Properties

Label 1008.4.bt.d.17.1
Level $1008$
Weight $4$
Character 1008.17
Analytic conductor $59.474$
Analytic rank $0$
Dimension $48$
CM no
Inner twists $4$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 1008 = 2^{4} \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1008.bt (of order \(6\), degree \(2\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(59.4739252858\)
Analytic rank: \(0\)
Dimension: \(48\)
Relative dimension: \(24\) over \(\Q(\zeta_{6})\)
Twist minimal: no (minimal twist has level 504)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 17.1
Character \(\chi\) \(=\) 1008.17
Dual form 1008.4.bt.d.593.1

$q$-expansion

\(f(q)\) \(=\) \(q+(-10.9253 - 18.9231i) q^{5} +(12.1367 + 13.9893i) q^{7} +O(q^{10})\) \(q+(-10.9253 - 18.9231i) q^{5} +(12.1367 + 13.9893i) q^{7} +(45.1734 + 26.0809i) q^{11} -54.9986i q^{13} +(-40.8239 + 70.7091i) q^{17} +(-113.707 + 65.6488i) q^{19} +(38.0795 - 21.9852i) q^{23} +(-176.223 + 305.227i) q^{25} -238.538i q^{29} +(-174.225 - 100.589i) q^{31} +(132.125 - 382.501i) q^{35} +(12.0321 + 20.8402i) q^{37} +102.220 q^{41} -119.740 q^{43} +(20.2851 + 35.1348i) q^{47} +(-48.4020 + 339.568i) q^{49} +(297.988 + 172.043i) q^{53} -1139.76i q^{55} +(-142.286 + 246.447i) q^{59} +(-386.826 + 223.334i) q^{61} +(-1040.75 + 600.874i) q^{65} +(-113.537 + 196.651i) q^{67} +886.964i q^{71} +(6.46845 + 3.73456i) q^{73} +(183.401 + 948.480i) q^{77} +(404.328 + 700.317i) q^{79} +943.208 q^{83} +1784.05 q^{85} +(-575.503 - 996.801i) q^{89} +(769.393 - 667.501i) q^{91} +(2484.56 + 1434.46i) q^{95} +1557.47i q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48q + 24q^{7} + O(q^{10}) \) \( 48q + 24q^{7} - 540q^{19} - 924q^{25} - 648q^{31} - 132q^{37} + 792q^{43} + 672q^{49} + 12q^{67} + 2412q^{73} - 1680q^{79} + 480q^{85} - 1404q^{91} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1008\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(577\) \(757\) \(785\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{6}\right)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −10.9253 18.9231i −0.977185 1.69253i −0.672528 0.740072i \(-0.734791\pi\)
−0.304657 0.952462i \(-0.598542\pi\)
\(6\) 0 0
\(7\) 12.1367 + 13.9893i 0.655319 + 0.755352i
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 45.1734 + 26.0809i 1.23821 + 0.714879i 0.968728 0.248127i \(-0.0798149\pi\)
0.269480 + 0.963006i \(0.413148\pi\)
\(12\) 0 0
\(13\) 54.9986i 1.17338i −0.809813 0.586688i \(-0.800432\pi\)
0.809813 0.586688i \(-0.199568\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −40.8239 + 70.7091i −0.582427 + 1.00879i 0.412764 + 0.910838i \(0.364563\pi\)
−0.995191 + 0.0979551i \(0.968770\pi\)
\(18\) 0 0
\(19\) −113.707 + 65.6488i −1.37296 + 0.792677i −0.991299 0.131627i \(-0.957980\pi\)
−0.381657 + 0.924304i \(0.624646\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 38.0795 21.9852i 0.345223 0.199315i −0.317356 0.948306i \(-0.602795\pi\)
0.662579 + 0.748992i \(0.269462\pi\)
\(24\) 0 0
\(25\) −176.223 + 305.227i −1.40978 + 2.44181i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 238.538i 1.52742i −0.645557 0.763712i \(-0.723375\pi\)
0.645557 0.763712i \(-0.276625\pi\)
\(30\) 0 0
\(31\) −174.225 100.589i −1.00941 0.582783i −0.0983905 0.995148i \(-0.531369\pi\)
−0.911019 + 0.412365i \(0.864703\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 132.125 382.501i 0.638091 1.84727i
\(36\) 0 0
\(37\) 12.0321 + 20.8402i 0.0534613 + 0.0925977i 0.891518 0.452986i \(-0.149641\pi\)
−0.838056 + 0.545584i \(0.816308\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 102.220 0.389369 0.194685 0.980866i \(-0.437632\pi\)
