Properties

Label 1008.4.bt.d.593.24
Level $1008$
Weight $4$
Character 1008.593
Analytic conductor $59.474$
Analytic rank $0$
Dimension $48$
CM no
Inner twists $4$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 1008 = 2^{4} \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1008.bt (of order \(6\), degree \(2\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(59.4739252858\)
Analytic rank: \(0\)
Dimension: \(48\)
Relative dimension: \(24\) over \(\Q(\zeta_{6})\)
Twist minimal: no (minimal twist has level 504)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 593.24
Character \(\chi\) \(=\) 1008.593
Dual form 1008.4.bt.d.17.24

$q$-expansion

\(f(q)\) \(=\) \(q+(10.9253 - 18.9231i) q^{5} +(12.1367 - 13.9893i) q^{7} +O(q^{10})\) \(q+(10.9253 - 18.9231i) q^{5} +(12.1367 - 13.9893i) q^{7} +(-45.1734 + 26.0809i) q^{11} +54.9986i q^{13} +(40.8239 + 70.7091i) q^{17} +(-113.707 - 65.6488i) q^{19} +(-38.0795 - 21.9852i) q^{23} +(-176.223 - 305.227i) q^{25} -238.538i q^{29} +(-174.225 + 100.589i) q^{31} +(-132.125 - 382.501i) q^{35} +(12.0321 - 20.8402i) q^{37} -102.220 q^{41} -119.740 q^{43} +(-20.2851 + 35.1348i) q^{47} +(-48.4020 - 339.568i) q^{49} +(-297.988 + 172.043i) q^{53} +1139.76i q^{55} +(142.286 + 246.447i) q^{59} +(-386.826 - 223.334i) q^{61} +(1040.75 + 600.874i) q^{65} +(-113.537 - 196.651i) q^{67} +886.964i q^{71} +(6.46845 - 3.73456i) q^{73} +(-183.401 + 948.480i) q^{77} +(404.328 - 700.317i) q^{79} -943.208 q^{83} +1784.05 q^{85} +(575.503 - 996.801i) q^{89} +(769.393 + 667.501i) q^{91} +(-2484.56 + 1434.46i) q^{95} -1557.47i q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48q + 24q^{7} + O(q^{10}) \) \( 48q + 24q^{7} - 540q^{19} - 924q^{25} - 648q^{31} - 132q^{37} + 792q^{43} + 672q^{49} + 12q^{67} + 2412q^{73} - 1680q^{79} + 480q^{85} - 1404q^{91} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1008\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(577\) \(757\) \(785\)
\(\chi(n)\) \(1\) \(e\left(\frac{5}{6}\right)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 10.9253 18.9231i 0.977185 1.69253i 0.304657 0.952462i \(-0.401458\pi\)
0.672528 0.740072i \(-0.265209\pi\)
\(6\) 0 0
\(7\) 12.1367 13.9893i 0.655319 0.755352i
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −45.1734 + 26.0809i −1.23821 + 0.714879i −0.968728 0.248127i \(-0.920185\pi\)
−0.269480 + 0.963006i \(0.586852\pi\)
\(12\) 0 0
\(13\) 54.9986i 1.17338i 0.809813 + 0.586688i \(0.199568\pi\)
−0.809813 + 0.586688i \(0.800432\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 40.8239 + 70.7091i 0.582427 + 1.00879i 0.995191 + 0.0979551i \(0.0312302\pi\)
−0.412764 + 0.910838i \(0.635437\pi\)
\(18\) 0 0
\(19\) −113.707 65.6488i −1.37296 0.792677i −0.381657 0.924304i \(-0.624646\pi\)
−0.991299 + 0.131627i \(0.957980\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −38.0795 21.9852i −0.345223 0.199315i 0.317356 0.948306i \(-0.397205\pi\)
−0.662579 + 0.748992i \(0.730538\pi\)
\(24\) 0 0
\(25\) −176.223 305.227i −1.40978 2.44181i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 238.538i 1.52742i −0.645557 0.763712i \(-0.723375\pi\)
0.645557 0.763712i \(-0.276625\pi\)
\(30\) 0 0
\(31\) −174.225 + 100.589i −1.00941 + 0.582783i −0.911019 0.412365i \(-0.864703\pi\)
−0.0983905 + 0.995148i \(0.531369\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −132.125 382.501i −0.638091 1.84727i
\(36\) 0 0
\(37\) 12.0321 20.8402i 0.0534613 0.0925977i −0.838056 0.545584i \(-0.816308\pi\)
0.891518 + 0.452986i \(0.149641\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −102.220 −0.389369 −0.194685 0.980866i \(-0.562368\pi\)
−0.194685 + 0.980866i \(0.562368\pi\)
\(42\) 0 0
\(43\) −119.740 −0.424654 −0.212327 0.977199i \(-0.568104\pi\)
−0.212327 + 0.977199i \(0.568104\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −20.2851 + 35.1348i −0.0629550 + 0.109041i −0.895785 0.444488i \(-0.853386\pi\)
