Properties

Label 1008.4.bt.d.17.13
Level $1008$
Weight $4$
Character 1008.17
Analytic conductor $59.474$
Analytic rank $0$
Dimension $48$
CM no
Inner twists $4$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 1008 = 2^{4} \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1008.bt (of order \(6\), degree \(2\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(59.4739252858\)
Analytic rank: \(0\)
Dimension: \(48\)
Relative dimension: \(24\) over \(\Q(\zeta_{6})\)
Twist minimal: no (minimal twist has level 504)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 17.13
Character \(\chi\) \(=\) 1008.17
Dual form 1008.4.bt.d.593.13

$q$-expansion

\(f(q)\) \(=\) \(q+(1.35769 + 2.35159i) q^{5} +(8.74105 + 16.3277i) q^{7} +O(q^{10})\) \(q+(1.35769 + 2.35159i) q^{5} +(8.74105 + 16.3277i) q^{7} +(8.39023 + 4.84410i) q^{11} +67.7228i q^{13} +(50.1037 - 86.7822i) q^{17} +(59.6837 - 34.4584i) q^{19} +(126.981 - 73.3122i) q^{23} +(58.8133 - 101.868i) q^{25} +284.951i q^{29} +(-197.116 - 113.805i) q^{31} +(-26.5285 + 42.7234i) q^{35} +(150.784 + 261.166i) q^{37} -232.403 q^{41} -173.051 q^{43} +(191.489 + 331.669i) q^{47} +(-190.188 + 285.443i) q^{49} +(-22.2602 - 12.8520i) q^{53} +26.3072i q^{55} +(371.973 - 644.275i) q^{59} +(-343.708 + 198.440i) q^{61} +(-159.257 + 91.9468i) q^{65} +(293.861 - 508.981i) q^{67} +501.792i q^{71} +(616.668 + 356.033i) q^{73} +(-5.75368 + 179.336i) q^{77} +(-466.039 - 807.203i) q^{79} +837.407 q^{83} +272.102 q^{85} +(442.322 + 766.124i) q^{89} +(-1105.76 + 591.968i) q^{91} +(162.064 + 93.5678i) q^{95} +1175.54i q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48q + 24q^{7} + O(q^{10}) \) \( 48q + 24q^{7} - 540q^{19} - 924q^{25} - 648q^{31} - 132q^{37} + 792q^{43} + 672q^{49} + 12q^{67} + 2412q^{73} - 1680q^{79} + 480q^{85} - 1404q^{91} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1008\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(577\) \(757\) \(785\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{6}\right)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 1.35769 + 2.35159i 0.121436 + 0.210333i 0.920334 0.391133i \(-0.127917\pi\)
−0.798898 + 0.601466i \(0.794583\pi\)
\(6\) 0 0
\(7\) 8.74105 + 16.3277i 0.471972 + 0.881613i
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 8.39023 + 4.84410i 0.229977 + 0.132777i 0.610562 0.791969i \(-0.290944\pi\)
−0.380584 + 0.924746i \(0.624277\pi\)
\(12\) 0 0
\(13\) 67.7228i 1.44484i 0.691454 + 0.722420i \(0.256970\pi\)
−0.691454 + 0.722420i \(0.743030\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 50.1037 86.7822i 0.714820 1.23810i −0.248209 0.968706i \(-0.579842\pi\)
0.963029 0.269397i \(-0.0868245\pi\)
\(18\) 0 0
\(19\) 59.6837 34.4584i 0.720651 0.416068i −0.0943412 0.995540i \(-0.530074\pi\)
0.814992 + 0.579472i \(0.196741\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 126.981 73.3122i 1.15119 0.664637i 0.202010 0.979384i \(-0.435253\pi\)
0.949176 + 0.314746i \(0.101919\pi\)
\(24\) 0 0
\(25\) 58.8133 101.868i 0.470507 0.814941i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 284.951i 1.82463i 0.409493 + 0.912313i \(0.365706\pi\)
−0.409493 + 0.912313i \(0.634294\pi\)
\(30\) 0 0
\(31\) −197.116 113.805i −1.14203 0.659353i −0.195100 0.980783i \(-0.562503\pi\)
−0.946933 + 0.321430i \(0.895837\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −26.5285 + 42.7234i −0.128118 + 0.206331i
\(36\) 0 0
\(37\) 150.784 + 261.166i 0.669966 + 1.16042i 0.977913 + 0.209012i \(0.0670248\pi\)
−0.307947 + 0.951404i \(0.599642\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −232.403 −0.885251 −0.442626 0.896707i \(-0.645953\pi\)
−0.442626 + 0.896707i \(0.645953\pi\)
\(42\) 0 0
\(43\) −173.051 −0.613722 −0.306861 0.951754i \(-0.599279\pi\)
−0.306861 + 0.951754i \(0.599279\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 191.489 + 331.669i 0.594288 + 1.02934i 0.993647 + 0.112543i \(0.0358996\pi\)