0.194685 + 0.980866i \(0.437632\pi\)
\(42\) 0 0
\(43\) −119.740 −0.424654 −0.212327 0.977199i \(-0.568104\pi\)
−0.212327 + 0.977199i \(0.568104\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 20.2851 + 35.1348i 0.0629550 + 0.109041i 0.895785 0.444488i \(-0.146614\pi\)
−0.832830 + 0.553529i \(0.813281\pi\)
\(48\) 0 0
\(49\) −48.4020 + 339.568i −0.141114 + 0.989993i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 297.988 + 172.043i 0.772298 + 0.445887i 0.833694 0.552227i \(-0.186222\pi\)
−0.0613956 + 0.998114i \(0.519555\pi\)
\(54\) 0 0
\(55\) 1139.76i 2.79428i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −142.286 + 246.447i −0.313968 + 0.543808i −0.979218 0.202813i \(-0.934992\pi\)
0.665250 + 0.746621i \(0.268325\pi\)
\(60\) 0 0
\(61\) −386.826 + 223.334i −0.811934 + 0.468770i −0.847627 0.530593i \(-0.821969\pi\)
0.0356931 + 0.999363i \(0.488636\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −1040.75 + 600.874i −1.98598 + 1.14660i
\(66\) 0 0
\(67\) −113.537 + 196.651i −0.207025 + 0.358578i −0.950776 0.309879i \(-0.899712\pi\)
0.743751 + 0.668457i \(0.233045\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 886.964i 1.48258i 0.671184 + 0.741291i \(0.265786\pi\)
−0.671184 + 0.741291i \(0.734214\pi\)
\(72\) 0 0
\(73\) 6.46845 + 3.73456i 0.0103709 + 0.00598763i 0.505176 0.863016i \(-0.331427\pi\)
−0.494806 + 0.869004i \(0.664761\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 183.401 + 948.480i 0.271435 + 1.40376i
\(78\) 0 0
\(79\) 404.328 + 700.317i 0.575829 + 0.997365i 0.995951 + 0.0898973i \(0.0286539\pi\)
−0.420122 + 0.907468i \(0.638013\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 943.208 1.24736 0.623678 0.781681i \(-0.285638\pi\)
0.623678 + 0.781681i \(0.285638\pi\)
\(84\) 0 0
\(85\) 1784.05 2.27656
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −575.503 996.801i −0.685430 1.18720i −0.973302 0.229530i \(-0.926281\pi\)
0.287872 0.957669i \(-0.407052\pi\)
\(90\) 0 0
\(91\) 769.393 667.501i 0.886312 0.768935i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 2484.56 + 1434.46i 2.68326 + 1.54918i
\(96\) 0 0
\(97\) 1557.47i 1.63028i 0.579264 + 0.815140i \(0.303340\pi\)
−0.579264 + 0.815140i \(0.696660\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −758.342 + 1313.49i −0.747107 + 1.29403i 0.202097 + 0.979366i \(0.435224\pi\)
−0.949204 + 0.314662i \(0.898109\pi\)
\(102\) 0 0
\(103\) −870.518 + 502.594i −0.832763 + 0.480796i −0.854798 0.518961i \(-0.826319\pi\)
0.0220344 + 0.999757i \(0.492986\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 919.111 530.649i 0.830410 0.479437i −0.0235833 0.999722i \(-0.507508\pi\)
0.853993 + 0.520285i \(0.174174\pi\)
\(108\) 0 0
\(109\) 248.409 430.256i 0.218287 0.378083i −0.735998 0.676984i \(-0.763287\pi\)
0.954284 + 0.298901i \(0.0966199\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 975.345i 0.811971i 0.913880 + 0.405985i \(0.133072\pi\)
−0.913880 + 0.405985i \(0.866928\pi\)
\(114\) 0 0
\(115\) −832.057 480.389i −0.674693 0.389534i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −1484.64 + 287.075i −1.14367 + 0.221144i
\(120\) 0 0
\(121\) 694.922 + 1203.64i 0.522105 + 0.904313i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 4969.80 3.55610
\(126\) 0 0
\(127\) −573.808 −0.400923 −0.200461 0.979702i \(-0.564244\pi\)
−0.200461 + 0.979702i \(0.564244\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −105.592 182.890i −0.0704244 0.121979i 0.828663 0.559748i \(-0.189102\pi\)
−0.899087 + 0.437769i \(0.855769\pi\)
