Properties

Label 1008.4.bt.d.17.9
Level $1008$
Weight $4$
Character 1008.17
Analytic conductor $59.474$
Analytic rank $0$
Dimension $48$
CM no
Inner twists $4$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 1008 = 2^{4} \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1008.bt (of order \(6\), degree \(2\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(59.4739252858\)
Analytic rank: \(0\)
Dimension: \(48\)
Relative dimension: \(24\) over \(\Q(\zeta_{6})\)
Twist minimal: no (minimal twist has level 504)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 17.9
Character \(\chi\) \(=\) 1008.17
Dual form 1008.4.bt.d.593.9

$q$-expansion

\(f(q)\) \(=\) \(q+(-3.30930 - 5.73188i) q^{5} +(4.31556 - 18.0104i) q^{7} +O(q^{10})\) \(q+(-3.30930 - 5.73188i) q^{5} +(4.31556 - 18.0104i) q^{7} +(-1.54712 - 0.893230i) q^{11} +4.72915i q^{13} +(23.8462 - 41.3029i) q^{17} +(40.1443 - 23.1773i) q^{19} +(-30.2011 + 17.4366i) q^{23} +(40.5970 - 70.3161i) q^{25} -48.3459i q^{29} +(107.814 + 62.2462i) q^{31} +(-117.515 + 34.8657i) q^{35} +(-137.933 - 238.908i) q^{37} +37.3352 q^{41} +215.883 q^{43} +(53.1037 + 91.9783i) q^{47} +(-305.752 - 155.450i) q^{49} +(-233.771 - 134.968i) q^{53} +11.8239i q^{55} +(-149.592 + 259.101i) q^{59} +(-292.459 + 168.851i) q^{61} +(27.1069 - 15.6502i) q^{65} +(188.686 - 326.815i) q^{67} +816.814i q^{71} +(-596.355 - 344.306i) q^{73} +(-22.7641 + 24.0095i) q^{77} +(307.064 + 531.851i) q^{79} -1323.90 q^{83} -315.658 q^{85} +(-480.368 - 832.022i) q^{89} +(85.1741 + 20.4089i) q^{91} +(-265.699 - 153.401i) q^{95} -449.508i q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48q + 24q^{7} + O(q^{10}) \) \( 48q + 24q^{7} - 540q^{19} - 924q^{25} - 648q^{31} - 132q^{37} + 792q^{43} + 672q^{49} + 12q^{67} + 2412q^{73} - 1680q^{79} + 480q^{85} - 1404q^{91} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1008\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(577\) \(757\) \(785\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{6}\right)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −3.30930 5.73188i −0.295993 0.512675i 0.679222 0.733932i \(-0.262317\pi\)
−0.975215 + 0.221258i \(0.928984\pi\)
\(6\) 0 0
\(7\) 4.31556 18.0104i 0.233019 0.972472i
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −1.54712 0.893230i −0.0424067 0.0244835i 0.478647 0.878008i \(-0.341127\pi\)
−0.521053 + 0.853524i \(0.674461\pi\)
\(12\) 0 0
\(13\) 4.72915i 0.100895i 0.998727 + 0.0504473i \(0.0160647\pi\)
−0.998727 + 0.0504473i \(0.983935\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 23.8462 41.3029i 0.340210 0.589260i −0.644262 0.764805i \(-0.722835\pi\)
0.984471 + 0.175545i \(0.0561687\pi\)
\(18\) 0 0
\(19\) 40.1443 23.1773i 0.484722 0.279855i −0.237660 0.971348i \(-0.576380\pi\)
0.722382 + 0.691494i \(0.243047\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −30.2011 + 17.4366i −0.273798 + 0.158078i −0.630613 0.776098i \(-0.717196\pi\)
0.356814 + 0.934175i \(0.383863\pi\)
\(24\) 0 0
\(25\) 40.5970 70.3161i 0.324776 0.562529i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 48.3459i 0.309573i −0.987948 0.154786i \(-0.950531\pi\)
0.987948 0.154786i \(-0.0494689\pi\)
\(30\) 0 0
\(31\) 107.814 + 62.2462i 0.624642 + 0.360637i 0.778674 0.627429i \(-0.215893\pi\)
−0.154032 + 0.988066i \(0.549226\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −117.515 + 34.8657i −0.567534 + 0.168382i
\(36\) 0 0
\(37\) −137.933 238.908i −0.612868 1.06152i −0.990755 0.135667i \(-0.956682\pi\)
0.377887 0.925852i \(-0.376651\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 37.3352 0.142214 0.0711071 0.997469i \(-0.477347\pi\)
0.0711071 + 0.997469i \(0.477347\pi\)
\(42\) 0 0
\(43\) 215.883 0.765625 0.382812 0.923826i \(-0.374956\pi\)
0.382812 + 0.923826i \(0.374956\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 53.1037 + 91.9783i 0.164808 + 0.285456i 0.936587 0.350435i \(-0.113966\pi\)
