Properties

Label 1008.4.bt.d.17.19
Level $1008$
Weight $4$
Character 1008.17
Analytic conductor $59.474$
Analytic rank $0$
Dimension $48$
CM no
Inner twists $4$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 1008 = 2^{4} \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1008.bt (of order \(6\), degree \(2\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(59.4739252858\)
Analytic rank: \(0\)
Dimension: \(48\)
Relative dimension: \(24\) over \(\Q(\zeta_{6})\)
Twist minimal: no (minimal twist has level 504)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 17.19
Character \(\chi\) \(=\) 1008.17
Dual form 1008.4.bt.d.593.19

$q$-expansion

\(f(q)\) \(=\) \(q+(5.74088 + 9.94350i) q^{5} +(-17.2542 - 6.73007i) q^{7} +O(q^{10})\) \(q+(5.74088 + 9.94350i) q^{5} +(-17.2542 - 6.73007i) q^{7} +(-49.6208 - 28.6486i) q^{11} +9.20923i q^{13} +(14.5492 - 25.1999i) q^{17} +(32.6061 - 18.8252i) q^{19} +(7.27174 - 4.19834i) q^{23} +(-3.41550 + 5.91583i) q^{25} -62.3892i q^{29} +(48.8957 + 28.2300i) q^{31} +(-32.1337 - 210.203i) q^{35} +(146.068 + 252.997i) q^{37} +54.2417 q^{41} +438.235 q^{43} +(128.386 + 222.371i) q^{47} +(252.412 + 232.243i) q^{49} +(515.128 + 297.409i) q^{53} -657.873i q^{55} +(-238.156 + 412.499i) q^{59} +(-548.703 + 316.794i) q^{61} +(-91.5720 + 52.8691i) q^{65} +(308.827 - 534.904i) q^{67} +396.155i q^{71} +(39.8998 + 23.0361i) q^{73} +(663.359 + 828.259i) q^{77} +(-344.924 - 597.425i) q^{79} -1288.72 q^{83} +334.100 q^{85} +(595.784 + 1031.93i) q^{89} +(61.9787 - 158.897i) q^{91} +(374.376 + 216.146i) q^{95} -946.768i q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48q + 24q^{7} + O(q^{10}) \) \( 48q + 24q^{7} - 540q^{19} - 924q^{25} - 648q^{31} - 132q^{37} + 792q^{43} + 672q^{49} + 12q^{67} + 2412q^{73} - 1680q^{79} + 480q^{85} - 1404q^{91} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1008\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(577\) \(757\) \(785\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{6}\right)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 5.74088 + 9.94350i 0.513480 + 0.889374i 0.999878 + 0.0156363i \(0.00497739\pi\)
−0.486397 + 0.873738i \(0.661689\pi\)
\(6\) 0 0
\(7\) −17.2542 6.73007i −0.931637 0.363390i
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −49.6208 28.6486i −1.36011 0.785261i −0.370474 0.928843i \(-0.620805\pi\)
−0.989639 + 0.143581i \(0.954138\pi\)
\(12\) 0 0
\(13\) 9.20923i 0.196475i 0.995163 + 0.0982377i \(0.0313205\pi\)
−0.995163 + 0.0982377i \(0.968679\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 14.5492 25.1999i 0.207570 0.359522i −0.743378 0.668871i \(-0.766778\pi\)
0.950949 + 0.309349i \(0.100111\pi\)
\(18\) 0 0
\(19\) 32.6061 18.8252i 0.393703 0.227305i −0.290060 0.957008i \(-0.593675\pi\)
0.683763 + 0.729704i \(0.260342\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 7.27174 4.19834i 0.0659245 0.0380615i −0.466675 0.884429i \(-0.654548\pi\)
0.532600 + 0.846367i \(0.321215\pi\)
\(24\) 0 0
\(25\) −3.41550 + 5.91583i −0.0273240 + 0.0473266i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 62.3892i 0.399496i −0.979847 0.199748i \(-0.935988\pi\)
0.979847 0.199748i \(-0.0640124\pi\)
\(30\) 0 0
\(31\) 48.8957 + 28.2300i 0.283288 + 0.163556i 0.634911 0.772585i \(-0.281037\pi\)
−0.351623 + 0.936142i \(0.614370\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −32.1337 210.203i −0.155188 1.01517i
\(36\) 0 0
\(37\) 146.068 + 252.997i 0.649012 + 1.12412i 0.983359 + 0.181672i \(0.0581509\pi\)
−0.334347 + 0.942450i \(0.608516\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 54.2417 0.206613 0.103306 0.994650i \(-0.467058\pi\)
0.103306 + 0.994650i \(0.467058\pi\)
\(42\) 0 0
\(43\) 438.235 1.55419 0.777096 0.629382i \(-0.216692\pi\)
0.777096 + 0.629382i \(0.216692\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 128.386 + 222.371i 0.398446 + 0.690129i 0.993534 0.113531i \(-0.0362161\pi\)