\(132\) 0 0
\(133\) −2298.41 793.925i −1.49847 0.517609i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 279.288 + 161.247i 0.174169 + 0.100557i 0.584550 0.811358i \(-0.301271\pi\)
−0.410381 + 0.911914i \(0.634604\pi\)
\(138\) 0 0
\(139\) 491.082i 0.299662i −0.988712 0.149831i \(-0.952127\pi\)
0.988712 0.149831i \(-0.0478730\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 1434.41 2484.47i 0.838822 1.45288i
\(144\) 0 0
\(145\) −4513.87 + 2606.09i −2.58522 + 1.49258i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 184.226 106.363i 0.101291 0.0584805i −0.448499 0.893784i \(-0.648041\pi\)
0.549790 + 0.835303i \(0.314708\pi\)
\(150\) 0 0
\(151\) 99.5733 172.466i 0.0536633 0.0929476i −0.837946 0.545753i \(-0.816244\pi\)
0.891609 + 0.452806i \(0.149577\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 4395.83i 2.27795i
\(156\) 0 0
\(157\) −92.2932 53.2855i −0.0469159 0.0270869i 0.476359 0.879251i \(-0.341956\pi\)
−0.523275 + 0.852164i \(0.675290\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 769.717 + 265.879i 0.376784 + 0.130150i
\(162\) 0 0
\(163\) 1806.95 + 3129.74i 0.868292 + 1.50393i 0.863741 + 0.503937i \(0.168116\pi\)
0.00455163 + 0.999990i \(0.498551\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −2838.38 −1.31521 −0.657606 0.753362i \(-0.728431\pi\)
−0.657606 + 0.753362i \(0.728431\pi\)
\(168\) 0 0
\(169\) −827.851 −0.376810
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −74.3270 128.738i −0.0326646 0.0565767i 0.849231 0.528022i \(-0.177066\pi\)
−0.881896 + 0.471445i \(0.843733\pi\)
\(174\) 0 0
\(175\) −6408.67 + 1239.20i −2.76828 + 0.535285i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −94.4896 54.5536i −0.0394552 0.0227795i 0.480143 0.877190i \(-0.340585\pi\)
−0.519598 + 0.854411i \(0.673918\pi\)
\(180\) 0 0
\(181\) 321.177i 0.131894i −0.997823 0.0659472i \(-0.978993\pi\)
0.997823 0.0659472i \(-0.0210069\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 262.908 455.370i 0.104483 0.180970i
\(186\) 0 0
\(187\) −3688.31 + 2129.45i −1.44233 + 0.832730i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −1841.59 + 1063.24i −0.697658 + 0.402793i −0.806475 0.591269i \(-0.798627\pi\)
0.108816 + 0.994062i \(0.465294\pi\)
\(192\) 0 0
\(193\) 1760.98 3050.11i 0.656779 1.13757i −0.324666 0.945829i \(-0.605252\pi\)
0.981445 0.191746i \(-0.0614149\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 466.612i 0.168755i 0.996434 + 0.0843775i \(0.0268902\pi\)
−0.996434 + 0.0843775i \(0.973110\pi\)
\(198\) 0 0
\(199\) 3708.65 + 2141.19i 1.32110 + 0.762739i 0.983905 0.178695i \(-0.0571874\pi\)
0.337198 + 0.941434i \(0.390521\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 3336.98 2895.05i 1.15374 1.00095i
\(204\) 0 0
\(205\) −1116.78 1934.33i −0.380486 0.659021i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −6848.70 −2.26667
\(210\) 0 0
\(211\) 451.133 0.147191 0.0735954 0.997288i \(-0.476553\pi\)
0.0735954 + 0.997288i \(0.476553\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 1308.19 + 2265.85i 0.414966 + 0.718742i
\(216\) 0 0
\(217\) −707.343 3658.10i −0.221279 1.14437i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 3888.91 + 2245.26i 1.18369 + 0.683405i
\(222\) 0 0
\(223\) 710.949i 0.213492i 0.994286 + 0.106746i \(0.0340431\pi\)
−0.994286 + 0.106746i \(0.965957\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −1762.96 + 3053.54i −0.515470 + 0.892821i 0.484368 + 0.874864i \(0.339049\pi\)
−0.999839 + 0.0179567i \(0.994284\pi\)
\(228\) 0 0
\(229\) −2034.98 + 1174.90i −0.587229 + 0.339037i −0.764001 0.645215i \(-0.776768\pi\)