−0.771779 + 0.635891i \(0.780633\pi\)
\(48\) 0 0
\(49\) −305.752 155.450i −0.891405 0.453208i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −233.771 134.968i −0.605867 0.349797i 0.165479 0.986213i \(-0.447083\pi\)
−0.771346 + 0.636416i \(0.780416\pi\)
\(54\) 0 0
\(55\) 11.8239i 0.0289878i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −149.592 + 259.101i −0.330088 + 0.571729i −0.982529 0.186110i \(-0.940412\pi\)
0.652441 + 0.757840i \(0.273745\pi\)
\(60\) 0 0
\(61\) −292.459 + 168.851i −0.613861 + 0.354413i −0.774475 0.632604i \(-0.781986\pi\)
0.160614 + 0.987017i \(0.448653\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 27.1069 15.6502i 0.0517261 0.0298641i
\(66\) 0 0
\(67\) 188.686 326.815i 0.344055 0.595922i −0.641126 0.767435i \(-0.721533\pi\)
0.985182 + 0.171514i \(0.0548658\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 816.814i 1.36532i 0.730734 + 0.682662i \(0.239178\pi\)
−0.730734 + 0.682662i \(0.760822\pi\)
\(72\) 0 0
\(73\) −596.355 344.306i −0.956139 0.552027i −0.0611561 0.998128i \(-0.519479\pi\)
−0.894982 + 0.446101i \(0.852812\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −22.7641 + 24.0095i −0.0336911 + 0.0355342i
\(78\) 0 0
\(79\) 307.064 + 531.851i 0.437309 + 0.757442i 0.997481 0.0709347i \(-0.0225982\pi\)
−0.560172 + 0.828377i \(0.689265\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −1323.90 −1.75081 −0.875406 0.483389i \(-0.839406\pi\)
−0.875406 + 0.483389i \(0.839406\pi\)
\(84\) 0 0
\(85\) −315.658 −0.402798
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −480.368 832.022i −0.572123 0.990946i −0.996348 0.0853887i \(-0.972787\pi\)
0.424225 0.905557i \(-0.360547\pi\)
\(90\) 0 0
\(91\) 85.1741 + 20.4089i 0.0981172 + 0.0235103i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −265.699 153.401i −0.286949 0.165670i
\(96\) 0 0
\(97\) 449.508i 0.470522i −0.971932 0.235261i \(-0.924406\pi\)
0.971932 0.235261i \(-0.0755945\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −178.518 + 309.203i −0.175874 + 0.304622i −0.940463 0.339895i \(-0.889608\pi\)
0.764590 + 0.644517i \(0.222942\pi\)
\(102\) 0 0
\(103\) 506.565 292.466i 0.484596 0.279782i −0.237734 0.971330i \(-0.576405\pi\)
0.722330 + 0.691549i \(0.243071\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −1105.24 + 638.108i −0.998571 + 0.576525i −0.907825 0.419349i \(-0.862258\pi\)
−0.0907460 + 0.995874i \(0.528925\pi\)
\(108\) 0 0
\(109\) 318.386 551.461i 0.279779 0.484591i −0.691551 0.722328i \(-0.743072\pi\)
0.971330 + 0.237737i \(0.0764056\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 961.802i 0.800696i −0.916363 0.400348i \(-0.868889\pi\)
0.916363 0.400348i \(-0.131111\pi\)
\(114\) 0 0
\(115\) 199.889 + 115.406i 0.162085 + 0.0935797i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −640.973 607.726i −0.493764 0.468153i
\(120\) 0 0
\(121\) −663.904 1149.92i −0.498801 0.863949i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −1364.72 −0.976512
\(126\) 0 0
\(127\) −144.006 −0.100618 −0.0503089 0.998734i \(-0.516021\pi\)
−0.0503089 + 0.998734i \(0.516021\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −186.107 322.347i −0.124124 0.214989i 0.797266 0.603628i \(-0.206279\pi\)
−0.921390 + 0.388639i \(0.872945\pi\)
\(132\) 0 0
\(133\) −244.188 823.039i −0.159202 0.536590i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −478.822 276.448i −0.298602 0.172398i 0.343213 0.939258i \(-0.388485\pi\)
−0.641815 + 0.766860i \(0.721818\pi\)
\(138\) 0 0
\(139\) 2526.72i 1.54183i −0.636941 0.770913i \(-0.719800\pi\)
0.636941 0.770913i \(-0.280200\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 4.22422 7.31656i 0.00247026 0.00427861i
\(144\) 0 0
\(145\) −277.113 + 159.991i −0.158710 + 0.0916314i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −2384.00 + 1376.40i −1.31077 + 0.756774i −0.982224 0.187714i \(-0.939892\pi\)
