\) 0 0
\(199\) 2850.16 1645.54i 1.01529 0.586178i 0.102554 0.994727i \(-0.467299\pi\)
0.912736 + 0.408550i \(0.133965\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 1474.14 1397.21i 0.509677 0.483078i
\(204\) 0 0
\(205\) 618.833 1071.85i 0.210835 0.365177i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −825.560 −0.273230
\(210\) 0 0
\(211\) 1133.21 0.369733 0.184867 0.982764i \(-0.440815\pi\)
0.184867 + 0.982764i \(0.440815\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 1221.17 2115.13i 0.387364 0.670934i
\(216\) 0 0
\(217\) −4890.05 1451.72i −1.52976 0.454145i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 1801.53 1040.11i 0.548343 0.316586i
\(222\) 0 0
\(223\) 1631.23i 0.489845i 0.969543 + 0.244922i \(0.0787624\pi\)
−0.969543 + 0.244922i \(0.921238\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 584.886 + 1013.05i 0.171014 + 0.296205i 0.938775 0.344532i \(-0.111962\pi\)
−0.767760 + 0.640737i \(0.778629\pi\)
\(228\) 0 0
\(229\) −4457.87 2573.75i −1.28640 0.742701i −0.308386 0.951261i \(-0.599789\pi\)
−0.978009 + 0.208561i \(0.933122\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −3811.38 2200.50i −1.07164 0.618710i −0.143009 0.989721i \(-0.545678\pi\)
−0.928629 + 0.371011i \(0.879011\pi\)
\(234\) 0 0
\(235\) −172.567 298.895i −0.0479023 0.0829692i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 5998.62i 1.62351i −0.583998 0.811755i \(-0.698513\pi\)
0.583998 0.811755i \(-0.301487\pi\)
\(240\) 0 0
\(241\) 796.548 459.887i 0.212905 0.122921i −0.389756 0.920918i \(-0.627441\pi\)
0.602661 + 0.797997i \(0.294107\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −1924.58 1253.16i −0.501865 0.326781i
\(246\) 0 0
\(247\) −857.845 + 1485.83i −0.220985 + 0.382758i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −701.991 −0.176531 −0.0882655 0.996097i \(-0.528132\pi\)
−0.0882655 + 0.996097i \(0.528132\pi\)
\(252\) 0 0
\(253\) −2588.94 −0.643341
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −2170.80 + 3759.94i −0.526891 + 0.912602i 0.472618 + 0.881267i \(0.343309\pi\)
−0.999509 + 0.0313343i \(0.990024\pi\)
\(258\) 0 0
\(259\) 5771.54 1381.92i 1.38466 0.331539i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −3606.74 + 2082.35i −0.845632 + 0.488226i −0.859175 0.511683i \(-0.829022\pi\)
0.0135429 + 0.999908i \(0.495689\pi\)
\(264\) 0 0
\(265\) 4118.33i 0.954668i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 4219.12 + 7307.74i 0.956299 + 1.65636i 0.731366 + 0.681985i \(0.238883\pi\)
0.224933 + 0.974374i \(0.427784\pi\)
\(270\) 0 0
\(271\) −4544.68 2623.87i −1.01871 0.588150i −0.104977 0.994475i \(-0.533477\pi\)
−0.913729 + 0.406324i \(0.866810\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −2268.43 1309.68i −0.497423 0.287187i
\(276\) 0 0
\(277\) 198.173 + 343.245i 0.0429857 + 0.0744534i 0.886718 0.462311i \(-0.152980\pi\)
−0.843732 + 0.536765i \(0.819646\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 5244.36i 1.11335i 0.830729 + 0.556677i \(0.187924\pi\)
−0.830729 + 0.556677i \(0.812076\pi\)
\(282\) 0 0
\(283\) 4113.33 2374.83i 0.864000 0.498830i −0.00134996 0.999999i \(-0.500430\pi\)
0.865350 + 0.501169i \(0.167096\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −2355.01 2484.67i −0.484361 0.511030i
\(288\) 0 0
\(289\) 1987.23 3441.98i 0.404483 0.700586i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 3597.22 0.717242 0.358621 0.933483i \(-0.383247\pi\)
0.358621 + 0.933483i \(0.383247\pi\)
\(294\) 0 0
\(295\) 2783.29 0.549320