0.176772 + 0.984252i \(0.443434\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 2648.53 1529.13i 0.744683 0.429943i −0.0790864 0.996868i \(-0.525200\pi\)
0.823770 + 0.566925i \(0.191867\pi\)
\(234\) 0 0
\(235\) 443.240 767.714i 0.123037 0.213107i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 4374.81i 1.18403i −0.805927 0.592015i \(-0.798333\pi\)
0.805927 0.592015i \(-0.201667\pi\)
\(240\) 0 0
\(241\) 1806.54 + 1043.01i 0.482861 + 0.278780i 0.721608 0.692302i \(-0.243403\pi\)
−0.238747 + 0.971082i \(0.576737\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 6954.48 2793.95i 1.81349 0.728567i
\(246\) 0 0
\(247\) 3610.59 + 6253.73i 0.930107 + 1.61099i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 4161.17 1.04642 0.523209 0.852204i \(-0.324735\pi\)
0.523209 + 0.852204i \(0.324735\pi\)
\(252\) 0 0
\(253\) 2293.57 0.569944
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 657.550 + 1138.91i 0.159599 + 0.276433i 0.934724 0.355374i \(-0.115647\pi\)
−0.775125 + 0.631808i \(0.782313\pi\)
\(258\) 0 0
\(259\) −145.511 + 421.253i −0.0349096 + 0.101063i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 2438.23 + 1407.71i 0.571665 + 0.330051i 0.757814 0.652471i \(-0.226267\pi\)
−0.186149 + 0.982521i \(0.559601\pi\)
\(264\) 0 0
\(265\) 7518.48i 1.74285i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 1025.86 1776.83i 0.232519 0.402734i −0.726030 0.687663i \(-0.758637\pi\)
0.958549 + 0.284929i \(0.0919700\pi\)
\(270\) 0 0
\(271\) 1176.68 679.356i 0.263757 0.152280i −0.362290 0.932065i \(-0.618005\pi\)
0.626047 + 0.779785i \(0.284672\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −15921.1 + 9192.07i −3.49120 + 2.01565i
\(276\) 0 0
\(277\) −2683.21 + 4647.46i −0.582017 + 1.00808i 0.413223 + 0.910630i \(0.364403\pi\)
−0.995240 + 0.0974533i \(0.968930\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 6750.22i 1.43304i 0.697567 + 0.716520i \(0.254266\pi\)
−0.697567 + 0.716520i \(0.745734\pi\)
\(282\) 0 0
\(283\) −4812.98 2778.77i −1.01096 0.583678i −0.0994879 0.995039i \(-0.531720\pi\)
−0.911473 + 0.411360i \(0.865054\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 1240.62 + 1429.99i 0.255161 + 0.294111i
\(288\) 0 0
\(289\) −876.688 1518.47i −0.178442 0.309071i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −3205.49 −0.639136 −0.319568 0.947563i \(-0.603538\pi\)
−0.319568 + 0.947563i \(0.603538\pi\)
\(294\) 0 0
\(295\) 6218.06 1.22722
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −1209.16 2094.32i −0.233871 0.405076i
\(300\) 0 0
\(301\) −1453.24 1675.08i −0.278284 0.320763i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 8452.34 + 4879.96i 1.58682 + 0.916150i
\(306\) 0 0
\(307\) 2624.02i 0.487820i 0.969798 + 0.243910i \(0.0784301\pi\)
−0.969798 + 0.243910i \(0.921570\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −378.873 + 656.227i −0.0690801 + 0.119650i −0.898497 0.438980i \(-0.855340\pi\)
0.829417 + 0.558631i \(0.188673\pi\)
\(312\) 0 0
\(313\) 1419.39 819.484i 0.256321 0.147987i −0.366334 0.930483i \(-0.619387\pi\)
0.622655 + 0.782496i \(0.286054\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −784.941 + 453.186i −0.139075 + 0.0802949i −0.567923 0.823082i \(-0.692253\pi\)
0.428848 + 0.903377i \(0.358920\pi\)
\(318\) 0 0
\(319\) 6221.26 10775.5i 1.09192 1.89127i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 10720.2i 1.84671i
\(324\) 0 0
\(325\) 16787.0 + 9692.00i 2.86516 + 1.65420i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −245.318 + 710.195i −0.0411090 + 0.119010i