−0.328547 + 0.944488i \(0.606559\pi\)
\(150\) 0 0
\(151\) 395.046 684.240i 0.212903 0.368759i −0.739719 0.672916i \(-0.765041\pi\)
0.952622 + 0.304157i \(0.0983748\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 823.966i 0.426984i
\(156\) 0 0
\(157\) 871.100 + 502.930i 0.442811 + 0.255657i 0.704789 0.709417i \(-0.251042\pi\)
−0.261978 + 0.965074i \(0.584375\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 183.706 + 619.184i 0.0899260 + 0.303096i
\(162\) 0 0
\(163\) 8.76430 + 15.1802i 0.00421149 + 0.00729452i 0.868123 0.496348i \(-0.165326\pi\)
−0.863912 + 0.503643i \(0.831993\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −195.663 −0.0906639 −0.0453320 0.998972i \(-0.514435\pi\)
−0.0453320 + 0.998972i \(0.514435\pi\)
\(168\) 0 0
\(169\) 2174.64 0.989820
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −420.902 729.024i −0.184975 0.320385i 0.758593 0.651564i \(-0.225887\pi\)
−0.943568 + 0.331179i \(0.892554\pi\)
\(174\) 0 0
\(175\) −1091.23 1034.62i −0.471365 0.446916i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 766.552 + 442.569i 0.320083 + 0.184800i 0.651429 0.758709i \(-0.274170\pi\)
−0.331347 + 0.943509i \(0.607503\pi\)
\(180\) 0 0
\(181\) 1011.03i 0.415190i −0.978215 0.207595i \(-0.933436\pi\)
0.978215 0.207595i \(-0.0665635\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −912.927 + 1581.24i −0.362809 + 0.628404i
\(186\) 0 0
\(187\) −73.7859 + 42.6003i −0.0288543 + 0.0166591i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −2760.51 + 1593.78i −1.04578 + 0.603779i −0.921464 0.388464i \(-0.873006\pi\)
−0.124312 + 0.992243i \(0.539673\pi\)
\(192\) 0 0
\(193\) 475.271 823.193i 0.177258 0.307019i −0.763683 0.645592i \(-0.776611\pi\)
0.940940 + 0.338573i \(0.109944\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 3589.52i 1.29819i 0.760709 + 0.649093i \(0.224851\pi\)
−0.760709 + 0.649093i \(0.775149\pi\)
\(198\) 0 0
\(199\) −3985.72 2301.16i −1.41980 0.819722i −0.423519 0.905887i \(-0.639205\pi\)
−0.996281 + 0.0861652i \(0.972539\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −870.731 208.640i −0.301051 0.0721362i
\(204\) 0 0
\(205\) −123.554 214.001i −0.0420944 0.0729097i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −82.8106 −0.0274073
\(210\) 0 0
\(211\) −3074.01 −1.00296 −0.501478 0.865171i \(-0.667210\pi\)
−0.501478 + 0.865171i \(0.667210\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −714.422 1237.42i −0.226620 0.392517i
\(216\) 0 0
\(217\) 1586.36 1673.14i 0.496263 0.523412i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 195.328 + 112.772i 0.0594532 + 0.0343253i
\(222\) 0 0
\(223\) 2057.55i 0.617866i −0.951084 0.308933i \(-0.900028\pi\)
0.951084 0.308933i \(-0.0999718\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 892.967 1546.66i 0.261094 0.452228i −0.705439 0.708771i \(-0.749250\pi\)
0.966533 + 0.256543i \(0.0825835\pi\)
\(228\) 0 0
\(229\) −1288.59 + 743.966i −0.371844 + 0.214684i −0.674264 0.738491i \(-0.735539\pi\)
0.302420 + 0.953175i \(0.402206\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −231.289 + 133.535i −0.0650312 + 0.0375458i −0.532163 0.846642i \(-0.678621\pi\)
0.467132 + 0.884188i \(0.345287\pi\)
\(234\) 0 0
\(235\) 351.472 608.768i 0.0975639 0.168986i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 1832.70i 0.496013i −0.968758 0.248007i \(-0.920225\pi\)
0.968758 0.248007i \(-0.0797755\pi\)
\(240\) 0 0
\(241\) 5639.44 + 3255.93i 1.50734 + 0.870261i 0.999964 + 0.00853503i \(0.00271682\pi\)
0.507373 + 0.861726i \(0.330617\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 120.802 + 2266.96i 0.0315011 + 0.591147i
\(246\) 0 0
\(247\) 109.609 + 189.848i 0.0282358 + 0.0489059i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 2590.15 0.651350 0.325675 0.945482i \(-0.394409\pi\)