−0.399358 + 0.916795i \(0.630767\pi\)
\(48\) 0 0
\(49\) −190.188 + 285.443i −0.554484 + 0.832194i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −22.2602 12.8520i −0.0576921 0.0333085i 0.470877 0.882199i \(-0.343938\pi\)
−0.528569 + 0.848891i \(0.677271\pi\)
\(54\) 0 0
\(55\) 26.3072i 0.0644957i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 371.973 644.275i 0.820792 1.42165i −0.0843021 0.996440i \(-0.526866\pi\)
0.905094 0.425212i \(-0.139801\pi\)
\(60\) 0 0
\(61\) −343.708 + 198.440i −0.721432 + 0.416519i −0.815279 0.579068i \(-0.803417\pi\)
0.0938477 + 0.995587i \(0.470083\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −159.257 + 91.9468i −0.303898 + 0.175455i
\(66\) 0 0
\(67\) 293.861 508.981i 0.535833 0.928089i −0.463290 0.886207i \(-0.653331\pi\)
0.999123 0.0418825i \(-0.0133355\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 501.792i 0.838758i 0.907811 + 0.419379i \(0.137752\pi\)
−0.907811 + 0.419379i \(0.862248\pi\)
\(72\) 0 0
\(73\) 616.668 + 356.033i 0.988706 + 0.570830i 0.904887 0.425651i \(-0.139955\pi\)
0.0838188 + 0.996481i \(0.473288\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −5.75368 + 179.336i −0.00851549 + 0.265418i
\(78\) 0 0
\(79\) −466.039 807.203i −0.663715 1.14959i −0.979632 0.200801i \(-0.935646\pi\)
0.315917 0.948787i \(-0.397688\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 837.407 1.10744 0.553719 0.832703i \(-0.313208\pi\)
0.553719 + 0.832703i \(0.313208\pi\)
\(84\) 0 0
\(85\) 272.102 0.347219
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 442.322 + 766.124i 0.526809 + 0.912460i 0.999512 + 0.0312382i \(0.00994504\pi\)
−0.472703 + 0.881222i \(0.656722\pi\)
\(90\) 0 0
\(91\) −1105.76 + 591.968i −1.27379 + 0.681925i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 162.064 + 93.5678i 0.175026 + 0.101051i
\(96\) 0 0
\(97\) 1175.54i 1.23049i 0.788335 + 0.615247i \(0.210944\pi\)
−0.788335 + 0.615247i \(0.789056\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −117.031 + 202.703i −0.115297 + 0.199700i −0.917898 0.396816i \(-0.870115\pi\)
0.802602 + 0.596516i \(0.203449\pi\)
\(102\) 0 0
\(103\) −622.050 + 359.141i −0.595072 + 0.343565i −0.767101 0.641527i \(-0.778301\pi\)
0.172028 + 0.985092i \(0.444968\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 156.488 90.3486i 0.141386 0.0816292i −0.427638 0.903950i \(-0.640654\pi\)
0.569024 + 0.822321i \(0.307321\pi\)
\(108\) 0 0
\(109\) −993.277 + 1720.41i −0.872832 + 1.51179i −0.0137784 + 0.999905i \(0.504386\pi\)
−0.859054 + 0.511885i \(0.828947\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 841.537i 0.700576i 0.936642 + 0.350288i \(0.113916\pi\)
−0.936642 + 0.350288i \(0.886084\pi\)
\(114\) 0 0
\(115\) 344.801 + 199.071i 0.279590 + 0.161422i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 1854.91 + 59.5117i 1.42890 + 0.0458439i
\(120\) 0 0
\(121\) −618.569 1071.39i −0.464740 0.804954i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 658.825 0.471417
\(126\) 0 0
\(127\) −4.74209 −0.00331333 −0.00165666 0.999999i \(-0.500527\pi\)
−0.00165666 + 0.999999i \(0.500527\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 602.154 + 1042.96i 0.401606 + 0.695602i 0.993920 0.110105i \(-0.0351187\pi\)
−0.592314 + 0.805707i \(0.701785\pi\)
\(132\) 0 0
\(133\) 1084.32 + 673.295i 0.706939 + 0.438963i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 88.4208 + 51.0498i 0.0551409 + 0.0318356i 0.527317 0.849669i \(-0.323198\pi\)
−0.472176 + 0.881504i \(0.656531\pi\)
\(138\) 0 0
\(139\) 778.185i 0.474854i −0.971405 0.237427i \(-0.923696\pi\)
0.971405 0.237427i \(-0.0763041\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −328.056 + 568.210i −0.191842 + 0.332281i
\(144\) 0 0