\(330\) 0 0
\(331\) 2577.90 + 4465.05i 0.428078 + 0.741453i 0.996702 0.0811441i \(-0.0258574\pi\)
−0.568624 + 0.822598i \(0.692524\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 4961.66 0.809208
\(336\) 0 0
\(337\) −7707.19 −1.24581 −0.622904 0.782298i \(-0.714047\pi\)
−0.622904 + 0.782298i \(0.714047\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −5246.88 9087.86i −0.833239 1.44321i
\(342\) 0 0
\(343\) −5337.76 + 3444.11i −0.840268 + 0.542171i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 634.026 + 366.055i 0.0980872 + 0.0566307i 0.548241 0.836320i \(-0.315298\pi\)
−0.450154 + 0.892951i \(0.648631\pi\)
\(348\) 0 0
\(349\) 4863.32i 0.745925i 0.927846 + 0.372962i \(0.121658\pi\)
−0.927846 + 0.372962i \(0.878342\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 994.452 1722.44i 0.149942 0.259706i −0.781264 0.624201i \(-0.785425\pi\)
0.931206 + 0.364494i \(0.118758\pi\)
\(354\) 0 0
\(355\) 16784.1 9690.31i 2.50932 1.44876i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 2023.15 1168.07i 0.297432 0.171722i −0.343857 0.939022i \(-0.611734\pi\)
0.641289 + 0.767300i \(0.278400\pi\)
\(360\) 0 0
\(361\) 5190.02 8989.37i 0.756673 1.31060i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 163.204i 0.0234041i
\(366\) 0 0
\(367\) −3846.05 2220.52i −0.547037 0.315832i 0.200889 0.979614i \(-0.435617\pi\)
−0.747926 + 0.663782i \(0.768950\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 1209.82 + 6256.69i 0.169300 + 0.875555i
\(372\) 0 0
\(373\) 3473.33 + 6015.99i 0.482151 + 0.835110i 0.999790 0.0204893i \(-0.00652240\pi\)
−0.517639 + 0.855599i \(0.673189\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −13119.2 −1.79224
\(378\) 0 0
\(379\) −12964.3 −1.75708 −0.878539 0.477670i \(-0.841481\pi\)
−0.878539 + 0.477670i \(0.841481\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −1355.12 2347.14i −0.180792 0.313141i 0.761358 0.648331i \(-0.224533\pi\)
−0.942151 + 0.335190i \(0.891199\pi\)
\(384\) 0 0
\(385\) 15944.5 13832.9i 2.11066 1.83114i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −9782.93 5648.18i −1.27510 0.736180i −0.299158 0.954204i \(-0.596706\pi\)
−0.975944 + 0.218023i \(0.930039\pi\)
\(390\) 0 0
\(391\) 3590.09i 0.464345i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 8834.78 15302.3i 1.12538 1.94922i
\(396\) 0 0
\(397\) −12029.8 + 6945.42i −1.52080 + 0.878036i −0.521105 + 0.853493i \(0.674480\pi\)
−0.999699 + 0.0245435i \(0.992187\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −5046.46 + 2913.58i −0.628450 + 0.362836i −0.780151 0.625591i \(-0.784858\pi\)
0.151702 + 0.988426i \(0.451525\pi\)
\(402\) 0 0
\(403\) −5532.24 + 9582.12i −0.683823 + 1.18442i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 1255.23i 0.152874i
\(408\) 0 0
\(409\) −9495.40 5482.17i −1.14796 0.662777i −0.199574 0.979883i \(-0.563956\pi\)
−0.948390 + 0.317106i \(0.897289\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −5174.51 + 1000.56i −0.616516 + 0.119212i
\(414\) 0 0
\(415\) −10304.8 17848.4i −1.21890 2.11119i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 4657.67 0.543060 0.271530 0.962430i \(-0.412470\pi\)
0.271530 + 0.962430i \(0.412470\pi\)
\(420\) 0 0
\(421\) −4001.54 −0.463238 −0.231619 0.972807i \(-0.574402\pi\)
−0.231619 + 0.972807i \(0.574402\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −14388.2 24921.1i −1.64219 2.84435i
\(426\) 0 0
\(427\) −7819.07 2700.90i −0.886162 0.306102i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −6306.30 3640.95i −0.704789 0.406910i 0.104340 0.994542i \(-0.466727\pi\)