0.325675 + 0.945482i \(0.394409\pi\)
\(252\) 0 0
\(253\) 62.2996 0.0154812
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −2367.41 4100.48i −0.574612 0.995256i −0.996084 0.0884151i \(-0.971820\pi\)
0.421472 0.906841i \(-0.361514\pi\)
\(258\) 0 0
\(259\) −4898.09 + 1453.22i −1.17511 + 0.348644i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −1176.48 679.239i −0.275835 0.159253i 0.355701 0.934600i \(-0.384242\pi\)
−0.631536 + 0.775346i \(0.717575\pi\)
\(264\) 0 0
\(265\) 1786.60i 0.414150i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −2517.48 + 4360.41i −0.570608 + 0.988323i 0.425895 + 0.904772i \(0.359959\pi\)
−0.996504 + 0.0835501i \(0.973374\pi\)
\(270\) 0 0
\(271\) 1678.51 969.091i 0.376245 0.217225i −0.299938 0.953959i \(-0.596966\pi\)
0.676183 + 0.736733i \(0.263633\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −125.617 + 72.5250i −0.0275454 + 0.0159033i
\(276\) 0 0
\(277\) −986.169 + 1708.09i −0.213910 + 0.370503i −0.952935 0.303175i \(-0.901953\pi\)
0.739025 + 0.673678i \(0.235287\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 255.262i 0.0541910i −0.999633 0.0270955i \(-0.991374\pi\)
0.999633 0.0270955i \(-0.00862582\pi\)
\(282\) 0 0
\(283\) −181.330 104.691i −0.0380882 0.0219902i 0.480835 0.876811i \(-0.340334\pi\)
−0.518923 + 0.854821i \(0.673667\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 161.123 672.424i 0.0331386 0.138299i
\(288\) 0 0
\(289\) 1319.21 + 2284.95i 0.268515 + 0.465082i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −7355.30 −1.46656 −0.733279 0.679928i \(-0.762011\pi\)
−0.733279 + 0.679928i \(0.762011\pi\)
\(294\) 0 0
\(295\) 1980.18 0.390815
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −82.4603 142.826i −0.0159492 0.0276248i
\(300\) 0 0
\(301\) 931.657 3888.15i 0.178405 0.744549i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 1935.67 + 1117.56i 0.363397 + 0.209807i
\(306\) 0 0
\(307\) 397.297i 0.0738598i −0.999318 0.0369299i \(-0.988242\pi\)
0.999318 0.0369299i \(-0.0117578\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 3349.51 5801.52i 0.610717 1.05779i −0.380402 0.924821i \(-0.624214\pi\)
0.991120 0.132972i \(-0.0424522\pi\)
\(312\) 0 0
\(313\) −3683.02 + 2126.39i −0.665100 + 0.383996i −0.794218 0.607633i \(-0.792119\pi\)
0.129117 + 0.991629i \(0.458786\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 6472.98 3737.17i 1.14687 0.662147i 0.198749 0.980050i \(-0.436312\pi\)
0.948123 + 0.317903i \(0.102979\pi\)
\(318\) 0 0
\(319\) −43.1840 + 74.7969i −0.00757944 + 0.0131280i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 2210.77i 0.380837i
\(324\) 0 0
\(325\) 332.536 + 191.989i 0.0567562 + 0.0327682i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 1885.74 559.482i 0.316001 0.0937546i
\(330\) 0 0
\(331\) 4036.45 + 6991.34i 0.670283 + 1.16096i 0.977824 + 0.209429i \(0.0671604\pi\)
−0.307541 + 0.951535i \(0.599506\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −2497.68 −0.407352
\(336\) 0 0
\(337\) 5669.65 0.916455 0.458228 0.888835i \(-0.348484\pi\)
0.458228 + 0.888835i \(0.348484\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −111.200 192.605i −0.0176593 0.0305869i
\(342\) 0 0
\(343\) −4119.22 + 4835.87i −0.648446 + 0.761261i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 5238.57 + 3024.49i 0.810436 + 0.467905i 0.847107 0.531422i \(-0.178342\pi\)
−0.0366712 + 0.999327i \(0.511675\pi\)
\(348\) 0 0
\(349\) 492.028i 0.0754660i −0.999288 0.0377330i \(-0.987986\pi\)
0.999288 0.0377330i \(-0.0120136\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 6002.09 10395.9i 0.904982 1.56748i 0.0840416 0.996462i \(-0.473217\pi\)
0.820941 0.571013i \(-0.193450\pi\)
\(354\) 0 0
\(355\) 4681.88 2703.08i 0.699967 0.404126i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −3458.42 + 1996.72i −0.508436 + 0.293545i −0.732190 0.681100i \(-0.761502\pi\)