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −2690.19 + 4659.54i −0.520326 + 0.901231i
\(300\) 0 0
\(301\) −4647.25 4903.13i −0.889910 0.938909i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −2757.00 + 1591.76i −0.517592 + 0.298832i
\(306\) 0 0
\(307\) 27.5911i 0.00512933i 0.999997 + 0.00256467i \(0.000816359\pi\)
−0.999997 + 0.00256467i \(0.999184\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 621.896 + 1077.15i 0.113391 + 0.196398i 0.917135 0.398576i \(-0.130496\pi\)
−0.803745 + 0.594974i \(0.797162\pi\)
\(312\) 0 0
\(313\) 7541.55 + 4354.12i 1.36190 + 0.786292i 0.989876 0.141933i \(-0.0453317\pi\)
0.372021 + 0.928224i \(0.378665\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −7799.09 4502.81i −1.38183 0.797801i −0.389455 0.921046i \(-0.627337\pi\)
−0.992376 + 0.123245i \(0.960670\pi\)
\(318\) 0 0
\(319\) 1791.60 + 3103.15i 0.314453 + 0.544649i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 774.077i 0.133346i
\(324\) 0 0
\(325\) −4714.28 + 2721.79i −0.804619 + 0.464547i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −928.404 + 222.295i −0.155576 + 0.0372508i
\(330\) 0 0
\(331\) −1194.18 + 2068.38i −0.198302 + 0.343470i −0.947978 0.318336i \(-0.896876\pi\)
0.749676 + 0.661805i \(0.230209\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 1904.08 0.310541
\(336\) 0 0
\(337\) 11637.2 1.88106 0.940531 0.339707i \(-0.110328\pi\)
0.940531 + 0.339707i \(0.110328\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 4499.55 7793.45i 0.714558 1.23765i
\(342\) 0 0
\(343\) −4837.94 + 4116.79i −0.761586 + 0.648064i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 2539.63 1466.26i 0.392895 0.226838i −0.290519 0.956869i \(-0.593828\pi\)
0.683414 + 0.730031i \(0.260494\pi\)
\(348\) 0 0
\(349\) 63.0106i 0.00966442i −0.999988 0.00483221i \(-0.998462\pi\)
0.999988 0.00483221i \(-0.00153815\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 386.737 + 669.848i 0.0583114 + 0.100998i 0.893708 0.448650i \(-0.148095\pi\)
−0.835396 + 0.549648i \(0.814762\pi\)
\(354\) 0 0
\(355\) −5598.00 3232.00i −0.836932 0.483203i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 10567.3 + 6101.03i 1.55354 + 0.896936i 0.997850 + 0.0655458i \(0.0208788\pi\)
0.555689 + 0.831390i \(0.312454\pi\)
\(360\) 0 0
\(361\) −3110.29 5387.17i −0.453460 0.785417i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 1742.57i 0.249892i
\(366\) 0 0
\(367\) 4835.15 2791.58i 0.687719 0.397055i −0.115038 0.993361i \(-0.536699\pi\)
0.802757 + 0.596306i \(0.203366\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 10920.3 + 3241.94i 1.52818 + 0.453674i
\(372\) 0 0
\(373\) 1656.22 2868.66i 0.229909 0.398213i −0.727872 0.685713i \(-0.759491\pi\)
0.957781 + 0.287499i \(0.0928240\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 7446.67 1.01730
\(378\) 0 0
\(379\) 1118.64 0.151611 0.0758057 0.997123i \(-0.475847\pi\)
0.0758057 + 0.997123i \(0.475847\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −4388.43 + 7600.98i −0.585479 + 1.01408i 0.409337 + 0.912383i \(0.365760\pi\)
−0.994816 + 0.101695i \(0.967573\pi\)
\(384\) 0 0
\(385\) 2940.65 2787.19i 0.389272 0.368957i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 8285.22 4783.47i 1.07989 0.623475i 0.149023 0.988834i \(-0.452387\pi\)
0.930867 + 0.365359i \(0.119054\pi\)
\(390\) 0 0
\(391\) 2427.49i 0.313973i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −1467.44 2541.68i −0.186924 0.323762i
\(396\) 0 0