0.832830 + 0.553529i \(0.186719\pi\)
\(48\) 0 0
\(49\) −48.4020 339.568i −0.141114 0.989993i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −297.988 + 172.043i −0.772298 + 0.445887i −0.833694 0.552227i \(-0.813778\pi\)
0.0613956 + 0.998114i \(0.480445\pi\)
\(54\) 0 0
\(55\) 1139.76i 2.79428i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 142.286 + 246.447i 0.313968 + 0.543808i 0.979218 0.202813i \(-0.0650083\pi\)
−0.665250 + 0.746621i \(0.731675\pi\)
\(60\) 0 0
\(61\) −386.826 223.334i −0.811934 0.468770i 0.0356931 0.999363i \(-0.488636\pi\)
−0.847627 + 0.530593i \(0.821969\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 1040.75 + 600.874i 1.98598 + 1.14660i
\(66\) 0 0
\(67\) −113.537 196.651i −0.207025 0.358578i 0.743751 0.668457i \(-0.233045\pi\)
−0.950776 + 0.309879i \(0.899712\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 886.964i 1.48258i 0.671184 + 0.741291i \(0.265786\pi\)
−0.671184 + 0.741291i \(0.734214\pi\)
\(72\) 0 0
\(73\) 6.46845 3.73456i 0.0103709 0.00598763i −0.494806 0.869004i \(-0.664761\pi\)
0.505176 + 0.863016i \(0.331427\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −183.401 + 948.480i −0.271435 + 1.40376i
\(78\) 0 0
\(79\) 404.328 700.317i 0.575829 0.997365i −0.420122 0.907468i \(-0.638013\pi\)
0.995951 0.0898973i \(-0.0286539\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −943.208 −1.24736 −0.623678 0.781681i \(-0.714362\pi\)
−0.623678 + 0.781681i \(0.714362\pi\)
\(84\) 0 0
\(85\) 1784.05 2.27656
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 575.503 996.801i 0.685430 1.18720i −0.287872 0.957669i \(-0.592948\pi\)
0.973302 0.229530i \(-0.0737189\pi\)
\(90\) 0 0
\(91\) 769.393 + 667.501i 0.886312 + 0.768935i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −2484.56 + 1434.46i −2.68326 + 1.54918i
\(96\) 0 0
\(97\) 1557.47i 1.63028i −0.579264 0.815140i \(-0.696660\pi\)
0.579264 0.815140i \(-0.303340\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 758.342 + 1313.49i 0.747107 + 1.29403i 0.949204 + 0.314662i \(0.101891\pi\)
−0.202097 + 0.979366i \(0.564776\pi\)
\(102\) 0 0
\(103\) −870.518 502.594i −0.832763 0.480796i 0.0220344 0.999757i \(-0.492986\pi\)
−0.854798 + 0.518961i \(0.826319\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −919.111 530.649i −0.830410 0.479437i 0.0235833 0.999722i \(-0.492492\pi\)
−0.853993 + 0.520285i \(0.825826\pi\)
\(108\) 0 0
\(109\) 248.409 + 430.256i 0.218287 + 0.378083i 0.954284 0.298901i \(-0.0966199\pi\)
−0.735998 + 0.676984i \(0.763287\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 975.345i 0.811971i 0.913880 + 0.405985i \(0.133072\pi\)
−0.913880 + 0.405985i \(0.866928\pi\)
\(114\) 0 0
\(115\) −832.057 + 480.389i −0.674693 + 0.389534i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 1484.64 + 287.075i 1.14367 + 0.221144i
\(120\) 0 0
\(121\) 694.922 1203.64i 0.522105 0.904313i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −4969.80 −3.55610
\(126\) 0 0
\(127\) −573.808 −0.400923 −0.200461 0.979702i \(-0.564244\pi\)
−0.200461 + 0.979702i \(0.564244\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 105.592 182.890i 0.0704244 0.121979i −0.828663 0.559748i \(-0.810898\pi\)
0.899087 + 0.437769i \(0.144231\pi\)
\(132\) 0 0
\(133\) −2298.41 + 793.925i −1.49847 + 0.517609i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −279.288 + 161.247i −0.174169 + 0.100557i −0.584550 0.811358i \(-0.698729\pi\)
0.410381 + 0.911914i \(0.365396\pi\)
\(138\) 0 0
\(139\) 491.082i 0.299662i 0.988712 + 0.149831i \(0.0478730\pi\)
−0.988712 + 0.149831i \(0.952127\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −1434.41 2484.47i −0.838822 1.45288i
\(144\) 0 0