0.223755 + 0.974645i \(0.428169\pi\)
\(360\) 0 0
\(361\) −2355.13 + 4079.20i −0.343363 + 0.594722i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 4557.65i 0.653584i
\(366\) 0 0
\(367\) 640.131 + 369.580i 0.0910478 + 0.0525665i 0.544833 0.838545i \(-0.316593\pi\)
−0.453785 + 0.891111i \(0.649927\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −3439.68 + 3627.86i −0.481346 + 0.507679i
\(372\) 0 0
\(373\) −6623.43 11472.1i −0.919432 1.59250i −0.800280 0.599627i \(-0.795316\pi\)
−0.119152 0.992876i \(-0.538018\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 228.635 0.0312342
\(378\) 0 0
\(379\) 1420.35 0.192502 0.0962512 0.995357i \(-0.469315\pi\)
0.0962512 + 0.995357i \(0.469315\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 5835.44 + 10107.3i 0.778530 + 1.34845i 0.932789 + 0.360424i \(0.117368\pi\)
−0.154258 + 0.988031i \(0.549299\pi\)
\(384\) 0 0
\(385\) 212.953 + 51.0266i 0.0281898 + 0.00675470i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 8840.84 + 5104.26i 1.15231 + 0.665286i 0.949449 0.313921i \(-0.101643\pi\)
0.202861 + 0.979208i \(0.434976\pi\)
\(390\) 0 0
\(391\) 1663.19i 0.215118i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 2032.34 3520.11i 0.258881 0.448395i
\(396\) 0 0
\(397\) −11903.6 + 6872.57i −1.50485 + 0.868827i −0.504868 + 0.863196i \(0.668459\pi\)
−0.999984 + 0.00563049i \(0.998208\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 11514.5 6647.91i 1.43394 0.827883i 0.436517 0.899696i \(-0.356212\pi\)
0.997418 + 0.0718132i \(0.0228786\pi\)
\(402\) 0 0
\(403\) −294.372 + 509.867i −0.0363863 + 0.0630230i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 492.825i 0.0600207i
\(408\) 0 0
\(409\) 9944.36 + 5741.38i 1.20224 + 0.694115i 0.961053 0.276364i \(-0.0891294\pi\)
0.241189 + 0.970478i \(0.422463\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 4020.94 + 3812.38i 0.479074 + 0.454225i
\(414\) 0 0
\(415\) 4381.20 + 7588.46i 0.518228 + 0.897597i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 9092.21 1.06010 0.530052 0.847965i \(-0.322172\pi\)
0.530052 + 0.847965i \(0.322172\pi\)
\(420\) 0 0
\(421\) −7373.44 −0.853585 −0.426793 0.904349i \(-0.640357\pi\)
−0.426793 + 0.904349i \(0.640357\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −1936.17 3353.55i −0.220984 0.382756i
\(426\) 0 0
\(427\) 1778.96 + 5996.00i 0.201616 + 0.679548i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 14205.0 + 8201.24i 1.58754 + 0.916566i 0.993711 + 0.111973i \(0.0357172\pi\)
0.593827 + 0.804592i \(0.297616\pi\)
\(432\) 0 0
\(433\) 5691.74i 0.631703i 0.948809 + 0.315852i \(0.102290\pi\)
−0.948809 + 0.315852i \(0.897710\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −808.267 + 1399.96i −0.0884775 + 0.153248i
\(438\) 0 0
\(439\) 8196.36 4732.17i 0.891095 0.514474i 0.0167945 0.999859i \(-0.494654\pi\)
0.874301 + 0.485385i \(0.161321\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −9130.65 + 5271.58i −0.979255 + 0.565373i −0.902045 0.431642i \(-0.857935\pi\)
−0.0772101 + 0.997015i \(0.524601\pi\)
\(444\) 0 0
\(445\) −3179.37 + 5506.82i −0.338689 + 0.586626i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 9305.47i 0.978067i −0.872265 0.489034i \(-0.837350\pi\)
0.872265 0.489034i \(-0.162650\pi\)
\(450\) 0 0
\(451\) −57.7621 33.3489i −0.00603084 0.00348191i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −164.885 555.747i −0.0169889 0.0572611i
\(456\) 0 0
\(457\) −4589.88 7949.91i −0.469815 0.813744i 0.529589 0.848254i \(-0.322346\pi\)
−0.999404 + 0.0345103i \(0.989013\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 6418.60 0.648469 0.324234 0.945977i \(-0.394893\pi\)
0.324234 + 0.945977i \(0.394893\pi\)
\(462\) 0 0
\(463\) 9649.90 0.968615 0.484307 0.874898i \(-0.339072\pi\)
