Properties

Label 1008.4.bt.d.17.8
Level $1008$
Weight $4$
Character 1008.17
Analytic conductor $59.474$
Analytic rank $0$
Dimension $48$
CM no
Inner twists $4$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 1008 = 2^{4} \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1008.bt (of order \(6\), degree \(2\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(59.4739252858\)
Analytic rank: \(0\)
Dimension: \(48\)
Relative dimension: \(24\) over \(\Q(\zeta_{6})\)
Twist minimal: no (minimal twist has level 504)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 17.8
Character \(\chi\) \(=\) 1008.17
Dual form 1008.4.bt.d.593.8

$q$-expansion

\(f(q)\) \(=\) \(q+(-3.34783 - 5.79860i) q^{5} +(12.7404 - 13.4418i) q^{7} +O(q^{10})\) \(q+(-3.34783 - 5.79860i) q^{5} +(12.7404 - 13.4418i) q^{7} +(-28.2958 - 16.3366i) q^{11} -67.9019i q^{13} +(-15.3179 + 26.5313i) q^{17} +(21.8820 - 12.6336i) q^{19} +(68.6216 - 39.6187i) q^{23} +(40.0841 - 69.4277i) q^{25} +109.668i q^{29} +(-238.527 - 137.714i) q^{31} +(-120.596 - 28.8753i) q^{35} +(160.221 + 277.511i) q^{37} -184.846 q^{41} -364.766 q^{43} +(-25.7730 - 44.6402i) q^{47} +(-18.3666 - 342.508i) q^{49} +(532.671 + 307.538i) q^{53} +218.769i q^{55} +(-207.843 + 359.995i) q^{59} +(411.761 - 237.730i) q^{61} +(-393.736 + 227.324i) q^{65} +(-142.188 + 246.277i) q^{67} -965.404i q^{71} +(225.387 + 130.127i) q^{73} +(-580.093 + 172.214i) q^{77} +(-219.163 - 379.602i) q^{79} -76.4726 q^{83} +205.126 q^{85} +(356.559 + 617.579i) q^{89} +(-912.728 - 865.095i) q^{91} +(-146.514 - 84.5900i) q^{95} -410.607i q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48q + 24q^{7} + O(q^{10}) \) \( 48q + 24q^{7} - 540q^{19} - 924q^{25} - 648q^{31} - 132q^{37} + 792q^{43} + 672q^{49} + 12q^{67} + 2412q^{73} - 1680q^{79} + 480q^{85} - 1404q^{91} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1008\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(577\) \(757\) \(785\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{6}\right)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −3.34783 5.79860i −0.299439 0.518643i 0.676569 0.736379i \(-0.263466\pi\)
−0.976008 + 0.217736i \(0.930133\pi\)
\(6\) 0 0
\(7\) 12.7404 13.4418i 0.687915 0.725792i
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −28.2958 16.3366i −0.775593 0.447789i 0.0592734 0.998242i \(-0.481122\pi\)
−0.834866 + 0.550453i \(0.814455\pi\)
\(12\) 0 0
\(13\) 67.9019i 1.44866i −0.689452 0.724331i \(-0.742149\pi\)
0.689452 0.724331i \(-0.257851\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −15.3179 + 26.5313i −0.218537 + 0.378517i −0.954361 0.298656i \(-0.903462\pi\)
0.735824 + 0.677173i \(0.236795\pi\)
\(18\) 0 0
\(19\) 21.8820 12.6336i 0.264215 0.152544i −0.362041 0.932162i \(-0.617920\pi\)
0.626256 + 0.779618i \(0.284587\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 68.6216 39.6187i 0.622113 0.359177i −0.155578 0.987824i \(-0.549724\pi\)
0.777691 + 0.628647i \(0.216391\pi\)
\(24\) 0 0
\(25\) 40.0841 69.4277i 0.320673 0.555422i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 109.668i 0.702236i 0.936331 + 0.351118i \(0.114198\pi\)
−0.936331 + 0.351118i \(0.885802\pi\)
\(30\) 0 0
\(31\) −238.527 137.714i −1.38196 0.797875i −0.389568 0.920998i \(-0.627376\pi\)
−0.992391 + 0.123123i \(0.960709\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −120.596 28.8753i −0.582415 0.139452i
\(36\) 0 0
\(37\) 160.221 + 277.511i 0.711898 + 1.23304i 0.964144 + 0.265380i \(0.0854975\pi\)
−0.252246 + 0.967663i \(0.581169\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −184.846 −0.704100 −0.352050 0.935981i \(-0.614515\pi\)
−0.352050 + 0.935981i \(0.614515\pi\)
\(42\) 0 0
\(43\) −364.766 −1.29363 −0.646817 0.762645i \(-0.723900\pi\)
−0.646817 + 0.762645i \(0.723900\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −25.7730 44.6402i −0.0799868 0.138541i 0.823257 0.567669i \(-0.192154\pi\)