\(145\) −4513.87 2606.09i −2.58522 1.49258i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −184.226 106.363i −0.101291 0.0584805i 0.448499 0.893784i \(-0.351959\pi\)
−0.549790 + 0.835303i \(0.685292\pi\)
\(150\) 0 0
\(151\) 99.5733 + 172.466i 0.0536633 + 0.0929476i 0.891609 0.452806i \(-0.149577\pi\)
−0.837946 + 0.545753i \(0.816244\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 4395.83i 2.27795i
\(156\) 0 0
\(157\) −92.2932 + 53.2855i −0.0469159 + 0.0270869i −0.523275 0.852164i \(-0.675290\pi\)
0.476359 + 0.879251i \(0.341956\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −769.717 + 265.879i −0.376784 + 0.130150i
\(162\) 0 0
\(163\) 1806.95 3129.74i 0.868292 1.50393i 0.00455163 0.999990i \(-0.498551\pi\)
0.863741 0.503937i \(-0.168116\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 2838.38 1.31521 0.657606 0.753362i \(-0.271569\pi\)
0.657606 + 0.753362i \(0.271569\pi\)
\(168\) 0 0
\(169\) −827.851 −0.376810
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 74.3270 128.738i 0.0326646 0.0565767i −0.849231 0.528022i \(-0.822934\pi\)
0.881896 + 0.471445i \(0.156267\pi\)
\(174\) 0 0
\(175\) −6408.67 1239.20i −2.76828 0.535285i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 94.4896 54.5536i 0.0394552 0.0227795i −0.480143 0.877190i \(-0.659415\pi\)
0.519598 + 0.854411i \(0.326082\pi\)
\(180\) 0 0
\(181\) 321.177i 0.131894i 0.997823 + 0.0659472i \(0.0210069\pi\)
−0.997823 + 0.0659472i \(0.978993\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −262.908 455.370i −0.104483 0.180970i
\(186\) 0 0
\(187\) −3688.31 2129.45i −1.44233 0.832730i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 1841.59 + 1063.24i 0.697658 + 0.402793i 0.806475 0.591269i \(-0.201373\pi\)
−0.108816 + 0.994062i \(0.534706\pi\)
\(192\) 0 0
\(193\) 1760.98 + 3050.11i 0.656779 + 1.13757i 0.981445 + 0.191746i \(0.0614149\pi\)
−0.324666 + 0.945829i \(0.605252\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 466.612i 0.168755i 0.996434 + 0.0843775i \(0.0268902\pi\)
−0.996434 + 0.0843775i \(0.973110\pi\)
\(198\) 0 0
\(199\) 3708.65 2141.19i 1.32110 0.762739i 0.337198 0.941434i \(-0.390521\pi\)
0.983905 + 0.178695i \(0.0571874\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −3336.98 2895.05i −1.15374 1.00095i
\(204\) 0 0
\(205\) −1116.78 + 1934.33i −0.380486 + 0.659021i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 6848.70 2.26667
\(210\) 0 0
\(211\) 451.133 0.147191 0.0735954 0.997288i \(-0.476553\pi\)
0.0735954 + 0.997288i \(0.476553\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −1308.19 + 2265.85i −0.414966 + 0.718742i
\(216\) 0 0
\(217\) −707.343 + 3658.10i −0.221279 + 1.14437i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −3888.91 + 2245.26i −1.18369 + 0.683405i
\(222\) 0 0
\(223\) 710.949i 0.213492i −0.994286 0.106746i \(-0.965957\pi\)
0.994286 0.106746i \(-0.0340431\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 1762.96 + 3053.54i 0.515470 + 0.892821i 0.999839 + 0.0179567i \(0.00571610\pi\)
−0.484368 + 0.874864i \(0.660951\pi\)
\(228\) 0 0
\(229\) −2034.98 1174.90i −0.587229 0.339037i 0.176772 0.984252i \(-0.443434\pi\)
−0.764001 + 0.645215i \(0.776768\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −2648.53 1529.13i −0.744683 0.429943i 0.0790864 0.996868i \(-0.474800\pi\)
−0.823770 + 0.566925i \(0.808133\pi\)
\(234\) 0 0
\(235\) 443.240 + 767.714i 0.123037 + 0.213107i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 4374.81i 1.18403i −0.805927 0.592015i \(-0.798333\pi\)
0.805927 0.592015i \(-0.201667\pi\)
\(240\) 0 0
\(241\) 1806.54 1043.01i 0.482861 0.278780i −0.238747 0.971082i \(-0.576737\pi\)
0.721608 + 0.692302i \(0.243403\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −6954.48 2793.95i −1.81349 0.728567i
\(246\) 0 0
\(247\) 3610.59 6253.73i 0.930107 1.61099i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −4161.17 −1.04642 −0.523209 0.852204i \(-0.675265\pi\)