0.484307 + 0.874898i \(0.339072\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 4082.03 + 7070.29i 0.404484 + 0.700587i 0.994261 0.106979i \(-0.0341178\pi\)
−0.589777 + 0.807566i \(0.700784\pi\)
\(468\) 0 0
\(469\) −5071.78 4808.71i −0.499346 0.473445i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −333.997 192.833i −0.0324676 0.0187452i
\(474\) 0 0
\(475\) 3763.72i 0.363561i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 3688.53 6388.72i 0.351844 0.609412i −0.634729 0.772735i \(-0.718888\pi\)
0.986573 + 0.163324i \(0.0522214\pi\)
\(480\) 0 0
\(481\) 1129.83 652.308i 0.107101 0.0618351i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −2576.53 + 1487.56i −0.241225 + 0.139271i
\(486\) 0 0
\(487\) −5919.10 + 10252.2i −0.550760 + 0.953944i 0.447460 + 0.894304i \(0.352329\pi\)
−0.998220 + 0.0596401i \(0.981005\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 3932.63i 0.361460i −0.983533 0.180730i \(-0.942154\pi\)
0.983533 0.180730i \(-0.0578461\pi\)
\(492\) 0 0
\(493\) −1996.83 1152.87i −0.182419 0.105320i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 14711.2 + 3525.01i 1.32774 + 0.318146i
\(498\) 0 0
\(499\) 7852.94 + 13601.7i 0.704500 + 1.22023i 0.966872 + 0.255263i \(0.0821622\pi\)
−0.262371 + 0.964967i \(0.584505\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 1461.52 0.129555 0.0647773 0.997900i \(-0.479366\pi\)
0.0647773 + 0.997900i \(0.479366\pi\)
\(504\) 0 0
\(505\) 2363.08 0.208229
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −3690.38 6391.93i −0.321362 0.556616i 0.659407 0.751786i \(-0.270807\pi\)
−0.980769 + 0.195170i \(0.937474\pi\)
\(510\) 0 0
\(511\) −8774.71 + 9254.75i −0.759629 + 0.801186i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −3352.76 1935.71i −0.286874 0.165627i
\(516\) 0 0
\(517\) 189.735i 0.0161403i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 5116.53 8862.09i 0.430248 0.745211i −0.566646 0.823961i \(-0.691759\pi\)
0.996894 + 0.0787498i \(0.0250928\pi\)
\(522\) 0 0
\(523\) 16679.3 9629.78i 1.39452 0.805126i 0.400708 0.916206i \(-0.368764\pi\)
0.993812 + 0.111080i \(0.0354308\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 5141.90 2968.68i 0.425018 0.245384i
\(528\) 0 0
\(529\) −5475.43 + 9483.72i −0.450023 + 0.779463i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 176.564i 0.0143487i
\(534\) 0 0
\(535\) 7315.11 + 4223.38i 0.591140 + 0.341295i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 334.182 + 513.607i 0.0267054 + 0.0410438i
\(540\) 0 0
\(541\) −5087.07 8811.07i −0.404270 0.700217i 0.589966 0.807428i \(-0.299141\pi\)
−0.994236 + 0.107211i \(0.965808\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −4214.55 −0.331250
\(546\) 0 0
\(547\) −14637.4 −1.14415 −0.572076 0.820201i \(-0.693862\pi\)
−0.572076 + 0.820201i \(0.693862\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −1120.53 1940.81i −0.0866354 0.150057i
\(552\) 0 0
\(553\) 10904.0 3235.13i 0.838492 0.248773i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 2573.96 + 1486.07i 0.195803 + 0.113047i 0.594696 0.803951i \(-0.297272\pi\)
−0.398894 + 0.916997i \(0.630606\pi\)
\(558\) 0 0
\(559\) 1020.94i 0.0772474i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 6713.27 11627.7i 0.502541 0.870427i −0.497454 0.867490i \(-0.665732\pi\)
0.999996 0.00293687i \(-0.000934837\pi\)
\(564\) 0 0
\(565\) −5512.93 + 3182.89i −0.410497 + 0.237001i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 20925.0 12081.0i 1.54169 0.890094i 0.542956 0.839761i \(-0.317305\pi\)
0.998732 0.0503329i \(-0.0160282\pi\)
\(570\) 0 0
\(571\) −2748.17 + 4759.96i −0.201414 + 0.348859i −0.948984 0.315324i \(-0.897887\pi\)
0.747571 + 0.664182i \(0.231220\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 2831.50i 0.205359i
\(576\) 0 0
\(577\) 18614.4 + 10747.0i 1.34303 + 0.775398i 0.987251 0.159173i \(-0.0508826\pi\)