−0.595088 + 0.803661i \(0.702883\pi\)
\(48\) 0 0
\(49\) 252.412 + 232.243i 0.735896 + 0.677095i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 515.128 + 297.409i 1.33506 + 0.770799i 0.986071 0.166327i \(-0.0531907\pi\)
0.348992 + 0.937126i \(0.386524\pi\)
\(54\) 0 0
\(55\) 657.873i 1.61287i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −238.156 + 412.499i −0.525513 + 0.910216i 0.474045 + 0.880501i \(0.342793\pi\)
−0.999558 + 0.0297153i \(0.990540\pi\)
\(60\) 0 0
\(61\) −548.703 + 316.794i −1.15171 + 0.664939i −0.949303 0.314363i \(-0.898209\pi\)
−0.202406 + 0.979302i \(0.564876\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −91.5720 + 52.8691i −0.174740 + 0.100886i
\(66\) 0 0
\(67\) 308.827 534.904i 0.563123 0.975357i −0.434099 0.900865i \(-0.642933\pi\)
0.997222 0.0744918i \(-0.0237335\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 396.155i 0.662183i 0.943599 + 0.331092i \(0.107417\pi\)
−0.943599 + 0.331092i \(0.892583\pi\)
\(72\) 0 0
\(73\) 39.8998 + 23.0361i 0.0639714 + 0.0369339i 0.531645 0.846968i \(-0.321574\pi\)
−0.467673 + 0.883901i \(0.654908\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 663.359 + 828.259i 0.981776 + 1.22583i
\(78\) 0 0
\(79\) −344.924 597.425i −0.491227 0.850831i 0.508722 0.860931i \(-0.330118\pi\)
−0.999949 + 0.0101004i \(0.996785\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −1288.72 −1.70428 −0.852138 0.523317i \(-0.824694\pi\)
−0.852138 + 0.523317i \(0.824694\pi\)
\(84\) 0 0
\(85\) 334.100 0.426333
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 595.784 + 1031.93i 0.709584 + 1.22904i 0.965012 + 0.262207i \(0.0844504\pi\)
−0.255428 + 0.966828i \(0.582216\pi\)
\(90\) 0 0
\(91\) 61.9787 158.897i 0.0713971 0.183044i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 374.376 + 216.146i 0.404318 + 0.233433i
\(96\) 0 0
\(97\) 946.768i 0.991028i −0.868600 0.495514i \(-0.834980\pi\)
0.868600 0.495514i \(-0.165020\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −636.416 + 1102.31i −0.626988 + 1.08597i 0.361165 + 0.932502i \(0.382379\pi\)
−0.988153 + 0.153473i \(0.950954\pi\)
\(102\) 0 0
\(103\) −338.095 + 195.199i −0.323431 + 0.186733i −0.652921 0.757426i \(-0.726457\pi\)
0.329490 + 0.944159i \(0.393123\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 67.4130 38.9209i 0.0609071 0.0351648i −0.469237 0.883072i \(-0.655471\pi\)
0.530144 + 0.847907i \(0.322138\pi\)
\(108\) 0 0
\(109\) −341.576 + 591.626i −0.300156 + 0.519886i −0.976171 0.217002i \(-0.930372\pi\)
0.676015 + 0.736888i \(0.263705\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 286.715i 0.238689i −0.992853 0.119345i \(-0.961921\pi\)
0.992853 0.119345i \(-0.0380793\pi\)
\(114\) 0 0
\(115\) 83.4924 + 48.2044i 0.0677018 + 0.0390877i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −420.631 + 336.886i −0.324027 + 0.259515i
\(120\) 0 0
\(121\) 975.984 + 1690.45i 0.733271 + 1.27006i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 1356.79 0.970839
\(126\) 0 0
\(127\) 2655.85 1.85566 0.927830 0.373002i \(-0.121672\pi\)
0.927830 + 0.373002i \(0.121672\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 1198.22 + 2075.38i 0.799151 + 1.38417i 0.920169 + 0.391521i \(0.128051\pi\)
−0.121018 + 0.992650i \(0.538616\pi\)
\(132\) 0 0
\(133\) −689.286 + 105.371i −0.449389 + 0.0686978i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −1553.97 897.184i −0.969084 0.559501i −0.0701271 0.997538i \(-0.522340\pi\)
−0.898957 + 0.438037i \(0.855674\pi\)
\(138\) 0 0
\(139\) 101.014i 0.0616396i 0.999525 + 0.0308198i \(0.00981180\pi\)
−0.999525 + 0.0308198i \(0.990188\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 263.831 456.969i 0.154285 0.267229i
\(144\) 0 0