\(145\) −670.090 + 386.877i −0.383779 + 0.221575i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 2325.47 1342.61i 1.27859 0.738194i 0.302000 0.953308i \(-0.402346\pi\)
0.976589 + 0.215114i \(0.0690123\pi\)
\(150\) 0 0
\(151\) −1570.46 + 2720.12i −0.846375 + 1.46596i 0.0380473 + 0.999276i \(0.487886\pi\)
−0.884422 + 0.466688i \(0.845447\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 618.049i 0.320276i
\(156\) 0 0
\(157\) 424.103 + 244.856i 0.215587 + 0.124469i 0.603905 0.797056i \(-0.293611\pi\)
−0.388318 + 0.921525i \(0.626944\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 2306.96 + 1432.48i 1.12928 + 0.701210i
\(162\) 0 0
\(163\) 1608.04 + 2785.20i 0.772707 + 1.33837i 0.936074 + 0.351802i \(0.114431\pi\)
−0.163367 + 0.986565i \(0.552236\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 1225.29 0.567760 0.283880 0.958860i \(-0.408378\pi\)
0.283880 + 0.958860i \(0.408378\pi\)
\(168\) 0 0
\(169\) −2389.38 −1.08757
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −270.349 468.258i −0.118811 0.205786i 0.800486 0.599351i \(-0.204575\pi\)
−0.919297 + 0.393565i \(0.871241\pi\)
\(174\) 0 0
\(175\) 2177.36 + 69.8567i 0.940529 + 0.0301753i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 3064.67 + 1769.39i 1.27969 + 0.738829i 0.976791 0.214194i \(-0.0687123\pi\)
0.302899 + 0.953023i \(0.402046\pi\)
\(180\) 0 0
\(181\) 1575.92i 0.647166i −0.946200 0.323583i \(-0.895112\pi\)
0.946200 0.323583i \(-0.104888\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −409.437 + 709.166i −0.162716 + 0.281832i
\(186\) 0 0
\(187\) 840.763 485.415i 0.328784 0.189824i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −2091.04 + 1207.26i −0.792158 + 0.457353i −0.840722 0.541467i \(-0.817869\pi\)
0.0485635 + 0.998820i \(0.484536\pi\)
\(192\) 0 0
\(193\) 208.561 361.238i 0.0777851 0.134728i −0.824509 0.565849i \(-0.808549\pi\)
0.902294 + 0.431121i \(0.141882\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 665.192i 0.240574i 0.992739 + 0.120287i \(0.0383814\pi\)
−0.992739 + 0.120287i \(0.961619\pi\)
\(198\) 0 0
\(199\) −1901.90 1098.06i −0.677498 0.391154i 0.121414 0.992602i \(-0.461257\pi\)
−0.798912 + 0.601448i \(0.794591\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −4652.61 + 2490.77i −1.60862 + 0.861173i
\(204\) 0 0
\(205\) −315.532 546.518i −0.107501 0.186198i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 667.680 0.220978
\(210\) 0 0
\(211\) −3218.47 −1.05009 −0.525045 0.851075i \(-0.675951\pi\)
−0.525045 + 0.851075i \(0.675951\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −234.950 406.946i −0.0745278 0.129086i
\(216\) 0 0
\(217\) 135.174 4213.22i 0.0422867 1.31803i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 5877.13 + 3393.16i 1.78886 + 1.03280i
\(222\) 0 0
\(223\) 3741.43i 1.12352i 0.827300 + 0.561760i \(0.189875\pi\)
−0.827300 + 0.561760i \(0.810125\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −166.598 + 288.557i −0.0487116 + 0.0843709i −0.889353 0.457221i \(-0.848845\pi\)
0.840642 + 0.541592i \(0.182178\pi\)
\(228\) 0 0
\(229\) −3169.55 + 1829.94i −0.914629 + 0.528061i −0.881918 0.471404i \(-0.843747\pi\)
−0.0327112 + 0.999465i \(0.510414\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −1056.00 + 609.682i −0.296914 + 0.171423i −0.641056 0.767495i \(-0.721503\pi\)
0.344142 + 0.938918i \(0.388170\pi\)
\(234\) 0 0
\(235\) −519.967 + 900.610i −0.144336 + 0.249997i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 1038.71i 0.281123i 0.990072 + 0.140561i \(0.0448907\pi\)
−0.990072 + 0.140561i \(0.955109\pi\)
\(240\) 0 0
\(241\) −2063.92 1191.60i −0.551654 0.318497i 0.198135 0.980175i \(-0.436512\pi\)
−0.749789 + 0.661677i \(0.769845\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −929.462 59.7019i −0.242372 0.0155682i
\(246\) 0 0
\(247\) 2333.62 + 4041.95i 0.601152 + 1.04123i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −2601.02 −0.654083 −0.327041 0.945010i \(-0.606052\pi\)