0.355778 + 0.934571i \(0.384216\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −5713.39 + 23844.1i −0.407971 + 1.70262i
\(582\) 0 0
\(583\) 241.114 + 417.623i 0.0171285 + 0.0296675i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −15656.5 −1.10087 −0.550437 0.834877i \(-0.685539\pi\)
−0.550437 + 0.834877i \(0.685539\pi\)
\(588\) 0 0
\(589\) 5770.80 0.403704
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −12134.6 21017.8i −0.840319 1.45547i −0.889625 0.456691i \(-0.849035\pi\)
0.0493069 0.998784i \(-0.484299\pi\)
\(594\) 0 0
\(595\) −1362.24 + 5685.13i −0.0938595 + 0.391710i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 11862.8 + 6848.98i 0.809182 + 0.467181i 0.846672 0.532116i \(-0.178603\pi\)
−0.0374897 + 0.999297i \(0.511936\pi\)
\(600\) 0 0
\(601\) 8670.98i 0.588514i 0.955726 + 0.294257i \(0.0950721\pi\)
−0.955726 + 0.294257i \(0.904928\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −4394.12 + 7610.84i −0.295283 + 0.511446i
\(606\) 0 0
\(607\) 10404.7 6007.18i 0.695742 0.401687i −0.110017 0.993930i \(-0.535091\pi\)
0.805760 + 0.592243i \(0.201757\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −434.979 + 251.135i −0.0288009 + 0.0166282i
\(612\) 0 0
\(613\) −8647.55 + 14978.0i −0.569773 + 0.986877i 0.426815 + 0.904339i \(0.359636\pi\)
−0.996588 + 0.0825374i \(0.973698\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 9886.44i 0.645078i −0.946556 0.322539i \(-0.895464\pi\)
0.946556 0.322539i \(-0.104536\pi\)
\(618\) 0 0
\(619\) −8751.96 5052.94i −0.568289 0.328102i 0.188177 0.982135i \(-0.439742\pi\)
−0.756466 + 0.654033i \(0.773076\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −17058.1 + 5061.00i −1.09698 + 0.325465i
\(624\) 0 0
\(625\) −558.371 967.126i −0.0357357 0.0618961i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −13156.8 −0.834014
\(630\) 0 0
\(631\) −22892.4 −1.44427 −0.722133 0.691754i \(-0.756838\pi\)
−0.722133 + 0.691754i \(0.756838\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 476.559 + 825.424i 0.0297821 + 0.0515842i
\(636\) 0 0
\(637\) 735.148 1445.95i 0.0457263 0.0899379i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 12723.7 + 7346.04i 0.784019 + 0.452654i 0.837853 0.545896i \(-0.183811\pi\)
−0.0538337 + 0.998550i \(0.517144\pi\)
\(642\) 0 0
\(643\) 28388.0i 1.74108i −0.492099 0.870539i \(-0.663770\pi\)
0.492099 0.870539i \(-0.336230\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 15705.6 27202.9i 0.954331 1.65295i 0.218438 0.975851i \(-0.429904\pi\)
0.735893 0.677098i \(-0.236763\pi\)
\(648\) 0 0
\(649\) 462.873 267.240i 0.0279959 0.0161634i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −20102.2 + 11606.0i −1.20468 + 0.695525i −0.961593 0.274479i \(-0.911495\pi\)
−0.243091 + 0.970003i \(0.578161\pi\)
\(654\) 0 0
\(655\) −1231.77 + 2133.49i −0.0734797 + 0.127271i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 4092.54i 0.241916i −0.992658 0.120958i \(-0.961403\pi\)
0.992658 0.120958i \(-0.0385966\pi\)
\(660\) 0 0
\(661\) 17750.7 + 10248.4i 1.04451 + 0.603050i 0.921108 0.389306i \(-0.127285\pi\)
0.123405 + 0.992356i \(0.460619\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −3909.47 + 4123.34i −0.227974 + 0.240446i
\(666\) 0 0
\(667\) 842.989 + 1460.10i 0.0489365 + 0.0847606i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 603.292 0.0347091
\(672\) 0 0
\(673\) 11264.6 0.645198 0.322599 0.946536i \(-0.395443\pi\)
0.322599 + 0.946536i \(0.395443\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 7916.23 + 13711.3i 0.449403 + 0.778388i 0.998347 0.0574706i \(-0.0183035\pi\)
−0.548945 + 0.835859i \(0.684970\pi\)
\(678\) 0 0
\(679\) −8095.84 1939.88i −0.457570 0.109640i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 10545.0 + 6088.16i 0.590766 + 0.341079i 0.765400 0.643554i \(-0.222541\pi\)
−0.174634 + 0.984633i \(0.555874\pi\)