\(145\) 620.367 358.169i 0.355301 0.205133i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 744.159 429.640i 0.409154 0.236225i −0.281272 0.959628i \(-0.590756\pi\)
0.690426 + 0.723403i \(0.257423\pi\)
\(150\) 0 0
\(151\) 807.459 1398.56i 0.435166 0.753730i −0.562143 0.827040i \(-0.690023\pi\)
0.997309 + 0.0733102i \(0.0233563\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 648.260i 0.335932i
\(156\) 0 0
\(157\) 1622.84 + 936.947i 0.824948 + 0.476284i 0.852120 0.523347i \(-0.175317\pi\)
−0.0271720 + 0.999631i \(0.508650\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −153.723 + 23.4996i −0.0752488 + 0.0115033i
\(162\) 0 0
\(163\) 664.037 + 1150.15i 0.319088 + 0.552677i 0.980298 0.197524i \(-0.0632900\pi\)
−0.661210 + 0.750201i \(0.729957\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 595.681 0.276019 0.138010 0.990431i \(-0.455930\pi\)
0.138010 + 0.990431i \(0.455930\pi\)
\(168\) 0 0
\(169\) 2112.19 0.961397
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 1119.44 + 1938.93i 0.491962 + 0.852103i 0.999957 0.00925667i \(-0.00294653\pi\)
−0.507995 + 0.861360i \(0.669613\pi\)
\(174\) 0 0
\(175\) 98.7456 79.0861i 0.0426541 0.0341620i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 1660.97 + 958.960i 0.693556 + 0.400425i 0.804943 0.593352i \(-0.202196\pi\)
−0.111387 + 0.993777i \(0.535529\pi\)
\(180\) 0 0
\(181\) 4162.64i 1.70943i −0.519099 0.854714i \(-0.673732\pi\)
0.519099 0.854714i \(-0.326268\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −1677.12 + 2904.86i −0.666510 + 1.15443i
\(186\) 0 0
\(187\) −1443.88 + 833.626i −0.564637 + 0.325994i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 267.384 154.374i 0.101294 0.0584823i −0.448497 0.893784i \(-0.648041\pi\)
0.549791 + 0.835302i \(0.314707\pi\)
\(192\) 0 0
\(193\) 2385.32 4131.49i 0.889632 1.54089i 0.0493214 0.998783i \(-0.484294\pi\)
0.840311 0.542105i \(-0.182373\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 1115.98i 0.403607i 0.979426 + 0.201804i \(0.0646802\pi\)
−0.979426 + 0.201804i \(0.935320\pi\)
\(198\) 0 0
\(199\) 2713.57 + 1566.68i 0.966634 + 0.558086i 0.898208 0.439570i \(-0.144869\pi\)
0.0684255 + 0.997656i \(0.478202\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −419.884 + 1076.47i −0.145173 + 0.372185i
\(204\) 0 0
\(205\) 311.395 + 539.352i 0.106092 + 0.183756i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −2157.26 −0.713974
\(210\) 0 0
\(211\) 513.831 0.167647 0.0838237 0.996481i \(-0.473287\pi\)
0.0838237 + 0.996481i \(0.473287\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 2515.86 + 4357.59i 0.798047 + 1.38226i
\(216\) 0 0
\(217\) −653.665 816.156i −0.204487 0.255319i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 232.072 + 133.987i 0.0706372 + 0.0407824i
\(222\) 0 0
\(223\) 4529.37i 1.36013i 0.733151 + 0.680066i \(0.238049\pi\)
−0.733151 + 0.680066i \(0.761951\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 146.074 253.008i 0.0427105 0.0739767i −0.843880 0.536532i \(-0.819734\pi\)
0.886590 + 0.462555i \(0.153067\pi\)
\(228\) 0 0
\(229\) 5530.36 3192.96i 1.59588 0.921382i 0.603611 0.797279i \(-0.293728\pi\)
0.992269 0.124103i \(-0.0396052\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 1468.47 847.822i 0.412887 0.238381i −0.279142 0.960250i \(-0.590050\pi\)
0.692030 + 0.721869i \(0.256717\pi\)
\(234\) 0 0
\(235\) −1474.10 + 2553.21i −0.409189 + 0.708736i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 962.214i 0.260420i 0.991486 + 0.130210i \(0.0415652\pi\)
−0.991486 + 0.130210i \(0.958435\pi\)
\(240\) 0 0
\(241\) −4233.33 2444.11i −1.13150 0.653274i −0.187191 0.982324i \(-0.559938\pi\)
−0.944313 + 0.329049i \(0.893272\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −860.243 + 3843.15i −0.224322 + 1.00216i
\(246\) 0 0
\(247\) 173.365 + 300.277i 0.0446598 + 0.0773530i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 7473.53 1.87938 0.939691 0.342025i \(-0.111113\pi\)