−0.903244 + 0.429127i \(0.858821\pi\)
\(48\) 0 0
\(49\) −18.3666 342.508i −0.0535471 0.998565i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 532.671 + 307.538i 1.38053 + 0.797048i 0.992222 0.124483i \(-0.0397271\pi\)
0.388306 + 0.921531i \(0.373060\pi\)
\(54\) 0 0
\(55\) 218.769i 0.536341i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −207.843 + 359.995i −0.458625 + 0.794362i −0.998889 0.0471340i \(-0.984991\pi\)
0.540263 + 0.841496i \(0.318325\pi\)
\(60\) 0 0
\(61\) 411.761 237.730i 0.864271 0.498987i −0.00116918 0.999999i \(-0.500372\pi\)
0.865440 + 0.501012i \(0.167039\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −393.736 + 227.324i −0.751338 + 0.433785i
\(66\) 0 0
\(67\) −142.188 + 246.277i −0.259269 + 0.449068i −0.966046 0.258369i \(-0.916815\pi\)
0.706777 + 0.707436i \(0.250148\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 965.404i 1.61370i −0.590759 0.806848i \(-0.701172\pi\)
0.590759 0.806848i \(-0.298828\pi\)
\(72\) 0 0
\(73\) 225.387 + 130.127i 0.361364 + 0.208633i 0.669679 0.742651i \(-0.266432\pi\)
−0.308315 + 0.951284i \(0.599765\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −580.093 + 172.214i −0.858543 + 0.254878i
\(78\) 0 0
\(79\) −219.163 379.602i −0.312124 0.540615i 0.666698 0.745328i \(-0.267707\pi\)
−0.978822 + 0.204713i \(0.934374\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −76.4726 −0.101132 −0.0505660 0.998721i \(-0.516103\pi\)
−0.0505660 + 0.998721i \(0.516103\pi\)
\(84\) 0 0
\(85\) 205.126 0.261753
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 356.559 + 617.579i 0.424665 + 0.735542i 0.996389 0.0849045i \(-0.0270585\pi\)
−0.571724 + 0.820446i \(0.693725\pi\)
\(90\) 0 0
\(91\) −912.728 865.095i −1.05143 0.996556i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −146.514 84.5900i −0.158232 0.0913553i
\(96\) 0 0
\(97\) 410.607i 0.429803i −0.976636 0.214901i \(-0.931057\pi\)
0.976636 0.214901i \(-0.0689430\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −953.656 + 1651.78i −0.939527 + 1.62731i −0.173173 + 0.984891i \(0.555402\pi\)
−0.766355 + 0.642418i \(0.777931\pi\)
\(102\) 0 0
\(103\) −1177.37 + 679.756i −1.12631 + 0.650276i −0.943004 0.332780i \(-0.892013\pi\)
−0.183306 + 0.983056i \(0.558680\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −1555.77 + 898.226i −1.40563 + 0.811540i −0.994963 0.100246i \(-0.968037\pi\)
−0.410666 + 0.911786i \(0.634704\pi\)
\(108\) 0 0
\(109\) 42.0727 72.8720i 0.0369709 0.0640355i −0.846948 0.531676i \(-0.821562\pi\)
0.883919 + 0.467640i \(0.154896\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 117.441i 0.0977688i 0.998804 + 0.0488844i \(0.0155666\pi\)
−0.998804 + 0.0488844i \(0.984433\pi\)
\(114\) 0 0
\(115\) −459.466 265.273i −0.372569 0.215103i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 161.475 + 543.918i 0.124390 + 0.418999i
\(120\) 0 0
\(121\) −131.730 228.163i −0.0989707 0.171422i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −1373.74 −0.982965
\(126\) 0 0
\(127\) 510.925 0.356986 0.178493 0.983941i \(-0.442878\pi\)
0.178493 + 0.983941i \(0.442878\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −991.274 1716.94i −0.661130 1.14511i −0.980319 0.197419i \(-0.936744\pi\)
0.319189 0.947691i \(-0.396589\pi\)
\(132\) 0 0
\(133\) 108.966 455.091i 0.0710416 0.296702i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −857.943 495.334i −0.535029 0.308899i 0.208033 0.978122i \(-0.433294\pi\)
−0.743062 + 0.669223i \(0.766627\pi\)
\(138\) 0 0
\(139\) 369.921i 0.225729i −0.993610 0.112864i \(-0.963997\pi\)
0.993610 0.112864i \(-0.0360026\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −1109.29 + 1921.34i −0.648694 + 1.12357i
\(144\) 0 0