−0.327041 + 0.945010i \(0.606052\pi\)
\(252\) 0 0
\(253\) 1420.53 0.352995
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −1380.41 2390.94i −0.335049 0.580321i 0.648446 0.761261i \(-0.275419\pi\)
−0.983494 + 0.180940i \(0.942086\pi\)
\(258\) 0 0
\(259\) −2946.23 + 4744.82i −0.706833 + 1.13834i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 463.082 + 267.361i 0.108574 + 0.0626850i 0.553304 0.832980i \(-0.313367\pi\)
−0.444730 + 0.895665i \(0.646700\pi\)
\(264\) 0 0
\(265\) 69.7961i 0.0161794i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 1271.06 2201.55i 0.288097 0.498999i −0.685259 0.728300i \(-0.740311\pi\)
0.973355 + 0.229301i \(0.0736441\pi\)
\(270\) 0 0
\(271\) 7707.74 4450.06i 1.72772 0.997499i 0.828518 0.559962i \(-0.189184\pi\)
0.899201 0.437537i \(-0.144149\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 986.915 569.796i 0.216412 0.124945i
\(276\) 0 0
\(277\) −1185.18 + 2052.80i −0.257078 + 0.445273i −0.965458 0.260559i \(-0.916093\pi\)
0.708380 + 0.705832i \(0.249427\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 6135.53i 1.30255i −0.758844 0.651273i \(-0.774235\pi\)
0.758844 0.651273i \(-0.225765\pi\)
\(282\) 0 0
\(283\) 1108.84 + 640.186i 0.232910 + 0.134470i 0.611914 0.790925i \(-0.290400\pi\)
−0.379004 + 0.925395i \(0.623733\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −2031.45 3794.61i −0.417814 0.780449i
\(288\) 0 0
\(289\) −2564.26 4441.43i −0.521934 0.904016i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 3293.61 0.656706 0.328353 0.944555i \(-0.393507\pi\)
0.328353 + 0.944555i \(0.393507\pi\)
\(294\) 0 0
\(295\) 2020.10 0.398694
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 4964.91 + 8599.48i 0.960295 + 1.66328i
\(300\) 0 0
\(301\) −1512.65 2825.53i −0.289660 0.541065i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −933.301 538.842i −0.175215 0.101161i
\(306\) 0 0
\(307\) 3320.45i 0.617290i −0.951177 0.308645i \(-0.900124\pi\)
0.951177 0.308645i \(-0.0998756\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 3578.36 6197.90i 0.652444 1.13007i −0.330084 0.943952i \(-0.607077\pi\)
0.982528 0.186115i \(-0.0595896\pi\)
\(312\) 0 0
\(313\) 1971.44 1138.21i 0.356014 0.205545i −0.311317 0.950306i \(-0.600770\pi\)
0.667331 + 0.744761i \(0.267437\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 7987.14 4611.37i 1.41515 0.817037i 0.419282 0.907856i \(-0.362282\pi\)
0.995867 + 0.0908197i \(0.0289487\pi\)
\(318\) 0 0
\(319\) −1380.33 + 2390.81i −0.242269 + 0.419623i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 6905.97i 1.18965i
\(324\) 0 0
\(325\) 6898.77 + 3983.01i 1.17746 + 0.679807i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −3741.58 + 6025.71i −0.626990 + 1.00975i
\(330\) 0 0
\(331\) 304.578 + 527.545i 0.0505774 + 0.0876027i 0.890206 0.455559i \(-0.150561\pi\)
−0.839628 + 0.543161i \(0.817227\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 1595.89 0.260277
\(336\) 0 0
\(337\) 5810.77 0.939267 0.469633 0.882862i \(-0.344386\pi\)
0.469633 + 0.882862i \(0.344386\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −1102.56 1909.70i −0.175094 0.303273i
\(342\) 0 0
\(343\) −6323.07 610.270i −0.995375 0.0960685i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −4341.59 2506.62i −0.671668 0.387788i 0.125040 0.992152i \(-0.460094\pi\)
−0.796708 + 0.604364i \(0.793427\pi\)
\(348\) 0 0
\(349\) 7354.17i 1.12796i 0.825787 + 0.563982i \(0.190731\pi\)
−0.825787 + 0.563982i \(0.809269\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −4948.60 + 8571.22i −0.746140 + 1.29235i 0.203521 + 0.979071i \(0.434762\pi\)
−0.949660 + 0.313281i \(0.898572\pi\)
\(354\) 0 0
\(355\) −1180.01 + 681.280i −0.176418 + 0.101855i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −9868.73 + 5697.71i −1.45084 + 0.837643i −0.998529 0.0542171i \(-0.982734\pi\)