\(397\) 8470.20 + 4890.27i 1.07080 + 0.618226i 0.928399 0.371584i \(-0.121185\pi\)
0.142399 + 0.989809i \(0.454518\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 10450.1 + 6033.35i 1.30137 + 0.751349i 0.980640 0.195820i \(-0.0627369\pi\)
0.320735 + 0.947169i \(0.396070\pi\)
\(402\) 0 0
\(403\) −9351.03 16196.5i −1.15585 2.00199i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 10469.9i 1.27512i
\(408\) 0 0
\(409\) 6194.67 3576.49i 0.748916 0.432387i −0.0763859 0.997078i \(-0.524338\pi\)
0.825302 + 0.564691i \(0.191005\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 2191.00 7380.26i 0.261046 0.879319i
\(414\) 0 0
\(415\) 256.017 443.434i 0.0302828 0.0524514i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −5703.45 −0.664992 −0.332496 0.943105i \(-0.607891\pi\)
−0.332496 + 0.943105i \(0.607891\pi\)
\(420\) 0 0
\(421\) −10027.7 −1.16086 −0.580428 0.814312i \(-0.697115\pi\)
−0.580428 + 0.814312i \(0.697115\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 1228.01 2126.97i 0.140158 0.242760i
\(426\) 0 0
\(427\) 2050.44 + 8563.59i 0.232384 + 0.970541i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 12128.8 7002.59i 1.35551 0.782605i 0.366497 0.930419i \(-0.380557\pi\)
0.989015 + 0.147814i \(0.0472238\pi\)
\(432\) 0 0
\(433\) 3410.83i 0.378554i 0.981924 + 0.189277i \(0.0606145\pi\)
−0.981924 + 0.189277i \(0.939386\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 1001.05 + 1733.87i 0.109581 + 0.189800i
\(438\) 0 0
\(439\) −11009.7 6356.44i −1.19695 0.691062i −0.237080 0.971490i \(-0.576190\pi\)
−0.959875 + 0.280428i \(0.909524\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 10853.8 + 6266.44i 1.16406 + 0.672071i 0.952274 0.305245i \(-0.0987382\pi\)
0.211787 + 0.977316i \(0.432072\pi\)
\(444\) 0 0
\(445\) 2387.40 + 4135.09i 0.254322 + 0.440499i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 10884.1i 1.14399i 0.820258 + 0.571993i \(0.193830\pi\)
−0.820258 + 0.571993i \(0.806170\pi\)
\(450\) 0 0
\(451\) 5230.38 3019.76i 0.546095 0.315288i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −1960.69 8188.73i −0.202019 0.843722i
\(456\) 0 0
\(457\) 9222.57 15974.0i 0.944012 1.63508i 0.186295 0.982494i \(-0.440352\pi\)
0.757717 0.652583i \(-0.226315\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −4657.01 −0.470496 −0.235248 0.971935i \(-0.575590\pi\)
−0.235248 + 0.971935i \(0.575590\pi\)
\(462\) 0 0
\(463\) 5088.08 0.510720 0.255360 0.966846i \(-0.417806\pi\)
0.255360 + 0.966846i \(0.417806\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −7950.04 + 13769.9i −0.787760 + 1.36444i 0.139577 + 0.990211i \(0.455426\pi\)
−0.927336 + 0.374229i \(0.877908\pi\)
\(468\) 0 0
\(469\) 1498.89 5048.93i 0.147574 0.497096i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 10321.4 5959.04i 1.00333 0.579275i
\(474\) 0 0
\(475\) 2025.62i 0.195667i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 9702.00 + 16804.4i 0.925461 + 1.60295i 0.790818 + 0.612051i \(0.209655\pi\)
0.134643 + 0.990894i \(0.457011\pi\)
\(480\) 0 0
\(481\) 18843.6 + 10879.3i 1.78626 + 1.03130i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −2380.95 1374.64i −0.222914 0.128700i
\(486\) 0 0
\(487\) −6123.60 10606.4i −0.569788 0.986903i −0.996586 0.0825556i \(-0.973692\pi\)
0.426798 0.904347i \(-0.359642\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 7773.35i 0.714473i 0.934014 + 0.357237i \(0.116281\pi\)
−0.934014 + 0.357237i \(0.883719\pi\)
\(492\) 0 0