0.939691 + 0.342025i \(0.111113\pi\)
\(252\) 0 0
\(253\) −481.106 −0.119553
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −2720.11 4711.37i −0.660217 1.14353i −0.980558 0.196227i \(-0.937131\pi\)
0.320341 0.947302i \(-0.396202\pi\)
\(258\) 0 0
\(259\) −817.593 5348.31i −0.196150 1.28312i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −4868.13 2810.62i −1.14138 0.658974i −0.194605 0.980882i \(-0.562342\pi\)
−0.946771 + 0.321908i \(0.895676\pi\)
\(264\) 0 0
\(265\) 6829.57i 1.58316i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 2259.81 3914.11i 0.512206 0.887166i −0.487694 0.873014i \(-0.662162\pi\)
0.999900 0.0141516i \(-0.00450473\pi\)
\(270\) 0 0
\(271\) −4739.86 + 2736.56i −1.06246 + 0.613410i −0.926111 0.377252i \(-0.876869\pi\)
−0.136346 + 0.990661i \(0.543536\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 338.960 195.699i 0.0743275 0.0429130i
\(276\) 0 0
\(277\) 2082.99 3607.85i 0.451823 0.782580i −0.546677 0.837344i \(-0.684107\pi\)
0.998499 + 0.0547639i \(0.0174406\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 5979.00i 1.26931i 0.772794 + 0.634657i \(0.218858\pi\)
−0.772794 + 0.634657i \(0.781142\pi\)
\(282\) 0 0
\(283\) 6220.79 + 3591.57i 1.30667 + 0.754406i 0.981539 0.191263i \(-0.0612584\pi\)
0.325130 + 0.945669i \(0.394592\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −935.895 365.050i −0.192488 0.0750810i
\(288\) 0 0
\(289\) 2033.14 + 3521.51i 0.413829 + 0.716773i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −3741.42 −0.745994 −0.372997 0.927832i \(-0.621670\pi\)
−0.372997 + 0.927832i \(0.621670\pi\)
\(294\) 0 0
\(295\) −5468.91 −1.07936
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 38.6635 + 66.9671i 0.00747815 + 0.0129525i
\(300\) 0 0
\(301\) −7561.38 2949.35i −1.44794 0.564777i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −6300.08 3637.35i −1.18276 0.682866i
\(306\) 0 0
\(307\) 4568.44i 0.849299i −0.905358 0.424649i \(-0.860397\pi\)
0.905358 0.424649i \(-0.139603\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −1633.29 + 2828.95i −0.297799 + 0.515803i −0.975632 0.219413i \(-0.929586\pi\)
0.677833 + 0.735216i \(0.262919\pi\)
\(312\) 0 0
\(313\) −3415.84 + 1972.13i −0.616852 + 0.356139i −0.775642 0.631173i \(-0.782574\pi\)
0.158791 + 0.987312i \(0.449241\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 5604.14 3235.55i 0.992934 0.573271i 0.0867840 0.996227i \(-0.472341\pi\)
0.906150 + 0.422956i \(0.139008\pi\)
\(318\) 0 0
\(319\) −1787.36 + 3095.80i −0.313709 + 0.543360i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 1095.56i 0.188727i
\(324\) 0 0
\(325\) −54.4802 31.4542i −0.00929851 0.00536850i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −718.619 4700.86i −0.120422 0.787742i
\(330\) 0 0
\(331\) −902.540 1563.24i −0.149873 0.259588i 0.781307 0.624147i \(-0.214553\pi\)
−0.931180 + 0.364559i \(0.881220\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 7091.76 1.15661
\(336\) 0 0
\(337\) −6868.31 −1.11021 −0.555105 0.831780i \(-0.687322\pi\)
−0.555105 + 0.831780i \(0.687322\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −1617.50 2801.59i −0.256869 0.444910i
\(342\) 0 0
\(343\) −2792.15 5705.92i −0.439539 0.898223i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −4458.72 2574.24i −0.689788 0.398249i 0.113745 0.993510i \(-0.463715\pi\)
−0.803533 + 0.595261i \(0.797049\pi\)
\(348\) 0 0
\(349\) 9931.72i 1.52330i −0.647987 0.761652i \(-0.724389\pi\)
0.647987 0.761652i \(-0.275611\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −4125.94 + 7146.35i −0.622102 + 1.07751i 0.366992 + 0.930224i \(0.380388\pi\)
−0.989094 + 0.147288i \(0.952946\pi\)
\(354\) 0 0
\(355\) −3939.17 + 2274.28i −0.588928 + 0.340018i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −7280.23 + 4203.24i −1.07029 + 0.617935i −0.928262 0.371927i \(-0.878697\pi\)