\(145\) 635.922 367.149i 0.364210 0.210277i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −1054.73 + 608.947i −0.579910 + 0.334811i −0.761098 0.648637i \(-0.775339\pi\)
0.181188 + 0.983449i \(0.442006\pi\)
\(150\) 0 0
\(151\) 764.206 1323.64i 0.411856 0.713355i −0.583237 0.812302i \(-0.698214\pi\)
0.995093 + 0.0989470i \(0.0315474\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 1844.17i 0.955658i
\(156\) 0 0
\(157\) −2610.74 1507.31i −1.32713 0.766220i −0.342277 0.939599i \(-0.611198\pi\)
−0.984855 + 0.173379i \(0.944531\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 341.715 1427.16i 0.167273 0.698607i
\(162\) 0 0
\(163\) −822.212 1424.11i −0.395096 0.684326i 0.598018 0.801483i \(-0.295955\pi\)
−0.993113 + 0.117157i \(0.962622\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −2783.64 −1.28985 −0.644923 0.764248i \(-0.723111\pi\)
−0.644923 + 0.764248i \(0.723111\pi\)
\(168\) 0 0
\(169\) −2413.67 −1.09862
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −64.1081 111.038i −0.0281737 0.0487983i 0.851595 0.524201i \(-0.175636\pi\)
−0.879768 + 0.475402i \(0.842302\pi\)
\(174\) 0 0
\(175\) −422.551 1423.34i −0.182525 0.614825i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 1676.79 + 968.093i 0.700161 + 0.404238i 0.807408 0.589994i \(-0.200870\pi\)
−0.107246 + 0.994233i \(0.534203\pi\)
\(180\) 0 0
\(181\) 1596.97i 0.655810i −0.944711 0.327905i \(-0.893657\pi\)
0.944711 0.327905i \(-0.106343\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 1072.79 1858.12i 0.426340 0.738442i
\(186\) 0 0
\(187\) 866.863 500.484i 0.338991 0.195717i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 715.285 412.970i 0.270975 0.156448i −0.358356 0.933585i \(-0.616662\pi\)
0.629331 + 0.777138i \(0.283329\pi\)
\(192\) 0 0
\(193\) 927.072 1605.74i 0.345762 0.598878i −0.639730 0.768600i \(-0.720954\pi\)
0.985492 + 0.169722i \(0.0542870\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 2938.42i 1.06271i 0.847150 + 0.531355i \(0.178317\pi\)
−0.847150 + 0.531355i \(0.821683\pi\)
\(198\) 0 0
\(199\) 2850.16 + 1645.54i 1.01529 + 0.586178i 0.912736 0.408550i \(-0.133965\pi\)
0.102554 + 0.994727i \(0.467299\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 1474.14 + 1397.21i 0.509677 + 0.483078i
\(204\) 0 0
\(205\) 618.833 + 1071.85i 0.210835 + 0.365177i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −825.560 −0.273230
\(210\) 0 0
\(211\) 1133.21 0.369733 0.184867 0.982764i \(-0.440815\pi\)
0.184867 + 0.982764i \(0.440815\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 1221.17 + 2115.13i 0.387364 + 0.670934i
\(216\) 0 0
\(217\) −4890.05 + 1451.72i −1.52976 + 0.454145i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 1801.53 + 1040.11i 0.548343 + 0.316586i
\(222\) 0 0
\(223\) 1631.23i 0.489845i −0.969543 0.244922i \(-0.921238\pi\)
0.969543 0.244922i \(-0.0787624\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 584.886 1013.05i 0.171014 0.296205i −0.767760 0.640737i \(-0.778629\pi\)
0.938775 + 0.344532i \(0.111962\pi\)
\(228\) 0 0
\(229\) −4457.87 + 2573.75i −1.28640 + 0.742701i −0.978009 0.208561i \(-0.933122\pi\)
−0.308386 + 0.951261i \(0.599789\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −3811.38 + 2200.50i −1.07164 + 0.618710i −0.928629 0.371011i \(-0.879011\pi\)
−0.143009 + 0.989721i \(0.545678\pi\)
\(234\) 0 0
\(235\) −172.567 + 298.895i −0.0479023 + 0.0829692i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 5998.62i 1.62351i 0.583998 + 0.811755i \(0.301487\pi\)
−0.583998 + 0.811755i \(0.698513\pi\)
\(240\) 0 0
\(241\) 796.548 + 459.887i 0.212905 + 0.122921i 0.602661 0.797997i \(-0.294107\pi\)
−0.389756 + 0.920918i \(0.627441\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −1924.58 + 1253.16i −0.501865 + 0.326781i
\(246\) 0 0
\(247\) −857.845 1485.83i −0.220985 0.382758i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −701.991 −0.176531 −0.0882655 0.996097i \(-0.528132\pi\)