\(493\) −2909.64 + 1679.88i −0.265808 + 0.153464i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −12976.8 + 12299.6i −1.17121 + 1.11008i
\(498\) 0 0
\(499\) −9518.91 + 16487.2i −0.853958 + 1.47910i 0.0236507 + 0.999720i \(0.492471\pi\)
−0.877609 + 0.479378i \(0.840862\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −14323.9 −1.26973 −0.634863 0.772624i \(-0.718944\pi\)
−0.634863 + 0.772624i \(0.718944\pi\)
\(504\) 0 0
\(505\) 12770.7 1.12532
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 4294.66 7438.57i 0.373983 0.647758i −0.616191 0.787597i \(-0.711325\pi\)
0.990174 + 0.139839i \(0.0446585\pi\)
\(510\) 0 0
\(511\) 4620.66 + 1371.75i 0.400012 + 0.118753i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 7883.28 4551.41i 0.674522 0.389435i
\(516\) 0 0
\(517\) 1684.17i 0.143269i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 11308.3 + 19586.6i 0.950917 + 1.64704i 0.743447 + 0.668795i \(0.233190\pi\)
0.207471 + 0.978241i \(0.433477\pi\)
\(522\) 0 0
\(523\) −122.551 70.7547i −0.0102462 0.00591566i 0.494868 0.868968i \(-0.335216\pi\)
−0.505114 + 0.863052i \(0.668550\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 7307.45 + 4218.96i 0.604018 + 0.348730i
\(528\) 0 0
\(529\) −2944.22 5099.53i −0.241984 0.419128i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 12551.4i 1.02000i
\(534\) 0 0
\(535\) 10416.9 6014.21i 0.841799 0.486013i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −5075.72 9991.60i −0.405615 0.798458i
\(540\) 0 0
\(541\) 4655.90 8064.25i 0.370005 0.640867i −0.619561 0.784949i \(-0.712689\pi\)
0.989566 + 0.144081i \(0.0460227\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −563.408 −0.0442821
\(546\) 0 0
\(547\) −11888.7 −0.929294 −0.464647 0.885496i \(-0.653819\pi\)
−0.464647 + 0.885496i \(0.653819\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 1385.50 2399.76i 0.107122 0.185541i
\(552\) 0 0
\(553\) −7894.77 + 1890.30i −0.607088 + 0.145360i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 18409.4 10628.7i 1.40042 0.808530i 0.405980 0.913882i \(-0.366930\pi\)
0.994435 + 0.105352i \(0.0335969\pi\)
\(558\) 0 0
\(559\) 24768.3i 1.87404i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −4661.33 8073.66i −0.348937 0.604377i 0.637124 0.770762i \(-0.280124\pi\)
−0.986061 + 0.166385i \(0.946791\pi\)
\(564\) 0 0
\(565\) 680.991 + 393.170i 0.0507071 + 0.0292758i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −14734.2 8506.79i −1.08557 0.626754i −0.153176 0.988199i \(-0.548950\pi\)
−0.932394 + 0.361445i \(0.882284\pi\)
\(570\) 0 0
\(571\) 1134.69 + 1965.34i 0.0831617 + 0.144040i 0.904606 0.426248i \(-0.140165\pi\)
−0.821445 + 0.570288i \(0.806832\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 6352.32i 0.460713i
\(576\) 0 0
\(577\) 2687.93 1551.88i 0.193934 0.111968i −0.399889 0.916564i \(-0.630951\pi\)
0.593823 + 0.804596i \(0.297618\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −974.288 1027.93i −0.0695702 0.0734008i
\(582\) 0 0
\(583\) −10048.2 + 17404.1i −0.713818 + 1.23637i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 12544.8 0.882075 0.441038 0.897489i \(-0.354611\pi\)
0.441038 + 0.897489i \(0.354611\pi\)
\(588\) 0 0
\(589\) −6959.27 −0.486845
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −2644.32 + 4580.09i −0.183118 + 0.317170i −0.942941 0.332960i \(-0.891952\pi\)
0.759823 + 0.650131i \(0.225286\pi\)
\(594\) 0 0
\(595\) 2613.38 + 2757.27i 0.180064 + 0.189978i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −5058.01 + 2920.24i −0.345016 + 0.199195i −0.662488 0.749073i \(-0.730499\pi\)