−0.452311 + 0.891860i \(0.649400\pi\)
\(360\) 0 0
\(361\) −1054.74 + 1826.86i −0.153775 + 0.266346i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 1933.54i 0.277277i
\(366\) 0 0
\(367\) −5837.69 3370.39i −0.830313 0.479382i 0.0236465 0.999720i \(-0.492472\pi\)
−0.853960 + 0.520339i \(0.825806\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 15.2652 475.798i 0.00213619 0.0665828i
\(372\) 0 0
\(373\) −4281.55 7415.87i −0.594344 1.02943i −0.993639 0.112612i \(-0.964078\pi\)
0.399295 0.916823i \(-0.369255\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −19297.7 −2.63629
\(378\) 0 0
\(379\) 5665.90 0.767910 0.383955 0.923352i \(-0.374562\pi\)
0.383955 + 0.923352i \(0.374562\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −3810.82 6600.53i −0.508417 0.880604i −0.999952 0.00974677i \(-0.996897\pi\)
0.491535 0.870858i \(-0.336436\pi\)
\(384\) 0 0
\(385\) −429.537 + 229.953i −0.0568603 + 0.0304402i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −11743.2 6779.95i −1.53060 0.883694i −0.999334 0.0364904i \(-0.988382\pi\)
−0.531269 0.847203i \(-0.678285\pi\)
\(390\) 0 0
\(391\) 14692.9i 1.90038i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 1265.48 2191.87i 0.161198 0.279202i
\(396\) 0 0
\(397\) 65.9737 38.0899i 0.00834036 0.00481531i −0.495824 0.868423i \(-0.665134\pi\)
0.504164 + 0.863608i \(0.331801\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −3304.95 + 1908.11i −0.411574 + 0.237622i −0.691466 0.722409i \(-0.743035\pi\)
0.279892 + 0.960032i \(0.409701\pi\)
\(402\) 0 0
\(403\) 7707.19 13349.2i 0.952661 1.65006i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 2921.65i 0.355826i
\(408\) 0 0
\(409\) 7641.81 + 4412.00i 0.923871 + 0.533397i 0.884868 0.465842i \(-0.154248\pi\)
0.0390032 + 0.999239i \(0.487582\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 13771.0 + 441.818i 1.64074 + 0.0526403i
\(414\) 0 0
\(415\) 1136.94 + 1969.24i 0.134483 + 0.232931i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −9891.78 −1.15333 −0.576665 0.816981i \(-0.695646\pi\)
−0.576665 + 0.816981i \(0.695646\pi\)
\(420\) 0 0
\(421\) 9584.37 1.10953 0.554767 0.832006i \(-0.312807\pi\)
0.554767 + 0.832006i \(0.312807\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −5893.53 10207.9i −0.672655 1.16507i
\(426\) 0 0
\(427\) −6244.44 3877.39i −0.707704 0.439439i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 11923.9 + 6884.25i 1.33260 + 0.769380i 0.985698 0.168520i \(-0.0538989\pi\)
0.346906 + 0.937900i \(0.387232\pi\)
\(432\) 0 0
\(433\) 3459.71i 0.383979i −0.981397 0.191990i \(-0.938506\pi\)
0.981397 0.191990i \(-0.0614940\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 5052.44 8751.09i 0.553069 0.957943i
\(438\) 0 0
\(439\) 13148.8 7591.49i 1.42952 0.825335i 0.432439 0.901663i \(-0.357653\pi\)
0.997083 + 0.0763287i \(0.0243198\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 7369.30 4254.67i 0.790353 0.456310i −0.0497341 0.998762i \(-0.515837\pi\)
0.840087 + 0.542452i \(0.182504\pi\)
\(444\) 0 0
\(445\) −1201.07 + 2080.32i −0.127947 + 0.221611i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 14011.3i 1.47269i 0.676608 + 0.736343i \(0.263449\pi\)
−0.676608 + 0.736343i \(0.736551\pi\)
\(450\) 0 0
\(451\) −1949.92 1125.79i −0.203588 0.117541i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −2893.35 1796.58i −0.298115 0.185110i
\(456\) 0 0
\(457\) −8286.20 14352.1i −0.848167 1.46907i −0.882842 0.469669i \(-0.844373\pi\)
0.0346758 0.999399i \(-0.488960\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −16366.1 −1.65346 −0.826731 0.562598i \(-0.809802\pi\)
−0.826731 + 0.562598i \(0.809802\pi\)
\(462\) 0 0
\(463\) −13247.2 −1.32969 −0.664847 0.746980i \(-0.731503\pi\)