−0.0882655 + 0.996097i \(0.528132\pi\)
\(252\) 0 0
\(253\) −2588.94 −0.643341
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −2170.80 3759.94i −0.526891 0.912602i −0.999509 0.0313343i \(-0.990024\pi\)
0.472618 0.881267i \(-0.343309\pi\)
\(258\) 0 0
\(259\) 5771.54 + 1381.92i 1.38466 + 0.331539i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −3606.74 2082.35i −0.845632 0.488226i 0.0135429 0.999908i \(-0.495689\pi\)
−0.859175 + 0.511683i \(0.829022\pi\)
\(264\) 0 0
\(265\) 4118.33i 0.954668i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 4219.12 7307.74i 0.956299 1.65636i 0.224933 0.974374i \(-0.427784\pi\)
0.731366 0.681985i \(-0.238883\pi\)
\(270\) 0 0
\(271\) −4544.68 + 2623.87i −1.01871 + 0.588150i −0.913729 0.406324i \(-0.866810\pi\)
−0.104977 + 0.994475i \(0.533477\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −2268.43 + 1309.68i −0.497423 + 0.287187i
\(276\) 0 0
\(277\) 198.173 343.245i 0.0429857 0.0744534i −0.843732 0.536765i \(-0.819646\pi\)
0.886718 + 0.462311i \(0.152980\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 5244.36i 1.11335i −0.830729 0.556677i \(-0.812076\pi\)
0.830729 0.556677i \(-0.187924\pi\)
\(282\) 0 0
\(283\) 4113.33 + 2374.83i 0.864000 + 0.498830i 0.865350 0.501169i \(-0.167096\pi\)
−0.00134996 + 0.999999i \(0.500430\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −2355.01 + 2484.67i −0.484361 + 0.511030i
\(288\) 0 0
\(289\) 1987.23 + 3441.98i 0.404483 + 0.700586i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 3597.22 0.717242 0.358621 0.933483i \(-0.383247\pi\)
0.358621 + 0.933483i \(0.383247\pi\)
\(294\) 0 0
\(295\) 2783.29 0.549320
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −2690.19 4659.54i −0.520326 0.901231i
\(300\) 0 0
\(301\) −4647.25 + 4903.13i −0.889910 + 0.938909i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −2757.00 1591.76i −0.517592 0.298832i
\(306\) 0 0
\(307\) 27.5911i 0.00512933i −0.999997 0.00256467i \(-0.999184\pi\)
0.999997 0.00256467i \(-0.000816359\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 621.896 1077.15i 0.113391 0.196398i −0.803745 0.594974i \(-0.797162\pi\)
0.917135 + 0.398576i \(0.130496\pi\)
\(312\) 0 0
\(313\) 7541.55 4354.12i 1.36190 0.786292i 0.372021 0.928224i \(-0.378665\pi\)
0.989876 + 0.141933i \(0.0453317\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −7799.09 + 4502.81i −1.38183 + 0.797801i −0.992376 0.123245i \(-0.960670\pi\)
−0.389455 + 0.921046i \(0.627337\pi\)
\(318\) 0 0
\(319\) 1791.60 3103.15i 0.314453 0.544649i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 774.077i 0.133346i
\(324\) 0 0
\(325\) −4714.28 2721.79i −0.804619 0.464547i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −928.404 222.295i −0.155576 0.0372508i
\(330\) 0 0
\(331\) −1194.18 2068.38i −0.198302 0.343470i 0.749676 0.661805i \(-0.230209\pi\)
−0.947978 + 0.318336i \(0.896876\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 1904.08 0.310541
\(336\) 0 0
\(337\) 11637.2 1.88106 0.940531 0.339707i \(-0.110328\pi\)
0.940531 + 0.339707i \(0.110328\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 4499.55 + 7793.45i 0.714558 + 1.23765i
\(342\) 0 0
\(343\) −4837.94 4116.79i −0.761586 0.648064i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 2539.63 + 1466.26i 0.392895 + 0.226838i 0.683414 0.730031i \(-0.260494\pi\)
−0.290519 + 0.956869i \(0.593828\pi\)
\(348\) 0 0
\(349\) 63.0106i 0.00966442i 0.999988 + 0.00483221i \(0.00153815\pi\)
−0.999988 + 0.00483221i \(0.998462\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 386.737 669.848i 0.0583114 0.100998i −0.835396 0.549648i \(-0.814762\pi\)
0.893708 + 0.448650i \(0.148095\pi\)
\(354\) 0 0
\(355\) −5598.00 + 3232.00i −0.836932 + 0.483203i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 10567.3 6101.03i 1.55354 0.896936i 0.555689 0.831390i \(-0.312454\pi\)