\(684\) 0 0
\(685\) 3659.40i 0.204114i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 638.283 1105.54i 0.0352927 0.0611287i
\(690\) 0 0
\(691\) −7657.82 + 4421.24i −0.421588 + 0.243404i −0.695756 0.718278i \(-0.744931\pi\)
0.274169 + 0.961682i \(0.411597\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −14482.9 + 8361.68i −0.790455 + 0.456369i
\(696\) 0 0
\(697\) 890.305 1542.05i 0.0483826 0.0838012i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 22086.4i 1.19000i 0.803726 + 0.595000i \(0.202848\pi\)
−0.803726 + 0.595000i \(0.797152\pi\)
\(702\) 0 0
\(703\) −11074.5 6393.85i −0.594142 0.343028i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 4798.47 + 4549.57i 0.255255 + 0.242015i
\(708\) 0 0
\(709\) −14042.2 24321.9i −0.743818 1.28833i −0.950745 0.309974i \(-0.899680\pi\)
0.206927 0.978356i \(-0.433654\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −4341.45 −0.228035
\(714\) 0 0
\(715\) −55.9168 −0.00292471
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 2227.62 + 3858.36i 0.115544 + 0.200129i 0.917997 0.396587i \(-0.129805\pi\)
−0.802453 + 0.596715i \(0.796472\pi\)
\(720\) 0 0
\(721\) −3081.32 10385.6i −0.159160 0.536450i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −3399.50 1962.70i −0.174144 0.100542i
\(726\) 0 0
\(727\) 11915.8i 0.607884i −0.952690 0.303942i \(-0.901697\pi\)
0.952690 0.303942i \(-0.0983030\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 5148.00 8916.60i 0.260473 0.451152i
\(732\) 0 0
\(733\) 6157.69 3555.14i 0.310286 0.179143i −0.336769 0.941587i \(-0.609334\pi\)
0.647054 + 0.762444i \(0.276001\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −583.841 + 337.081i −0.0291805 + 0.0168474i
\(738\) 0 0
\(739\) −15356.0 + 26597.3i −0.764382 + 1.32395i 0.176190 + 0.984356i \(0.443623\pi\)
−0.940573 + 0.339593i \(0.889711\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 14280.3i 0.705104i −0.935792 0.352552i \(-0.885314\pi\)
0.935792 0.352552i \(-0.114686\pi\)
\(744\) 0 0
\(745\) 15778.7 + 9109.87i 0.775958 + 0.448000i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 6722.89 + 22659.6i 0.327969 + 1.10542i
\(750\) 0 0
\(751\) −9233.47 15992.8i −0.448647 0.777080i 0.549651 0.835394i \(-0.314761\pi\)
−0.998298 + 0.0583146i \(0.981427\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −5229.31 −0.252071
\(756\) 0 0
\(757\) 9297.14 0.446381 0.223190 0.974775i \(-0.428353\pi\)
0.223190 + 0.974775i \(0.428353\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −1751.42 3033.56i −0.0834285 0.144502i 0.821292 0.570508i \(-0.193254\pi\)
−0.904720 + 0.426006i \(0.859920\pi\)
\(762\) 0 0
\(763\) −8558.05 8114.15i −0.406058 0.384996i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −1225.33 707.442i −0.0576844 0.0333041i
\(768\) 0 0
\(769\) 16857.8i 0.790517i −0.918570 0.395258i \(-0.870655\pi\)
0.918570 0.395258i \(-0.129345\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −7410.77 + 12835.8i −0.344821 + 0.597248i −0.985321 0.170710i \(-0.945394\pi\)
0.640500 + 0.767958i \(0.278727\pi\)
\(774\) 0 0
\(775\) 8753.83 5054.02i 0.405738 0.234253i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 1498.80 865.330i 0.0689344 0.0397993i
\(780\) 0 0
\(781\) 729.602 1263.71i 0.0334279 0.0578989i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 6657.39i 0.302691i
\(786\) 0 0
\(787\) −7423.05 4285.70i −0.336218 0.194115i 0.322381 0.946610i \(-0.395517\pi\)
−0.658598 + 0.752495i \(0.728850\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −17322.5 4150.72i −0.778655 0.186577i
\(792\) 0 0
\(793\) −798.523 1383.08i −0.0357584 0.0619353i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −44804.8 −1.99130 −0.995651 0.0931611i \(-0.970303\pi\)
−0.995651 + 0.0931611i \(0.970303\pi\)
\(798\) 0 0
\(799\) 5065.29 0.224277
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 615.088