−0.523209 + 0.852204i \(0.675265\pi\)
\(252\) 0 0
\(253\) 2293.57 0.569944
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −657.550 + 1138.91i −0.159599 + 0.276433i −0.934724 0.355374i \(-0.884353\pi\)
0.775125 + 0.631808i \(0.217687\pi\)
\(258\) 0 0
\(259\) −145.511 421.253i −0.0349096 0.101063i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −2438.23 + 1407.71i −0.571665 + 0.330051i −0.757814 0.652471i \(-0.773733\pi\)
0.186149 + 0.982521i \(0.440399\pi\)
\(264\) 0 0
\(265\) 7518.48i 1.74285i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −1025.86 1776.83i −0.232519 0.402734i 0.726030 0.687663i \(-0.241363\pi\)
−0.958549 + 0.284929i \(0.908030\pi\)
\(270\) 0 0
\(271\) 1176.68 + 679.356i 0.263757 + 0.152280i 0.626047 0.779785i \(-0.284672\pi\)
−0.362290 + 0.932065i \(0.618005\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 15921.1 + 9192.07i 3.49120 + 2.01565i
\(276\) 0 0
\(277\) −2683.21 4647.46i −0.582017 1.00808i −0.995240 0.0974533i \(-0.968930\pi\)
0.413223 0.910630i \(-0.364403\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 6750.22i 1.43304i 0.697567 + 0.716520i \(0.254266\pi\)
−0.697567 + 0.716520i \(0.745734\pi\)
\(282\) 0 0
\(283\) −4812.98 + 2778.77i −1.01096 + 0.583678i −0.911473 0.411360i \(-0.865054\pi\)
−0.0994879 + 0.995039i \(0.531720\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −1240.62 + 1429.99i −0.255161 + 0.294111i
\(288\) 0 0
\(289\) −876.688 + 1518.47i −0.178442 + 0.309071i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 3205.49 0.639136 0.319568 0.947563i \(-0.396462\pi\)
0.319568 + 0.947563i \(0.396462\pi\)
\(294\) 0 0
\(295\) 6218.06 1.22722
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 1209.16 2094.32i 0.233871 0.405076i
\(300\) 0 0
\(301\) −1453.24 + 1675.08i −0.278284 + 0.320763i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −8452.34 + 4879.96i −1.58682 + 0.916150i
\(306\) 0 0
\(307\) 2624.02i 0.487820i −0.969798 0.243910i \(-0.921570\pi\)
0.969798 0.243910i \(-0.0784301\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 378.873 + 656.227i 0.0690801 + 0.119650i 0.898497 0.438980i \(-0.144660\pi\)
−0.829417 + 0.558631i \(0.811327\pi\)
\(312\) 0 0
\(313\) 1419.39 + 819.484i 0.256321 + 0.147987i 0.622655 0.782496i \(-0.286054\pi\)
−0.366334 + 0.930483i \(0.619387\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 784.941 + 453.186i 0.139075 + 0.0802949i 0.567923 0.823082i \(-0.307747\pi\)
−0.428848 + 0.903377i \(0.641080\pi\)
\(318\) 0 0
\(319\) 6221.26 + 10775.5i 1.09192 + 1.89127i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 10720.2i 1.84671i
\(324\) 0 0
\(325\) 16787.0 9692.00i 2.86516 1.65420i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 245.318 + 710.195i 0.0411090 + 0.119010i
\(330\) 0 0
\(331\) 2577.90 4465.05i 0.428078 0.741453i −0.568624 0.822598i \(-0.692524\pi\)
0.996702 + 0.0811441i \(0.0258574\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −4961.66 −0.809208
\(336\) 0 0
\(337\) −7707.19 −1.24581 −0.622904 0.782298i \(-0.714047\pi\)
−0.622904 + 0.782298i \(0.714047\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 5246.88 9087.86i 0.833239 1.44321i
\(342\) 0 0
\(343\) −5337.76 3444.11i −0.840268 0.542171i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −634.026 + 366.055i −0.0980872 + 0.0566307i −0.548241 0.836320i \(-0.684702\pi\)
0.450154 + 0.892951i \(0.351369\pi\)
\(348\) 0 0
\(349\) 4863.32i 0.745925i −0.927846 0.372962i \(-0.878342\pi\)
0.927846 0.372962i \(-0.121658\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −994.452 1722.44i −0.149942 0.259706i 0.781264 0.624201i \(-0.214575\pi\)
−0.931206 + 0.364494i \(0.881242\pi\)
\(354\) 0 0
\(355\) 16784.1 + 9690.31i 2.50932 + 1.44876i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −2023.15 1168.07i −0.297432 0.171722i 0.343857 0.939022i \(-0.388266\pi\)