0.997850 0.0655458i \(-0.0208788\pi\)
\(360\) 0 0
\(361\) −3110.29 + 5387.17i −0.453460 + 0.785417i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 1742.57i 0.249892i
\(366\) 0 0
\(367\) 4835.15 + 2791.58i 0.687719 + 0.397055i 0.802757 0.596306i \(-0.203366\pi\)
−0.115038 + 0.993361i \(0.536699\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 10920.3 3241.94i 1.52818 0.453674i
\(372\) 0 0
\(373\) 1656.22 + 2868.66i 0.229909 + 0.398213i 0.957781 0.287499i \(-0.0928240\pi\)
−0.727872 + 0.685713i \(0.759491\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 7446.67 1.01730
\(378\) 0 0
\(379\) 1118.64 0.151611 0.0758057 0.997123i \(-0.475847\pi\)
0.0758057 + 0.997123i \(0.475847\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −4388.43 7600.98i −0.585479 1.01408i −0.994816 0.101695i \(-0.967573\pi\)
0.409337 0.912383i \(-0.365760\pi\)
\(384\) 0 0
\(385\) 2940.65 + 2787.19i 0.389272 + 0.368957i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 8285.22 + 4783.47i 1.07989 + 0.623475i 0.930867 0.365359i \(-0.119054\pi\)
0.149023 + 0.988834i \(0.452387\pi\)
\(390\) 0 0
\(391\) 2427.49i 0.313973i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −1467.44 + 2541.68i −0.186924 + 0.323762i
\(396\) 0 0
\(397\) 8470.20 4890.27i 1.07080 0.618226i 0.142399 0.989809i \(-0.454518\pi\)
0.928399 + 0.371584i \(0.121185\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 10450.1 6033.35i 1.30137 0.751349i 0.320735 0.947169i \(-0.396070\pi\)
0.980640 + 0.195820i \(0.0627369\pi\)
\(402\) 0 0
\(403\) −9351.03 + 16196.5i −1.15585 + 2.00199i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 10469.9i 1.27512i
\(408\) 0 0
\(409\) 6194.67 + 3576.49i 0.748916 + 0.432387i 0.825302 0.564691i \(-0.191005\pi\)
−0.0763859 + 0.997078i \(0.524338\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 2191.00 + 7380.26i 0.261046 + 0.879319i
\(414\) 0 0
\(415\) 256.017 + 443.434i 0.0302828 + 0.0524514i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −5703.45 −0.664992 −0.332496 0.943105i \(-0.607891\pi\)
−0.332496 + 0.943105i \(0.607891\pi\)
\(420\) 0 0
\(421\) −10027.7 −1.16086 −0.580428 0.814312i \(-0.697115\pi\)
−0.580428 + 0.814312i \(0.697115\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 1228.01 + 2126.97i 0.140158 + 0.242760i
\(426\) 0 0
\(427\) 2050.44 8563.59i 0.232384 0.970541i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 12128.8 + 7002.59i 1.35551 + 0.782605i 0.989015 0.147814i \(-0.0472238\pi\)
0.366497 + 0.930419i \(0.380557\pi\)
\(432\) 0 0
\(433\) 3410.83i 0.378554i −0.981924 0.189277i \(-0.939386\pi\)
0.981924 0.189277i \(-0.0606145\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 1001.05 1733.87i 0.109581 0.189800i
\(438\) 0 0
\(439\) −11009.7 + 6356.44i −1.19695 + 0.691062i −0.959875 0.280428i \(-0.909524\pi\)
−0.237080 + 0.971490i \(0.576190\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 10853.8 6266.44i 1.16406 0.672071i 0.211787 0.977316i \(-0.432072\pi\)
0.952274 + 0.305245i \(0.0987382\pi\)
\(444\) 0 0
\(445\) 2387.40 4135.09i 0.254322 0.440499i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 10884.1i 1.14399i −0.820258 0.571993i \(-0.806170\pi\)
0.820258 0.571993i \(-0.193830\pi\)
\(450\) 0 0
\(451\) 5230.38 + 3019.76i 0.546095 + 0.315288i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −1960.69 + 8188.73i −0.202019 + 0.843722i
\(456\) 0 0
\(457\) 9222.57 + 15974.0i 0.944012 + 1.63508i 0.757717 + 0.652583i \(0.226315\pi\)
0.186295 + 0.982494i \(0.440352\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −4657.01 −0.470496 −0.235248 0.971935i \(-0.575590\pi\)
−0.235248 + 0.971935i \(0.575590\pi\)
\(462\) 0 0
\(463\) 5088.08 0.510720 0.255360 0.966846i \(-0.417806\pi\)