−0.142033 + 0.989862i \(0.545364\pi\)
\(360\) 0 0
\(361\) −2720.73 + 4712.44i −0.396665 + 0.687044i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 528.991i 0.0758593i
\(366\) 0 0
\(367\) 4673.36 + 2698.17i 0.664707 + 0.383769i 0.794068 0.607829i \(-0.207959\pi\)
−0.129361 + 0.991598i \(0.541293\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −6886.52 8598.40i −0.963694 1.20325i
\(372\) 0 0
\(373\) 3007.56 + 5209.25i 0.417495 + 0.723123i 0.995687 0.0927779i \(-0.0295747\pi\)
−0.578191 + 0.815901i \(0.696241\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 574.556 0.0784911
\(378\) 0 0
\(379\) −1456.39 −0.197388 −0.0986939 0.995118i \(-0.531466\pi\)
−0.0986939 + 0.995118i \(0.531466\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −806.803 1397.42i −0.107639 0.186436i 0.807174 0.590313i \(-0.200996\pi\)
−0.914813 + 0.403877i \(0.867662\pi\)
\(384\) 0 0
\(385\) −4427.53 + 11351.0i −0.586098 + 1.50261i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 7423.22 + 4285.80i 0.967537 + 0.558608i 0.898485 0.439005i \(-0.144669\pi\)
0.0690527 + 0.997613i \(0.478002\pi\)
\(390\) 0 0
\(391\) 244.329i 0.0316017i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 3960.33 6859.50i 0.504471 0.873770i
\(396\) 0 0
\(397\) 11677.0 6741.72i 1.47620 0.852286i 0.476562 0.879141i \(-0.341883\pi\)
0.999639 + 0.0268551i \(0.00854927\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 10042.0 5797.73i 1.25055 0.722007i 0.279333 0.960194i \(-0.409887\pi\)
0.971219 + 0.238187i \(0.0765532\pi\)
\(402\) 0 0
\(403\) −259.976 + 450.292i −0.0321348 + 0.0556591i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 16738.6i 2.03858i
\(408\) 0 0
\(409\) −2081.47 1201.74i −0.251643 0.145286i 0.368873 0.929480i \(-0.379744\pi\)
−0.620517 + 0.784193i \(0.713077\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 6885.33 5514.51i 0.820351 0.657025i
\(414\) 0 0
\(415\) −7398.37 12814.3i −0.875112 1.51574i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −6175.24 −0.720001 −0.360001 0.932952i \(-0.617223\pi\)
−0.360001 + 0.932952i \(0.617223\pi\)
\(420\) 0 0
\(421\) 3082.19 0.356809 0.178405 0.983957i \(-0.442906\pi\)
0.178405 + 0.983957i \(0.442906\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 99.3855 + 172.141i 0.0113433 + 0.0196472i
\(426\) 0 0
\(427\) 11599.5 1773.20i 1.31461 0.200963i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −1931.19 1114.97i −0.215829 0.124609i 0.388189 0.921580i \(-0.373101\pi\)
−0.604017 + 0.796971i \(0.706434\pi\)
\(432\) 0 0
\(433\) 9238.69i 1.02536i 0.858578 + 0.512682i \(0.171348\pi\)
−0.858578 + 0.512682i \(0.828652\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 158.069 273.783i 0.0173031 0.0299699i
\(438\) 0 0
\(439\) 2806.74 1620.47i 0.305145 0.176175i −0.339607 0.940567i \(-0.610294\pi\)
0.644752 + 0.764392i \(0.276961\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −6001.79 + 3465.14i −0.643688 + 0.371633i −0.786034 0.618184i \(-0.787869\pi\)
0.142346 + 0.989817i \(0.454535\pi\)
\(444\) 0 0
\(445\) −6840.65 + 11848.4i −0.728715 + 1.26217i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 6773.64i 0.711955i −0.934495 0.355978i \(-0.884148\pi\)
0.934495 0.355978i \(-0.115852\pi\)
\(450\) 0 0
\(451\) −2691.52 1553.95i −0.281017 0.162245i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 1935.81 295.926i 0.199455 0.0304906i
\(456\) 0 0
\(457\) 6687.33 + 11582.8i 0.684508 + 1.18560i 0.973591 + 0.228299i \(0.0733164\pi\)
−0.289083 + 0.957304i \(0.593350\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 13126.6 1.32618 0.663090 0.748540i \(-0.269245\pi\)
0.663090 + 0.748540i \(0.269245\pi\)
\(462\) 0 0
\(463\) 12805.7 1.28538 0.642690 0.766126i \(-0.277818\pi\)