−0.664847 + 0.746980i \(0.731503\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −5570.15 9647.78i −0.551939 0.955987i −0.998135 0.0610512i \(-0.980555\pi\)
0.446195 0.894936i \(-0.352779\pi\)
\(468\) 0 0
\(469\) 10879.2 + 349.039i 1.07111 + 0.0343649i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −1451.94 838.277i −0.141142 0.0814884i
\(474\) 0 0
\(475\) 8106.45i 0.783051i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 9679.64 16765.6i 0.923328 1.59925i 0.129099 0.991632i \(-0.458792\pi\)
0.794229 0.607619i \(-0.207875\pi\)
\(480\) 0 0
\(481\) −17686.9 + 10211.5i −1.67662 + 0.967995i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −2764.39 + 1596.02i −0.258813 + 0.149426i
\(486\) 0 0
\(487\) 737.757 1277.83i 0.0686467 0.118900i −0.829659 0.558270i \(-0.811465\pi\)
0.898306 + 0.439371i \(0.144799\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 2838.87i 0.260930i −0.991453 0.130465i \(-0.958353\pi\)
0.991453 0.130465i \(-0.0416470\pi\)
\(492\) 0 0
\(493\) 24728.7 + 14277.1i 2.25908 + 1.30428i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −8193.12 + 4386.19i −0.739460 + 0.395870i
\(498\) 0 0
\(499\) −1154.22 1999.17i −0.103547 0.179349i 0.809597 0.586987i \(-0.199686\pi\)
−0.913144 + 0.407638i \(0.866353\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −4336.61 −0.384413 −0.192207 0.981354i \(-0.561564\pi\)
−0.192207 + 0.981354i \(0.561564\pi\)
\(504\) 0 0
\(505\) −635.567 −0.0560047
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −6133.44 10623.4i −0.534106 0.925098i −0.999206 0.0398402i \(-0.987315\pi\)
0.465100 0.885258i \(-0.346018\pi\)
\(510\) 0 0
\(511\) −422.886 + 13180.9i −0.0366093 + 1.14107i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −1689.11 975.207i −0.144526 0.0834422i
\(516\) 0 0
\(517\) 3710.37i 0.315632i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 605.649 1049.01i 0.0509289 0.0882114i −0.839437 0.543457i \(-0.817115\pi\)
0.890366 + 0.455245i \(0.150448\pi\)
\(522\) 0 0
\(523\) 9043.21 5221.10i 0.756084 0.436526i −0.0718038 0.997419i \(-0.522876\pi\)
0.827888 + 0.560893i \(0.189542\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −19752.5 + 11404.1i −1.63270 + 0.942637i
\(528\) 0 0
\(529\) 4665.87 8081.52i 0.383486 0.664216i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 15739.0i 1.27905i
\(534\) 0 0
\(535\) 424.926 + 245.331i 0.0343386 + 0.0198254i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −2978.44 + 1473.64i −0.238015 + 0.117763i
\(540\) 0 0
\(541\) 7747.12 + 13418.4i 0.615665 + 1.06636i 0.990268 + 0.139177i \(0.0444457\pi\)
−0.374603 + 0.927185i \(0.622221\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −5394.27 −0.423972
\(546\) 0 0
\(547\) 2321.63 0.181473 0.0907366 0.995875i \(-0.471078\pi\)
0.0907366 + 0.995875i \(0.471078\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 9818.97 + 17006.9i 0.759169 + 1.31492i
\(552\) 0 0
\(553\) 9106.11 14665.1i 0.700237 1.12771i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 17567.9 + 10142.9i 1.33641 + 0.771574i 0.986272 0.165126i \(-0.0528031\pi\)
0.350133 + 0.936700i \(0.386136\pi\)
\(558\) 0 0
\(559\) 11719.5i 0.886730i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 12955.8 22440.1i 0.969843 1.67982i 0.273843 0.961774i \(-0.411705\pi\)
0.695999 0.718043i \(-0.254962\pi\)
\(564\) 0 0
\(565\) −1978.95 + 1142.55i −0.147354 + 0.0850751i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −8399.50 + 4849.46i −0.618850 + 0.357293i −0.776421 0.630215i \(-0.782967\pi\)
0.157571 + 0.987508i \(0.449634\pi\)
\(570\) 0 0
\(571\) −5472.11 + 9477.97i −0.401052 + 0.694642i −0.993853 0.110707i \(-0.964689\pi\)
0.592801 + 0.805349i \(0.298022\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 17246.9i 1.25087i
\(576\) 0 0
\(577\) −3895.27 2248.93i −0.281043 0.162261i 0.352852 0.935679i \(-0.385212\pi\)