0.255360 + 0.966846i \(0.417806\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −7950.04 13769.9i −0.787760 1.36444i −0.927336 0.374229i \(-0.877908\pi\)
0.139577 0.990211i \(-0.455426\pi\)
\(468\) 0 0
\(469\) 1498.89 + 5048.93i 0.147574 + 0.497096i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 10321.4 + 5959.04i 1.00333 + 0.579275i
\(474\) 0 0
\(475\) 2025.62i 0.195667i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 9702.00 16804.4i 0.925461 1.60295i 0.134643 0.990894i \(-0.457011\pi\)
0.790818 0.612051i \(-0.209655\pi\)
\(480\) 0 0
\(481\) 18843.6 10879.3i 1.78626 1.03130i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −2380.95 + 1374.64i −0.222914 + 0.128700i
\(486\) 0 0
\(487\) −6123.60 + 10606.4i −0.569788 + 0.986903i 0.426798 + 0.904347i \(0.359642\pi\)
−0.996586 + 0.0825556i \(0.973692\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 7773.35i 0.714473i −0.934014 0.357237i \(-0.883719\pi\)
0.934014 0.357237i \(-0.116281\pi\)
\(492\) 0 0
\(493\) −2909.64 1679.88i −0.265808 0.153464i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −12976.8 12299.6i −1.17121 1.11008i
\(498\) 0 0
\(499\) −9518.91 16487.2i −0.853958 1.47910i −0.877609 0.479378i \(-0.840862\pi\)
0.0236507 0.999720i \(-0.492471\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −14323.9 −1.26973 −0.634863 0.772624i \(-0.718944\pi\)
−0.634863 + 0.772624i \(0.718944\pi\)
\(504\) 0 0
\(505\) 12770.7 1.12532
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 4294.66 + 7438.57i 0.373983 + 0.647758i 0.990174 0.139839i \(-0.0446585\pi\)
−0.616191 + 0.787597i \(0.711325\pi\)
\(510\) 0 0
\(511\) 4620.66 1371.75i 0.400012 0.118753i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 7883.28 + 4551.41i 0.674522 + 0.389435i
\(516\) 0 0
\(517\) 1684.17i 0.143269i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 11308.3 19586.6i 0.950917 1.64704i 0.207471 0.978241i \(-0.433477\pi\)
0.743447 0.668795i \(-0.233190\pi\)
\(522\) 0 0
\(523\) −122.551 + 70.7547i −0.0102462 + 0.00591566i −0.505114 0.863052i \(-0.668550\pi\)
0.494868 + 0.868968i \(0.335216\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 7307.45 4218.96i 0.604018 0.348730i
\(528\) 0 0
\(529\) −2944.22 + 5099.53i −0.241984 + 0.419128i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 12551.4i 1.02000i
\(534\) 0 0
\(535\) 10416.9 + 6014.21i 0.841799 + 0.486013i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −5075.72 + 9991.60i −0.405615 + 0.798458i
\(540\) 0 0
\(541\) 4655.90 + 8064.25i 0.370005 + 0.640867i 0.989566 0.144081i \(-0.0460227\pi\)
−0.619561 + 0.784949i \(0.712689\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −563.408 −0.0442821
\(546\) 0 0
\(547\) −11888.7 −0.929294 −0.464647 0.885496i \(-0.653819\pi\)
−0.464647 + 0.885496i \(0.653819\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 1385.50 + 2399.76i 0.107122 + 0.185541i
\(552\) 0 0
\(553\) −7894.77 1890.30i −0.607088 0.145360i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 18409.4 + 10628.7i 1.40042 + 0.808530i 0.994435 0.105352i \(-0.0335969\pi\)
0.405980 + 0.913882i \(0.366930\pi\)
\(558\) 0 0
\(559\) 24768.3i 1.87404i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −4661.33 + 8073.66i −0.348937 + 0.604377i −0.986061 0.166385i \(-0.946791\pi\)
0.637124 + 0.770762i \(0.280124\pi\)
\(564\) 0 0
\(565\) 680.991 393.170i 0.0507071 0.0292758i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −14734.2 + 8506.79i −1.08557 + 0.626754i −0.932394 0.361445i \(-0.882284\pi\)
−0.153176 + 0.988199i \(0.548950\pi\)
\(570\) 0 0
\(571\) 1134.69 1965.34i 0.0831617 0.144040i −0.821445 0.570288i \(-0.806832\pi\)
0.904606 + 0.426248i \(0.140165\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 6352.32i 0.460713i
\(576\) 0 0
\(577\) 2687.93 + 1551.88i 0.193934 + 0.111968i 0.593823 0.804596i \(-0.297618\pi\)