0.642690 + 0.766126i \(0.277818\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 665.256 + 1152.26i 0.0659194 + 0.114176i 0.897101 0.441825i \(-0.145669\pi\)
−0.831182 + 0.556000i \(0.812335\pi\)
\(468\) 0 0
\(469\) −8928.49 + 7150.89i −0.879061 + 0.704046i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −21745.6 12554.8i −2.11388 1.22045i
\(474\) 0 0
\(475\) 257.190i 0.0248435i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 5608.11 9713.54i 0.534950 0.926561i −0.464215 0.885722i \(-0.653664\pi\)
0.999166 0.0408390i \(-0.0130031\pi\)
\(480\) 0 0
\(481\) −2329.91 + 1345.17i −0.220862 + 0.127515i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 9414.19 5435.28i 0.881394 0.508873i
\(486\) 0 0
\(487\) 1480.99 2565.15i 0.137803 0.238682i −0.788862 0.614571i \(-0.789329\pi\)
0.926665 + 0.375889i \(0.122663\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 4452.75i 0.409266i 0.978839 + 0.204633i \(0.0656001\pi\)
−0.978839 + 0.204633i \(0.934400\pi\)
\(492\) 0 0
\(493\) −1572.20 907.711i −0.143628 0.0829234i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 2666.15 6835.33i 0.240630 0.616914i
\(498\) 0 0
\(499\) −6419.64 11119.1i −0.575917 0.997518i −0.995941 0.0900049i \(-0.971312\pi\)
0.420024 0.907513i \(-0.362022\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −3169.30 −0.280939 −0.140469 0.990085i \(-0.544861\pi\)
−0.140469 + 0.990085i \(0.544861\pi\)
\(504\) 0 0
\(505\) −14614.4 −1.28778
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −5393.25 9341.38i −0.469649 0.813456i 0.529749 0.848155i \(-0.322286\pi\)
−0.999398 + 0.0346984i \(0.988953\pi\)
\(510\) 0 0
\(511\) −533.402 665.997i −0.0461768 0.0576556i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −3881.92 2241.23i −0.332151 0.191768i
\(516\) 0 0
\(517\) 14712.3i 1.25154i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −8319.38 + 14409.6i −0.699575 + 1.21170i 0.269039 + 0.963129i \(0.413294\pi\)
−0.968614 + 0.248570i \(0.920039\pi\)
\(522\) 0 0
\(523\) −17007.8 + 9819.46i −1.42199 + 0.820984i −0.996469 0.0839657i \(-0.973241\pi\)
−0.425518 + 0.904950i \(0.639908\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 1422.78 821.445i 0.117604 0.0678988i
\(528\) 0 0
\(529\) −6048.25 + 10475.9i −0.497103 + 0.861007i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 499.524i 0.0405943i
\(534\) 0 0
\(535\) 774.021 + 446.881i 0.0625492 + 0.0361128i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −5871.46 18755.4i −0.469205 1.49880i
\(540\) 0 0
\(541\) −8795.99 15235.1i −0.699019 1.21074i −0.968807 0.247816i \(-0.920287\pi\)
0.269788 0.962920i \(-0.413046\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −7843.78 −0.616497
\(546\) 0 0
\(547\) −9961.21 −0.778630 −0.389315 0.921105i \(-0.627288\pi\)
−0.389315 + 0.921105i \(0.627288\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −1174.49 2034.27i −0.0908073 0.157283i
\(552\) 0 0
\(553\) 1930.66 + 12629.4i 0.148463 + 0.971172i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 1255.36 + 724.783i 0.0954961 + 0.0551347i 0.546988 0.837141i \(-0.315775\pi\)
−0.451491 + 0.892275i \(0.649108\pi\)
\(558\) 0 0
\(559\) 4035.81i 0.305360i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −6356.42 + 11009.6i −0.475828 + 0.824159i −0.999617 0.0276898i \(-0.991185\pi\)
0.523788 + 0.851848i \(0.324518\pi\)
\(564\) 0 0
\(565\) 2850.95 1646.00i 0.212284 0.122562i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −11895.7 + 6867.98i −0.876438 + 0.506012i −0.869482 0.493964i \(-0.835547\pi\)
−0.00695552 + 0.999976i \(0.502214\pi\)
\(570\) 0 0
\(571\) −11893.2 + 20599.7i −0.871656 + 1.50975i −0.0113732 + 0.999935i \(0.503620\pi\)
−0.860283 + 0.509817i \(0.829713\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 57.3578i 0.00415998i
\(576\) 0 0
\(577\) −16470.3 9509.14i −1.18833 0.686085i −0.230406 0.973095i \(-0.574005\pi\)