−0.633896 + 0.773419i \(0.718545\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 7319.82 + 13672.9i 0.522680 + 0.976332i
\(582\) 0 0
\(583\) −124.512 215.662i −0.00884524 0.0153204i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 11846.6 0.832985 0.416493 0.909139i \(-0.363259\pi\)
0.416493 + 0.909139i \(0.363259\pi\)
\(588\) 0 0
\(589\) −15686.1 −1.09734
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −13185.0 22837.1i −0.913059 1.58147i −0.809718 0.586819i \(-0.800380\pi\)
−0.103342 0.994646i \(-0.532954\pi\)
\(594\) 0 0
\(595\) 2378.46 + 4442.80i 0.163878 + 0.306113i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −7357.48 4247.84i −0.501867 0.289753i 0.227617 0.973751i \(-0.426907\pi\)
−0.729484 + 0.683998i \(0.760240\pi\)
\(600\) 0 0
\(601\) 18469.7i 1.25357i −0.779194 0.626783i \(-0.784371\pi\)
0.779194 0.626783i \(-0.215629\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 1679.66 2909.25i 0.112872 0.195500i
\(606\) 0 0
\(607\) 7595.64 4385.35i 0.507904 0.293238i −0.224068 0.974574i \(-0.571934\pi\)
0.731972 + 0.681335i \(0.238600\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −22461.6 + 12968.2i −1.48723 + 0.858652i
\(612\) 0 0
\(613\) −7598.87 + 13161.6i −0.500678 + 0.867199i 0.499322 + 0.866416i \(0.333582\pi\)
−1.00000 0.000782617i \(0.999751\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 10948.4i 0.714370i 0.934034 + 0.357185i \(0.116263\pi\)
−0.934034 + 0.357185i \(0.883737\pi\)
\(618\) 0 0
\(619\) −5133.29 2963.71i −0.333319 0.192442i 0.323995 0.946059i \(-0.394974\pi\)
−0.657314 + 0.753617i \(0.728307\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −8642.69 + 13918.8i −0.555798 + 0.895098i
\(624\) 0 0
\(625\) −6457.18 11184.2i −0.413260 0.715787i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 30219.4 1.91562
\(630\) 0 0
\(631\) −5562.62 −0.350942 −0.175471 0.984485i \(-0.556145\pi\)
−0.175471 + 0.984485i \(0.556145\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −6.43831 11.1515i −0.000402357 0.000696902i
\(636\) 0 0
\(637\) −19331.0 12880.1i −1.20239 0.801142i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −6618.59 3821.24i −0.407829 0.235460i 0.282027 0.959406i \(-0.408993\pi\)
−0.689857 + 0.723946i \(0.742326\pi\)
\(642\) 0 0
\(643\) 487.471i 0.0298974i 0.999888 + 0.0149487i \(0.00475849\pi\)
−0.999888 + 0.0149487i \(0.995242\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −1526.57 + 2644.09i −0.0927598 + 0.160665i −0.908671 0.417512i \(-0.862902\pi\)
0.815912 + 0.578177i \(0.196236\pi\)
\(648\) 0 0
\(649\) 6241.87 3603.75i 0.377527 0.217965i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 18630.0 10756.0i 1.11646 0.644588i 0.175964 0.984397i \(-0.443696\pi\)
0.940494 + 0.339809i \(0.110362\pi\)
\(654\) 0 0
\(655\) −1635.08 + 2832.04i −0.0975388 + 0.168942i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 12939.8i 0.764891i 0.923978 + 0.382445i \(0.124918\pi\)
−0.923978 + 0.382445i \(0.875082\pi\)
\(660\) 0 0
\(661\) 2207.26 + 1274.36i 0.129883 + 0.0749878i 0.563534 0.826093i \(-0.309442\pi\)
−0.433651 + 0.901081i \(0.642775\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −111.137 + 3464.02i −0.00648077 + 0.201998i
\(666\) 0 0
\(667\) 20890.4 + 36183.3i 1.21271 + 2.10048i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −3845.06 −0.221217
\(672\) 0 0
\(673\) 20784.3 1.19045 0.595227 0.803558i \(-0.297062\pi\)
0.595227 + 0.803558i \(0.297062\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −3072.44 5321.62i −0.174422 0.302107i 0.765539 0.643389i \(-0.222472\pi\)
−0.939961 + 0.341282i \(0.889139\pi\)
\(678\) 0 0
\(679\) −19193.9 + 10275.4i −1.08482 + 0.580759i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 7362.49 + 4250.74i 0.412471 + 0.238141i 0.691851 0.722040i \(-0.256795\pi\)
−0.279380 + 0.960181i \(0.590129\pi\)
\(684\) 0 0