−0.641289 + 0.767300i \(0.721600\pi\)
\(360\) 0 0
\(361\) 5190.02 + 8989.37i 0.756673 + 1.31060i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 163.204i 0.0234041i
\(366\) 0 0
\(367\) −3846.05 + 2220.52i −0.547037 + 0.315832i −0.747926 0.663782i \(-0.768950\pi\)
0.200889 + 0.979614i \(0.435617\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −1209.82 + 6256.69i −0.169300 + 0.875555i
\(372\) 0 0
\(373\) 3473.33 6015.99i 0.482151 0.835110i −0.517639 0.855599i \(-0.673189\pi\)
0.999790 + 0.0204893i \(0.00652240\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 13119.2 1.79224
\(378\) 0 0
\(379\) −12964.3 −1.75708 −0.878539 0.477670i \(-0.841481\pi\)
−0.878539 + 0.477670i \(0.841481\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 1355.12 2347.14i 0.180792 0.313141i −0.761358 0.648331i \(-0.775467\pi\)
0.942151 + 0.335190i \(0.108801\pi\)
\(384\) 0 0
\(385\) 15944.5 + 13832.9i 2.11066 + 1.83114i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 9782.93 5648.18i 1.27510 0.736180i 0.299158 0.954204i \(-0.403294\pi\)
0.975944 + 0.218023i \(0.0699609\pi\)
\(390\) 0 0
\(391\) 3590.09i 0.464345i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −8834.78 15302.3i −1.12538 1.94922i
\(396\) 0 0
\(397\) −12029.8 6945.42i −1.52080 0.878036i −0.999699 0.0245435i \(-0.992187\pi\)
−0.521105 0.853493i \(-0.674480\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 5046.46 + 2913.58i 0.628450 + 0.362836i 0.780151 0.625591i \(-0.215142\pi\)
−0.151702 + 0.988426i \(0.548475\pi\)
\(402\) 0 0
\(403\) −5532.24 9582.12i −0.683823 1.18442i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 1255.23i 0.152874i
\(408\) 0 0
\(409\) −9495.40 + 5482.17i −1.14796 + 0.662777i −0.948390 0.317106i \(-0.897289\pi\)
−0.199574 + 0.979883i \(0.563956\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 5174.51 + 1000.56i 0.616516 + 0.119212i
\(414\) 0 0
\(415\) −10304.8 + 17848.4i −1.21890 + 2.11119i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −4657.67 −0.543060 −0.271530 0.962430i \(-0.587530\pi\)
−0.271530 + 0.962430i \(0.587530\pi\)
\(420\) 0 0
\(421\) −4001.54 −0.463238 −0.231619 0.972807i \(-0.574402\pi\)
−0.231619 + 0.972807i \(0.574402\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 14388.2 24921.1i 1.64219 2.84435i
\(426\) 0 0
\(427\) −7819.07 + 2700.90i −0.886162 + 0.306102i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 6306.30 3640.95i 0.704789 0.406910i −0.104340 0.994542i \(-0.533273\pi\)
0.809128 + 0.587632i \(0.199940\pi\)
\(432\) 0 0
\(433\) 3622.55i 0.402052i −0.979586 0.201026i \(-0.935572\pi\)
0.979586 0.201026i \(-0.0644276\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 2886.60 + 4999.75i 0.315984 + 0.547300i
\(438\) 0 0
\(439\) 4907.92 + 2833.59i 0.533582 + 0.308064i 0.742474 0.669875i \(-0.233652\pi\)
−0.208892 + 0.977939i \(0.566986\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 4348.34 + 2510.52i 0.466357 + 0.269251i 0.714713 0.699417i \(-0.246557\pi\)
−0.248357 + 0.968669i \(0.579890\pi\)
\(444\) 0 0
\(445\) −12575.0 21780.6i −1.33958 2.32023i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 6341.85i 0.666572i −0.942826 0.333286i \(-0.891843\pi\)
0.942826 0.333286i \(-0.108157\pi\)
\(450\) 0 0
\(451\) 4617.64 2666.00i 0.482120 0.278352i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 21037.0 7266.69i 2.16754 0.748720i
\(456\) 0 0
\(457\) −6306.35 + 10922.9i −0.645511 + 1.11806i 0.338672 + 0.940904i \(0.390022\pi\)
−0.984183 + 0.177153i \(0.943311\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −1495.67 −0.151107 −0.0755536 0.997142i \(-0.524072\pi\)
−0.0755536 + 0.997142i \(0.524072\pi\)
\(462\) 0 0
\(463\) 5614.86 0.563595 0.281798 0.959474i \(-0.409069\pi\)