−0.957928 + 0.287010i \(0.907339\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 22235.7 + 8673.14i 1.58777 + 0.619316i
\(582\) 0 0
\(583\) −17040.7 29515.4i −1.21056 2.09675i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −2636.09 −0.185354 −0.0926772 0.995696i \(-0.529542\pi\)
−0.0926772 + 0.995696i \(0.529542\pi\)
\(588\) 0 0
\(589\) 2125.73 0.148709
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −8294.23 14366.0i −0.574373 0.994843i −0.996109 0.0881246i \(-0.971913\pi\)
0.421737 0.906718i \(-0.361421\pi\)
\(594\) 0 0
\(595\) −5764.62 2248.52i −0.397187 0.154925i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −5022.26 2899.61i −0.342578 0.197787i 0.318834 0.947811i \(-0.396709\pi\)
−0.661411 + 0.750023i \(0.730042\pi\)
\(600\) 0 0
\(601\) 19240.0i 1.30585i −0.757422 0.652926i \(-0.773541\pi\)
0.757422 0.652926i \(-0.226459\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −11206.0 + 19409.4i −0.753041 + 1.30430i
\(606\) 0 0
\(607\) −10321.5 + 5959.14i −0.690178 + 0.398474i −0.803679 0.595064i \(-0.797127\pi\)
0.113501 + 0.993538i \(0.463793\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −2047.86 + 1182.33i −0.135593 + 0.0782849i
\(612\) 0 0
\(613\) −2031.64 + 3518.90i −0.133862 + 0.231855i −0.925162 0.379573i \(-0.876071\pi\)
0.791300 + 0.611428i \(0.209404\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 15705.9i 1.02479i −0.858750 0.512395i \(-0.828758\pi\)
0.858750 0.512395i \(-0.171242\pi\)
\(618\) 0 0
\(619\) 20914.5 + 12075.0i 1.35803 + 0.784061i 0.989359 0.145497i \(-0.0464781\pi\)
0.368675 + 0.929558i \(0.379811\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −3334.81 21814.7i −0.214456 1.40287i
\(624\) 0 0
\(625\) 8216.11 + 14230.7i 0.525831 + 0.910766i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 8500.68 0.538862
\(630\) 0 0
\(631\) 23965.9 1.51199 0.755996 0.654576i \(-0.227153\pi\)
0.755996 + 0.654576i \(0.227153\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 15247.0 + 26408.5i 0.952845 + 1.65038i
\(636\) 0 0
\(637\) −2138.78 + 2324.52i −0.133032 + 0.144585i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −8093.10 4672.55i −0.498687 0.287917i 0.229484 0.973312i \(-0.426296\pi\)
−0.728171 + 0.685395i \(0.759629\pi\)
\(642\) 0 0
\(643\) 9283.22i 0.569354i −0.958623 0.284677i \(-0.908114\pi\)
0.958623 0.284677i \(-0.0918864\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −11327.2 + 19619.2i −0.688280 + 1.19214i 0.284114 + 0.958791i \(0.408301\pi\)
−0.972394 + 0.233345i \(0.925033\pi\)
\(648\) 0 0
\(649\) 23635.0 13645.7i 1.42951 0.825331i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 11545.5 6665.79i 0.691899 0.399468i −0.112424 0.993660i \(-0.535862\pi\)
0.804323 + 0.594192i \(0.202528\pi\)
\(654\) 0 0
\(655\) −13757.7 + 23829.0i −0.820697 + 1.42149i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 5190.48i 0.306817i −0.988163 0.153409i \(-0.950975\pi\)
0.988163 0.153409i \(-0.0490250\pi\)
\(660\) 0 0
\(661\) 2286.98 + 1320.39i 0.134574 + 0.0776963i 0.565776 0.824559i \(-0.308577\pi\)
−0.431202 + 0.902256i \(0.641910\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −5004.87 6249.00i −0.291850 0.364400i
\(666\) 0 0
\(667\) −261.931 453.678i −0.0152054 0.0263366i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 36302.8 2.08860
\(672\) 0 0
\(673\) 6119.56 0.350507 0.175254 0.984523i \(-0.443925\pi\)
0.175254 + 0.984523i \(0.443925\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 10363.3 + 17949.7i 0.588320 + 1.01900i 0.994453 + 0.105186i \(0.0335437\pi\)
−0.406133 + 0.913814i \(0.633123\pi\)
\(678\) 0 0
\(679\) −6371.81 + 16335.7i −0.360129 + 0.923278i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 6056.22 + 3496.56i 0.339290 + 0.195889i 0.659958 0.751303i \(-0.270574\pi\)
−0.320668 + 0.947192i \(0.603907\pi\)
\(684\) 0 0