\(685\) 277.240i 0.0154639i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 870.371 1507.53i 0.0481255 0.0833559i
\(690\) 0 0
\(691\) 23895.8 13796.2i 1.31554 0.759528i 0.332533 0.943092i \(-0.392097\pi\)
0.983008 + 0.183564i \(0.0587635\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 1829.97 1056.54i 0.0998775 0.0576643i
\(696\) 0 0
\(697\) −11644.3 + 20168.5i −0.632795 + 1.09603i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 11627.5i 0.626481i −0.949674 0.313240i \(-0.898585\pi\)
0.949674 0.313240i \(-0.101415\pi\)
\(702\) 0 0
\(703\) 17998.7 + 10391.5i 0.965624 + 0.557503i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −4332.65 139.005i −0.230475 0.00739440i
\(708\) 0 0
\(709\) −12977.4 22477.6i −0.687415 1.19064i −0.972671 0.232187i \(-0.925412\pi\)
0.285256 0.958451i \(-0.407921\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −33373.2 −1.75292
\(714\) 0 0
\(715\) −1781.60 −0.0931861
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −7484.50 12963.5i −0.388213 0.672404i 0.603997 0.796987i \(-0.293574\pi\)
−0.992209 + 0.124583i \(0.960241\pi\)
\(720\) 0 0
\(721\) −11301.3 7017.39i −0.583749 0.362471i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 29027.3 + 16758.9i 1.48696 + 0.858499i
\(726\) 0 0
\(727\) 4115.65i 0.209960i −0.994474 0.104980i \(-0.966522\pi\)
0.994474 0.104980i \(-0.0334779\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −8670.50 + 15017.7i −0.438700 + 0.759851i
\(732\) 0 0
\(733\) −9055.13 + 5227.98i −0.456288 + 0.263438i −0.710482 0.703715i \(-0.751523\pi\)
0.254194 + 0.967153i \(0.418190\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 4931.12 2846.98i 0.246459 0.142293i
\(738\) 0 0
\(739\) −11879.4 + 20575.7i −0.591326 + 1.02421i 0.402728 + 0.915320i \(0.368062\pi\)
−0.994054 + 0.108887i \(0.965271\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 22288.6i 1.10053i −0.834992 0.550263i \(-0.814528\pi\)
0.834992 0.550263i \(-0.185472\pi\)
\(744\) 0 0
\(745\) 6314.55 + 3645.71i 0.310533 + 0.179286i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 2843.06 + 1765.35i 0.138696 + 0.0861210i
\(750\) 0 0
\(751\) 11424.3 + 19787.5i 0.555099 + 0.961459i 0.997896 + 0.0648371i \(0.0206528\pi\)
−0.442797 + 0.896622i \(0.646014\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −8528.84 −0.411121
\(756\) 0 0
\(757\) 26376.9 1.26643 0.633214 0.773977i \(-0.281735\pi\)
0.633214 + 0.773977i \(0.281735\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 18855.3 + 32658.4i 0.898168 + 1.55567i 0.829834 + 0.558010i \(0.188435\pi\)
0.0683340 + 0.997663i \(0.478232\pi\)
\(762\) 0 0
\(763\) −36772.6 1179.79i −1.74477 0.0559779i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 43632.1 + 25191.0i 2.05406 + 1.18591i
\(768\) 0 0
\(769\) 34719.6i 1.62812i −0.580783 0.814059i \(-0.697253\pi\)
0.580783 0.814059i \(-0.302747\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 2092.57 3624.43i 0.0973666 0.168644i −0.813227 0.581946i \(-0.802291\pi\)
0.910594 + 0.413302i \(0.135625\pi\)
\(774\) 0 0
\(775\) −23186.1 + 13386.5i −1.07467 + 0.620460i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −13870.7 + 8008.24i −0.637957 + 0.368325i
\(780\) 0 0
\(781\) −2430.73 + 4210.15i −0.111368 + 0.192895i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 1329.76i 0.0604600i
\(786\) 0 0
\(787\) −21264.4 12277.0i −0.963144 0.556071i −0.0660047 0.997819i \(-0.521025\pi\)
−0.897139 + 0.441748i \(0.854359\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −13740.4 + 7355.91i −0.617638 + 0.330653i
\(792\) 0 0
\(793\) −13438.9 23276.9i −0.601803 1.04235i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −11823.7 −0.525493 −0.262747 0.964865i \(-0.584628\pi\)
−0.262747 + 0.964865i \(0.584628\pi\)
\(798\) 0 0
\(799\) 38377.3 1.69924
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 3449.32 + 5974.41i 0.1515