0.281798 + 0.959474i \(0.409069\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 4405.48 7630.52i 0.436534 0.756100i −0.560885 0.827894i \(-0.689539\pi\)
0.997419 + 0.0717941i \(0.0228724\pi\)
\(468\) 0 0
\(469\) −4128.97 798.392i −0.406521 0.0786063i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 5409.04 3122.91i 0.525810 0.303577i
\(474\) 0 0
\(475\) 46275.2i 4.47000i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −6722.03 11642.9i −0.641206 1.11060i −0.985164 0.171616i \(-0.945101\pi\)
0.343958 0.938985i \(-0.388232\pi\)
\(480\) 0 0
\(481\) 1146.19 + 661.750i 0.108652 + 0.0627302i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −29472.2 17015.8i −2.75930 1.59308i
\(486\) 0 0
\(487\) −144.328 249.984i −0.0134295 0.0232605i 0.859233 0.511585i \(-0.170942\pi\)
−0.872662 + 0.488325i \(0.837608\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 17459.7i 1.60478i −0.596803 0.802388i \(-0.703563\pi\)
0.596803 0.802388i \(-0.296437\pi\)
\(492\) 0 0
\(493\) 16866.8 9738.04i 1.54086 0.889613i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 12408.0 + 10764.8i 1.11987 + 0.971564i
\(498\) 0 0
\(499\) 9639.96 16696.9i 0.864817 1.49791i −0.00241142 0.999997i \(-0.500768\pi\)
0.867229 0.497910i \(-0.165899\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 20846.3 1.84789 0.923947 0.382520i \(-0.124944\pi\)
0.923947 + 0.382520i \(0.124944\pi\)
\(504\) 0 0
\(505\) 33140.3 2.92025
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −8277.31 + 14336.7i −0.720796 + 1.24846i 0.239885 + 0.970801i \(0.422890\pi\)
−0.960681 + 0.277654i \(0.910443\pi\)
\(510\) 0 0
\(511\) 26.2616 135.814i 0.00227347 0.0117575i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −19021.3 + 10981.9i −1.62753 + 0.939654i
\(516\) 0 0
\(517\) 2116.21i 0.180021i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 8720.17 + 15103.8i 0.733278 + 1.27007i 0.955475 + 0.295073i \(0.0953439\pi\)
−0.222197 + 0.975002i \(0.571323\pi\)
\(522\) 0 0
\(523\) 19059.3 + 11003.9i 1.59351 + 0.920014i 0.992698 + 0.120625i \(0.0384897\pi\)
0.600813 + 0.799390i \(0.294844\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −14225.1 8212.85i −1.17581 0.678857i
\(528\) 0 0
\(529\) −5116.80 8862.56i −0.420547 0.728409i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 5621.98i 0.456876i
\(534\) 0 0
\(535\) −20083.1 + 11595.0i −1.62293 + 0.936998i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 11042.7 + 14077.1i 0.882454 + 1.12494i
\(540\) 0 0
\(541\) −10144.2 + 17570.4i −0.806165 + 1.39632i 0.109336 + 0.994005i \(0.465127\pi\)
−0.915502 + 0.402314i \(0.868206\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 10855.7 0.853225
\(546\) 0 0
\(547\) 3726.23 0.291265 0.145633 0.989339i \(-0.453478\pi\)
0.145633 + 0.989339i \(0.453478\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −15659.7 + 27123.4i −1.21075 + 2.09709i
\(552\) 0 0
\(553\) −4889.75 14155.8i −0.376010 1.08855i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 2400.90 1386.16i 0.182638 0.105446i −0.405894 0.913920i \(-0.633040\pi\)
0.588531 + 0.808474i \(0.299706\pi\)
\(558\) 0 0
\(559\) 6585.52i 0.498279i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −6501.90 11261.6i −0.486718 0.843021i 0.513165 0.858290i \(-0.328473\pi\)
−0.999883 + 0.0152692i \(0.995139\pi\)
\(564\) 0 0
\(565\) 18456.5 + 10655.9i 1.37429 + 0.793446i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 9698.81 + 5599.61i 0.714579 + 0.412562i 0.812754 0.582607i \(-0.197967\pi\)
−0.0981755 + 0.995169i \(0.531301\pi\)
\(570\) 0 0
\(571\) −7242.52 12544.4i −0.530805 0.919382i −0.999354 0.0359441i \(-0.988556\pi\)
0.468548 0.883438i \(-0.344777\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 15497.2i 1.12396i
\(576\) 0 0
\(577\) 10364.2 5983.80i 0.747780 0.431731i −0.0771109 0.997023i \(-0.524570\pi\)