0.317472 + 0.948268i \(0.397166\pi\)
\(600\) 0 0
\(601\) 10801.2i 0.733098i 0.930399 + 0.366549i \(0.119461\pi\)
−0.930399 + 0.366549i \(0.880539\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −882.018 1527.70i −0.0592713 0.102661i
\(606\) 0 0
\(607\) 21239.7 + 12262.8i 1.42025 + 0.819984i 0.996320 0.0857094i \(-0.0273157\pi\)
0.423934 + 0.905693i \(0.360649\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −3031.15 1750.04i −0.200699 0.115874i
\(612\) 0 0
\(613\) −8223.34 14243.2i −0.541823 0.938465i −0.998799 0.0489865i \(-0.984401\pi\)
0.456976 0.889479i \(-0.348932\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 23852.4i 1.55634i 0.628055 + 0.778169i \(0.283851\pi\)
−0.628055 + 0.778169i \(0.716149\pi\)
\(618\) 0 0
\(619\) 14617.4 8439.34i 0.949147 0.547990i 0.0563309 0.998412i \(-0.482060\pi\)
0.892816 + 0.450422i \(0.148726\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 12844.1 3075.36i 0.825983 0.197771i
\(624\) 0 0
\(625\) −411.490 + 712.722i −0.0263354 + 0.0456142i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −9816.99 −0.622304
\(630\) 0 0
\(631\) 19613.0 1.23737 0.618686 0.785638i \(-0.287665\pi\)
0.618686 + 0.785638i \(0.287665\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −1710.49 + 2962.65i −0.106895 + 0.185148i
\(636\) 0 0
\(637\) −23257.0 1247.13i −1.44658 0.0775716i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −7437.62 + 4294.11i −0.458297 + 0.264598i −0.711328 0.702860i \(-0.751906\pi\)
0.253031 + 0.967458i \(0.418573\pi\)
\(642\) 0 0
\(643\) 11966.4i 0.733920i −0.930237 0.366960i \(-0.880399\pi\)
0.930237 0.366960i \(-0.119601\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −3663.93 6346.11i −0.222634 0.385613i 0.732973 0.680257i \(-0.238132\pi\)
−0.955607 + 0.294645i \(0.904799\pi\)
\(648\) 0 0
\(649\) 11762.2 + 6790.91i 0.711412 + 0.410734i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −3124.09 1803.69i −0.187221 0.108092i 0.403460 0.914997i \(-0.367807\pi\)
−0.590681 + 0.806905i \(0.701141\pi\)
\(654\) 0 0
\(655\) −6637.22 11496.0i −0.395936 0.685780i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 3244.57i 0.191792i −0.995391 0.0958958i \(-0.969428\pi\)
0.995391 0.0958958i \(-0.0305716\pi\)
\(660\) 0 0
\(661\) −12548.2 + 7244.69i −0.738377 + 0.426302i −0.821479 0.570239i \(-0.806851\pi\)
0.0831019 + 0.996541i \(0.473517\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −3003.69 891.715i −0.175155 0.0519989i
\(666\) 0 0
\(667\) 4344.90 7525.60i 0.252227 0.436870i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −15534.8 −0.893763
\(672\) 0 0
\(673\) −27609.5 −1.58138 −0.790688 0.612219i \(-0.790277\pi\)
−0.790688 + 0.612219i \(0.790277\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 7610.03 13181.0i 0.432019 0.748279i −0.565028 0.825072i \(-0.691135\pi\)
0.997047 + 0.0767925i \(0.0244679\pi\)
\(678\) 0 0
\(679\) −5519.32 + 5231.28i −0.311947 + 0.295668i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −14491.6 + 8366.71i −0.811866 + 0.468731i −0.847603 0.530630i \(-0.821955\pi\)
0.0357376 + 0.999361i \(0.488622\pi\)
\(684\) 0 0
\(685\) 6633.16i 0.369986i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 20882.4 + 36169.4i 1.15465 + 1.99992i
\(690\) 0 0
\(691\) −3981.41 2298.67i −0.219190 0.126549i 0.386385 0.922337i \(-0.373724\pi\)
−0.605575 + 0.795788i \(0.707057\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −2145.03 1238.43i −0.117073 0.0675920i
\(696\) 0 0