−0.399889 + 0.916564i \(0.630951\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −974.288 + 1027.93i −0.0695702 + 0.0734008i
\(582\) 0 0
\(583\) −10048.2 17404.1i −0.713818 1.23637i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 12544.8 0.882075 0.441038 0.897489i \(-0.354611\pi\)
0.441038 + 0.897489i \(0.354611\pi\)
\(588\) 0 0
\(589\) −6959.27 −0.486845
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −2644.32 4580.09i −0.183118 0.317170i 0.759823 0.650131i \(-0.225286\pi\)
−0.942941 + 0.332960i \(0.891952\pi\)
\(594\) 0 0
\(595\) 2613.38 2757.27i 0.180064 0.189978i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −5058.01 2920.24i −0.345016 0.199195i 0.317472 0.948268i \(-0.397166\pi\)
−0.662488 + 0.749073i \(0.730499\pi\)
\(600\) 0 0
\(601\) 10801.2i 0.733098i −0.930399 0.366549i \(-0.880539\pi\)
0.930399 0.366549i \(-0.119461\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −882.018 + 1527.70i −0.0592713 + 0.102661i
\(606\) 0 0
\(607\) 21239.7 12262.8i 1.42025 0.819984i 0.423934 0.905693i \(-0.360649\pi\)
0.996320 + 0.0857094i \(0.0273157\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −3031.15 + 1750.04i −0.200699 + 0.115874i
\(612\) 0 0
\(613\) −8223.34 + 14243.2i −0.541823 + 0.938465i 0.456976 + 0.889479i \(0.348932\pi\)
−0.998799 + 0.0489865i \(0.984401\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 23852.4i 1.55634i −0.628055 0.778169i \(-0.716149\pi\)
0.628055 0.778169i \(-0.283851\pi\)
\(618\) 0 0
\(619\) 14617.4 + 8439.34i 0.949147 + 0.547990i 0.892816 0.450422i \(-0.148726\pi\)
0.0563309 + 0.998412i \(0.482060\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 12844.1 + 3075.36i 0.825983 + 0.197771i
\(624\) 0 0
\(625\) −411.490 712.722i −0.0263354 0.0456142i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −9816.99 −0.622304
\(630\) 0 0
\(631\) 19613.0 1.23737 0.618686 0.785638i \(-0.287665\pi\)
0.618686 + 0.785638i \(0.287665\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −1710.49 2962.65i −0.106895 0.185148i
\(636\) 0 0
\(637\) −23257.0 + 1247.13i −1.44658 + 0.0775716i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −7437.62 4294.11i −0.458297 0.264598i 0.253031 0.967458i \(-0.418573\pi\)
−0.711328 + 0.702860i \(0.751906\pi\)
\(642\) 0 0
\(643\) 11966.4i 0.733920i 0.930237 + 0.366960i \(0.119601\pi\)
−0.930237 + 0.366960i \(0.880399\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −3663.93 + 6346.11i −0.222634 + 0.385613i −0.955607 0.294645i \(-0.904799\pi\)
0.732973 + 0.680257i \(0.238132\pi\)
\(648\) 0 0
\(649\) 11762.2 6790.91i 0.711412 0.410734i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −3124.09 + 1803.69i −0.187221 + 0.108092i −0.590681 0.806905i \(-0.701141\pi\)
0.403460 + 0.914997i \(0.367807\pi\)
\(654\) 0 0
\(655\) −6637.22 + 11496.0i −0.395936 + 0.685780i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 3244.57i 0.191792i 0.995391 + 0.0958958i \(0.0305716\pi\)
−0.995391 + 0.0958958i \(0.969428\pi\)
\(660\) 0 0
\(661\) −12548.2 7244.69i −0.738377 0.426302i 0.0831019 0.996541i \(-0.473517\pi\)
−0.821479 + 0.570239i \(0.806851\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −3003.69 + 891.715i −0.175155 + 0.0519989i
\(666\) 0 0
\(667\) 4344.90 + 7525.60i 0.252227 + 0.436870i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −15534.8 −0.893763
\(672\) 0 0
\(673\) −27609.5 −1.58138 −0.790688 0.612219i \(-0.790277\pi\)
−0.790688 + 0.612219i \(0.790277\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 7610.03 + 13181.0i 0.432019 + 0.748279i 0.997047 0.0767925i \(-0.0244679\pi\)
−0.565028 + 0.825072i \(0.691135\pi\)
\(678\) 0 0
\(679\) −5519.32 5231.28i −0.311947 0.295668i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −14491.6 8366.71i −0.811866 0.468731i 0.0357376 0.999361i \(-0.488622\pi\)
−0.847603 + 0.530630i \(0.821955\pi\)
\(684\) 0 0