0.824891 + 0.565291i \(0.191236\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −11447.4 + 13194.8i −0.817417 + 0.942193i
\(582\) 0 0
\(583\) 8974.08 15543.6i 0.637510 1.10420i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 12202.6 0.858017 0.429009 0.903300i \(-0.358863\pi\)
0.429009 + 0.903300i \(0.358863\pi\)
\(588\) 0 0
\(589\) 26414.1 1.84783
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −5152.12 + 8923.73i −0.356783 + 0.617966i −0.987421 0.158111i \(-0.949460\pi\)
0.630639 + 0.776077i \(0.282793\pi\)
\(594\) 0 0
\(595\) 21652.4 24957.6i 1.49187 1.71960i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −1846.43 + 1066.04i −0.125949 + 0.0727165i −0.561651 0.827374i \(-0.689833\pi\)
0.435702 + 0.900091i \(0.356500\pi\)
\(600\) 0 0
\(601\) 3844.71i 0.260947i −0.991452 0.130473i \(-0.958350\pi\)
0.991452 0.130473i \(-0.0416497\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −15184.4 26300.2i −1.02039 1.76736i
\(606\) 0 0
\(607\) 5692.75 + 3286.71i 0.380662 + 0.219775i 0.678106 0.734964i \(-0.262801\pi\)
−0.297444 + 0.954739i \(0.596134\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −1932.37 1115.65i −0.127946 0.0738699i
\(612\) 0 0
\(613\) 4464.58 + 7732.88i 0.294164 + 0.509508i 0.974790 0.223124i \(-0.0716253\pi\)
−0.680626 + 0.732631i \(0.738292\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 20869.2i 1.36169i −0.732429 0.680843i \(-0.761613\pi\)
0.732429 0.680843i \(-0.238387\pi\)
\(618\) 0 0
\(619\) 11798.1 6811.63i 0.766083 0.442298i −0.0653928 0.997860i \(-0.520830\pi\)
0.831475 + 0.555562i \(0.187497\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −6959.86 20148.8i −0.447578 1.29573i
\(624\) 0 0
\(625\) −32268.5 + 55890.7i −2.06518 + 3.57700i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 1964.79 0.124549
\(630\) 0 0
\(631\) 20380.3 1.28578 0.642890 0.765959i \(-0.277735\pi\)
0.642890 + 0.765959i \(0.277735\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −6269.00 + 10858.2i −0.391776 + 0.678576i
\(636\) 0 0
\(637\) 18675.8 2662.04i 1.16163 0.165579i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 22692.6 13101.6i 1.39829 0.807302i 0.404074 0.914726i \(-0.367594\pi\)
0.994213 + 0.107425i \(0.0342605\pi\)
\(642\) 0 0
\(643\) 21463.4i 1.31639i 0.752850 + 0.658193i \(0.228679\pi\)
−0.752850 + 0.658193i \(0.771321\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 782.398 + 1355.15i 0.0475414 + 0.0823440i 0.888817 0.458263i \(-0.151528\pi\)
−0.841275 + 0.540607i \(0.818195\pi\)
\(648\) 0 0
\(649\) −12855.1 7421.90i −0.777515 0.448898i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −2832.40 1635.29i −0.169740 0.0979996i 0.412723 0.910857i \(-0.364578\pi\)
−0.582463 + 0.812857i \(0.697911\pi\)
\(654\) 0 0
\(655\) −2307.23 3996.25i −0.137635 0.238391i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 3271.53i 0.193385i 0.995314 + 0.0966924i \(0.0308263\pi\)
−0.995314 + 0.0966924i \(0.969174\pi\)
\(660\) 0 0
\(661\) −8150.02 + 4705.41i −0.479575 + 0.276883i −0.720239 0.693726i \(-0.755968\pi\)
0.240665 + 0.970608i \(0.422635\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −10087.2 + 52166.8i −0.588216 + 3.04202i
\(666\) 0 0
\(667\) −5244.30 + 9083.40i −0.304438 + 0.527302i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 23299.0 1.34046
\(672\) 0 0
\(673\) −15000.7 −0.859187 −0.429594 0.903022i \(-0.641343\pi\)
−0.429594 + 0.903022i \(0.641343\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 10894.9 18870.5i 0.618501 1.07127i −0.371259 0.928529i \(-0.621074\pi\)
0.989759 0.142745i \(-0.0455930\pi\)
\(678\) 0 0
\(679\) −21787.9 18902.5i −1.23144 1.06835i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 11577.3 6684.18i 0.648601 0.374470i −0.139319 0.990248i \(-0.544491\pi\)
0.787920 + 0.615778i \(0.211158\pi\)
\(684\) 0 0