\(697\) 2831.45 + 4904.21i 0.153872 + 0.266514i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 7621.26i 0.410629i 0.978696 + 0.205315i \(0.0658217\pi\)
−0.978696 + 0.205315i \(0.934178\pi\)
\(702\) 0 0
\(703\) 7011.93 4048.34i 0.376188 0.217192i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 10053.1 33863.2i 0.534773 1.80135i
\(708\) 0 0
\(709\) 3850.25 6668.83i 0.203948 0.353249i −0.745849 0.666115i \(-0.767956\pi\)
0.949797 + 0.312867i \(0.101289\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −21824.2 −1.14631
\(714\) 0 0
\(715\) 14854.8 0.776977
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 5049.89 8746.67i 0.261932 0.453680i −0.704823 0.709383i \(-0.748974\pi\)
0.966755 + 0.255703i \(0.0823070\pi\)
\(720\) 0 0
\(721\) −5862.96 24486.4i −0.302841 1.26480i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 7614.00 4395.95i 0.390037 0.225188i
\(726\) 0 0
\(727\) 23945.7i 1.22159i 0.791789 + 0.610795i \(0.209150\pi\)
−0.791789 + 0.610795i \(0.790850\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 5587.43 + 9677.71i 0.282707 + 0.489662i
\(732\) 0 0
\(733\) 18035.8 + 10413.0i 0.908822 + 0.524708i 0.880052 0.474878i \(-0.157508\pi\)
0.0287698 + 0.999586i \(0.490841\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 8046.67 + 4645.75i 0.402175 + 0.232196i
\(738\) 0 0
\(739\) 7648.41 + 13247.4i 0.380719 + 0.659424i 0.991165 0.132633i \(-0.0423433\pi\)
−0.610446 + 0.792058i \(0.709010\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 27249.8i 1.34549i −0.739875 0.672744i \(-0.765115\pi\)
0.739875 0.672744i \(-0.234885\pi\)
\(744\) 0 0
\(745\) 7062.08 4077.29i 0.347295 0.200511i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −7747.28 32356.2i −0.377943 1.57846i
\(750\) 0 0
\(751\) −19864.5 + 34406.4i −0.965203 + 1.67178i −0.256134 + 0.966641i \(0.582449\pi\)
−0.709069 + 0.705139i \(0.750884\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −10233.7 −0.493302
\(756\) 0 0
\(757\) −24557.2 −1.17906 −0.589530 0.807747i \(-0.700687\pi\)
−0.589530 + 0.807747i \(0.700687\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −9686.45 + 16777.4i −0.461411 + 0.799187i −0.999032 0.0440000i \(-0.985990\pi\)
0.537621 + 0.843187i \(0.319323\pi\)
\(762\) 0 0
\(763\) −443.514 + 1493.95i −0.0210436 + 0.0708842i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 24444.4 14113.0i 1.15076 0.664393i
\(768\) 0 0
\(769\) 39937.6i 1.87280i 0.350930 + 0.936402i \(0.385866\pi\)
−0.350930 + 0.936402i \(0.614134\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 8058.12 + 13957.1i 0.374942 + 0.649419i 0.990318 0.138815i \(-0.0443292\pi\)
−0.615376 + 0.788234i \(0.710996\pi\)
\(774\) 0 0
\(775\) −19122.3 11040.3i −0.886314 0.511714i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −4044.80 2335.27i −0.186034 0.107407i
\(780\) 0 0
\(781\) −15771.4 27316.9i −0.722594 1.25157i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 20184.9i 0.917744i
\(786\) 0 0
\(787\) 19040.0 10992.8i 0.862394 0.497903i −0.00241936 0.999997i \(-0.500770\pi\)
0.864813 + 0.502094i \(0.167437\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 1578.62 1496.23i 0.0709598 0.0672566i
\(792\) 0 0
\(793\) −16142.3 + 27959.3i −0.722864 + 1.25204i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −2291.42 −0.101840 −0.0509198 0.998703i \(-0.516215\pi\)
−0.0509198 + 0.998703i \(0.516215\pi\)
\(798\) 0 0
\(799\) 1579.15 0.0699202
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −4251.67 + 7364.12i −0.186847