\(685\) 6633.16i 0.369986i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 20882.4 36169.4i 1.15465 1.99992i
\(690\) 0 0
\(691\) −3981.41 + 2298.67i −0.219190 + 0.126549i −0.605575 0.795788i \(-0.707057\pi\)
0.386385 + 0.922337i \(0.373724\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −2145.03 + 1238.43i −0.117073 + 0.0675920i
\(696\) 0 0
\(697\) 2831.45 4904.21i 0.153872 0.266514i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 7621.26i 0.410629i −0.978696 0.205315i \(-0.934178\pi\)
0.978696 0.205315i \(-0.0658217\pi\)
\(702\) 0 0
\(703\) 7011.93 + 4048.34i 0.376188 + 0.217192i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 10053.1 + 33863.2i 0.534773 + 1.80135i
\(708\) 0 0
\(709\) 3850.25 + 6668.83i 0.203948 + 0.353249i 0.949797 0.312867i \(-0.101289\pi\)
−0.745849 + 0.666115i \(0.767956\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −21824.2 −1.14631
\(714\) 0 0
\(715\) 14854.8 0.776977
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 5049.89 + 8746.67i 0.261932 + 0.453680i 0.966755 0.255703i \(-0.0823070\pi\)
−0.704823 + 0.709383i \(0.748974\pi\)
\(720\) 0 0
\(721\) −5862.96 + 24486.4i −0.302841 + 1.26480i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 7614.00 + 4395.95i 0.390037 + 0.225188i
\(726\) 0 0
\(727\) 23945.7i 1.22159i −0.791789 0.610795i \(-0.790850\pi\)
0.791789 0.610795i \(-0.209150\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 5587.43 9677.71i 0.282707 0.489662i
\(732\) 0 0
\(733\) 18035.8 10413.0i 0.908822 0.524708i 0.0287698 0.999586i \(-0.490841\pi\)
0.880052 + 0.474878i \(0.157508\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 8046.67 4645.75i 0.402175 0.232196i
\(738\) 0 0
\(739\) 7648.41 13247.4i 0.380719 0.659424i −0.610446 0.792058i \(-0.709010\pi\)
0.991165 + 0.132633i \(0.0423433\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 27249.8i 1.34549i 0.739875 + 0.672744i \(0.234885\pi\)
−0.739875 + 0.672744i \(0.765115\pi\)
\(744\) 0 0
\(745\) 7062.08 + 4077.29i 0.347295 + 0.200511i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −7747.28 + 32356.2i −0.377943 + 1.57846i
\(750\) 0 0
\(751\) −19864.5 34406.4i −0.965203 1.67178i −0.709069 0.705139i \(-0.750884\pi\)
−0.256134 0.966641i \(-0.582449\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −10233.7 −0.493302
\(756\) 0 0
\(757\) −24557.2 −1.17906 −0.589530 0.807747i \(-0.700687\pi\)
−0.589530 + 0.807747i \(0.700687\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −9686.45 16777.4i −0.461411 0.799187i 0.537621 0.843187i \(-0.319323\pi\)
−0.999032 + 0.0440000i \(0.985990\pi\)
\(762\) 0 0
\(763\) −443.514 1493.95i −0.0210436 0.0708842i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 24444.4 + 14113.0i 1.15076 + 0.664393i
\(768\) 0 0
\(769\) 39937.6i 1.87280i −0.350930 0.936402i \(-0.614134\pi\)
0.350930 0.936402i \(-0.385866\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 8058.12 13957.1i 0.374942 0.649419i −0.615376 0.788234i \(-0.710996\pi\)
0.990318 + 0.138815i \(0.0443292\pi\)
\(774\) 0 0
\(775\) −19122.3 + 11040.3i −0.886314 + 0.511714i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −4044.80 + 2335.27i −0.186034 + 0.107407i
\(780\) 0 0
\(781\) −15771.4 + 27316.9i −0.722594 + 1.25157i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 20184.9i 0.917744i
\(786\) 0 0
\(787\) 19040.0 + 10992.8i 0.862394 + 0.497903i 0.864813 0.502094i \(-0.167437\pi\)
−0.00241936 + 0.999997i \(0.500770\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 1578.62 + 1496.23i 0.0709598 + 0.0672566i
\(792\) 0 0
\(793\) −16142.3 27959.3i −0.722864 1.25204i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −2291.42 −0.101840 −0.0509198 0.998703i \(-0.516215\pi\)
−0.0509198 + 0.998703i \(0.516215\pi\)
\(798\) 0 0
\(799\) 1579.15 0.0699202
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −4251.67 7364.12i