\(685\) 7046.65i 0.393049i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −9462.16 16388.9i −0.523192 0.906196i
\(690\) 0 0
\(691\) −2603.71 1503.26i −0.143343 0.0827591i 0.426613 0.904434i \(-0.359707\pi\)
−0.569956 + 0.821675i \(0.693040\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 9292.81 + 5365.20i 0.507189 + 0.292826i
\(696\) 0 0
\(697\) −4173.04 7227.92i −0.226779 0.392793i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 5449.86i 0.293635i −0.989164 0.146818i \(-0.953097\pi\)
0.989164 0.146818i \(-0.0469030\pi\)
\(702\) 0 0
\(703\) −2736.27 + 1579.79i −0.146800 + 0.0847551i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 27578.5 + 5332.68i 1.46704 + 0.283672i
\(708\) 0 0
\(709\) −7610.90 + 13182.5i −0.403150 + 0.698277i −0.994104 0.108429i \(-0.965418\pi\)
0.590954 + 0.806705i \(0.298751\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 8845.86 0.464628
\(714\) 0 0
\(715\) −62685.3 −3.27874
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 1575.16 2728.27i 0.0817020 0.141512i −0.822279 0.569084i \(-0.807298\pi\)
0.903981 + 0.427572i \(0.140631\pi\)
\(720\) 0 0
\(721\) −17596.1 + 6078.13i −0.908896 + 0.313955i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −72808.0 + 42035.7i −3.72968 + 2.15333i
\(726\) 0 0
\(727\) 30799.4i 1.57123i −0.618713 0.785617i \(-0.712345\pi\)
0.618713 0.785617i \(-0.287655\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −4888.24 8466.69i −0.247330 0.428388i
\(732\) 0 0
\(733\) 7439.96 + 4295.46i 0.374899 + 0.216448i 0.675597 0.737271i \(-0.263886\pi\)
−0.300697 + 0.953720i \(0.597219\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 10257.7 + 5922.26i 0.512681 + 0.295996i
\(738\) 0 0
\(739\) −15874.5 27495.4i −0.790192 1.36865i −0.925847 0.377897i \(-0.876647\pi\)
0.135655 0.990756i \(-0.456686\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 15722.6i 0.776323i 0.921591 + 0.388161i \(0.126890\pi\)
−0.921591 + 0.388161i \(0.873110\pi\)
\(744\) 0 0
\(745\) −4025.44 + 2324.09i −0.197961 + 0.114293i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −18578.4 + 6417.42i −0.906327 + 0.313067i
\(750\) 0 0
\(751\) −15181.8 + 26295.7i −0.737674 + 1.27769i 0.215867 + 0.976423i \(0.430742\pi\)
−0.953540 + 0.301265i \(0.902591\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 4351.46 0.209756
\(756\) 0 0
\(757\) −28207.3 −1.35431 −0.677155 0.735841i \(-0.736787\pi\)
−0.677155 + 0.735841i \(0.736787\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 13564.9 23495.1i 0.646160 1.11918i −0.337873 0.941192i \(-0.609707\pi\)
0.984032 0.177990i \(-0.0569594\pi\)
\(762\) 0 0
\(763\) 9033.85 + 1746.82i 0.428633 + 0.0828821i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −13554.3 + 7825.56i −0.638091 + 0.368402i
\(768\) 0 0
\(769\) 8577.68i 0.402235i −0.979567 0.201118i \(-0.935543\pi\)
0.979567 0.201118i \(-0.0644574\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 700.177 + 1212.74i 0.0325790 + 0.0564286i 0.881855 0.471520i \(-0.156295\pi\)
−0.849276 + 0.527949i \(0.822961\pi\)
\(774\) 0 0
\(775\) 61404.7 + 35452.0i 2.84609 + 1.64319i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 11623.2 + 6710.64i 0.534587 + 0.308644i
\(780\) 0 0
\(781\) −23132.8 40067.2i −1.05987 1.83574i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 2328.63i 0.105876i
\(786\) 0 0
\(787\) 3002.03 1733.22i 0.135973 0.0785041i −0.430470 0.902605i \(-0.641652\pi\)
0.566443 + 0.824101i \(0.308319\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 13644.4 + 11837.4i 0.613324 + 0.532100i
\(792\) 0 0
\(793\) 12283.1 21274.9i 0.550043 0.952703i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −37737.6 −1.67721 −0.838604 0.544741i \(-0.816628\pi\)
−0.838604 + 0.544741i \(0.816628\pi\)
\(798\) 0 0
\(799\) −3312.47 −0.146667
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −194.801 + 337.405i