\(685\) 20602.5i 1.14917i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −2738.91 + 4743.93i −0.151443 + 0.262307i
\(690\) 0 0
\(691\) 18475.9 10667.1i 1.01716 0.587256i 0.103878 0.994590i \(-0.466875\pi\)
0.913279 + 0.407334i \(0.133541\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −1004.43 + 579.910i −0.0548207 + 0.0316507i
\(696\) 0 0
\(697\) 789.171 1366.88i 0.0428867 0.0742819i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 7995.09i 0.430771i 0.976529 + 0.215385i \(0.0691007\pi\)
−0.976529 + 0.215385i \(0.930899\pi\)
\(702\) 0 0
\(703\) 9525.43 + 5499.51i 0.511036 + 0.295047i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 18399.4 14736.2i 0.978757 0.783894i
\(708\) 0 0
\(709\) −1680.51 2910.73i −0.0890167 0.154181i 0.818079 0.575106i \(-0.195039\pi\)
−0.907096 + 0.420924i \(0.861706\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 474.076 0.0249008
\(714\) 0 0
\(715\) 6058.50 0.316888
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 11653.3 + 20184.1i 0.604444 + 1.04693i 0.992139 + 0.125139i \(0.0399378\pi\)
−0.387696 + 0.921787i \(0.626729\pi\)
\(720\) 0 0
\(721\) 7147.24 1092.60i 0.369178 0.0564360i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 369.084 + 213.091i 0.0189068 + 0.0109158i
\(726\) 0 0
\(727\) 27744.2i 1.41537i 0.706526 + 0.707687i \(0.250261\pi\)
−0.706526 + 0.707687i \(0.749739\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 6375.96 11043.5i 0.322604 0.558766i
\(732\) 0 0
\(733\) 30453.8 17582.5i 1.53457 0.885983i 0.535425 0.844583i \(-0.320151\pi\)
0.999143 0.0414005i \(-0.0131819\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −30648.5 + 17694.9i −1.53182 + 0.884397i
\(738\) 0 0
\(739\) −4158.66 + 7203.01i −0.207008 + 0.358548i −0.950771 0.309896i \(-0.899706\pi\)
0.743763 + 0.668444i \(0.233039\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 34257.4i 1.69150i 0.533582 + 0.845748i \(0.320846\pi\)
−0.533582 + 0.845748i \(0.679154\pi\)
\(744\) 0 0
\(745\) 8544.26 + 4933.03i 0.420185 + 0.242594i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −1425.10 + 217.854i −0.0695219 + 0.0106278i
\(750\) 0 0
\(751\) −3760.57 6513.49i −0.182723 0.316486i 0.760084 0.649825i \(-0.225158\pi\)
−0.942807 + 0.333339i \(0.891824\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 18542.1 0.893797
\(756\) 0 0
\(757\) −13575.7 −0.651806 −0.325903 0.945403i \(-0.605668\pi\)
−0.325903 + 0.945403i \(0.605668\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −20338.8 35227.8i −0.968830 1.67806i −0.698953 0.715167i \(-0.746350\pi\)
−0.269876 0.962895i \(-0.586983\pi\)
\(762\) 0 0
\(763\) 9875.29 7909.19i 0.468558 0.375271i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −3798.79 2193.23i −0.178835 0.103250i
\(768\) 0 0
\(769\) 5230.17i 0.245260i −0.992452 0.122630i \(-0.960867\pi\)
0.992452 0.122630i \(-0.0391328\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 38.3831 66.4815i 0.00178596 0.00309337i −0.865131 0.501546i \(-0.832765\pi\)
0.866917 + 0.498453i \(0.166098\pi\)
\(774\) 0 0
\(775\) −334.007 + 192.839i −0.0154811 + 0.00893804i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 1768.61 1021.11i 0.0813441 0.0469641i
\(780\) 0 0
\(781\) 11349.3 19657.6i 0.519987 0.900644i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 21515.6i 0.978249i
\(786\) 0 0
\(787\) 26841.7 + 15497.0i 1.21576 + 0.701919i 0.964008 0.265873i \(-0.0856603\pi\)
0.251751 + 0.967792i \(0.418994\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −1929.61 + 4947.03i −0.0867372 + 0.222372i
\(792\) 0 0
\(793\) −2917.43 5053.13i −0.130644 0.226282i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 12755.8 0.566920 0.283460 0.958984i \(-0.408518\pi\)
0.283460 + 0.958984i \(0.408518\pi\)
\(798\) 0 0
\(799\) 7471.62 0.330822
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −1319.91 2286.14i −0.0580056