−0.809128 + 0.587632i \(0.800060\pi\)
\(432\) 0 0
\(433\) 3622.55i 0.402052i 0.979586 + 0.201026i \(0.0644276\pi\)
−0.979586 + 0.201026i \(0.935572\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −2886.60 + 4999.75i −0.315984 + 0.547300i
\(438\) 0 0
\(439\) 4907.92 2833.59i 0.533582 0.308064i −0.208892 0.977939i \(-0.566986\pi\)
0.742474 + 0.669875i \(0.233652\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −4348.34 + 2510.52i −0.466357 + 0.269251i −0.714713 0.699417i \(-0.753443\pi\)
0.248357 + 0.968669i \(0.420110\pi\)
\(444\) 0 0
\(445\) −12575.0 + 21780.6i −1.33958 + 2.32023i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 6341.85i 0.666572i −0.942826 0.333286i \(-0.891843\pi\)
0.942826 0.333286i \(-0.108157\pi\)
\(450\) 0 0
\(451\) 4617.64 + 2666.00i 0.482120 + 0.278352i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −21037.0 7266.69i −2.16754 0.748720i
\(456\) 0 0
\(457\) −6306.35 10922.9i −0.645511 1.11806i −0.984183 0.177153i \(-0.943311\pi\)
0.338672 0.940904i \(-0.390022\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 1495.67 0.151107 0.0755536 0.997142i \(-0.475928\pi\)
0.0755536 + 0.997142i \(0.475928\pi\)
\(462\) 0 0
\(463\) 5614.86 0.563595 0.281798 0.959474i \(-0.409069\pi\)
0.281798 + 0.959474i \(0.409069\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −4405.48 7630.52i −0.436534 0.756100i 0.560885 0.827894i \(-0.310461\pi\)
−0.997419 + 0.0717941i \(0.977128\pi\)
\(468\) 0 0
\(469\) −4128.97 + 798.392i −0.406521 + 0.0786063i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −5409.04 3122.91i −0.525810 0.303577i
\(474\) 0 0
\(475\) 46275.2i 4.47000i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 6722.03 11642.9i 0.641206 1.11060i −0.343958 0.938985i \(-0.611768\pi\)
0.985164 0.171616i \(-0.0548987\pi\)
\(480\) 0 0
\(481\) 1146.19 661.750i 0.108652 0.0627302i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 29472.2 17015.8i 2.75930 1.59308i
\(486\) 0 0
\(487\) −144.328 + 249.984i −0.0134295 + 0.0232605i −0.872662 0.488325i \(-0.837608\pi\)
0.859233 + 0.511585i \(0.170942\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 17459.7i 1.60478i −0.596803 0.802388i \(-0.703563\pi\)
0.596803 0.802388i \(-0.296437\pi\)
\(492\) 0 0
\(493\) 16866.8 + 9738.04i 1.54086 + 0.889613i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −12408.0 + 10764.8i −1.11987 + 0.971564i
\(498\) 0 0
\(499\) 9639.96 + 16696.9i 0.864817 + 1.49791i 0.867229 + 0.497910i \(0.165899\pi\)
−0.00241142 + 0.999997i \(0.500768\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −20846.3 −1.84789 −0.923947 0.382520i \(-0.875056\pi\)
−0.923947 + 0.382520i \(0.875056\pi\)
\(504\) 0 0
\(505\) 33140.3 2.92025
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 8277.31 + 14336.7i 0.720796 + 1.24846i 0.960681 + 0.277654i \(0.0895570\pi\)
−0.239885 + 0.970801i \(0.577110\pi\)
\(510\) 0 0
\(511\) 26.2616 + 135.814i 0.00227347 + 0.0117575i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 19021.3 + 10981.9i 1.62753 + 0.939654i
\(516\) 0 0
\(517\) 2116.21i 0.180021i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −8720.17 + 15103.8i −0.733278 + 1.27007i 0.222197 + 0.975002i \(0.428677\pi\)
−0.955475 + 0.295073i \(0.904656\pi\)
\(522\) 0 0
\(523\) 19059.3 11003.9i 1.59351 0.920014i 0.600813 0.799390i \(-0.294844\pi\)
0.992698 0.120625i \(-0.0384897\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 14225.1 8212.85i 1.17581 0.678857i
\(528\) 0 0
\(529\) −5116.80 + 8862.56i −0.420547 + 0.728409i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 5621.98i 0.456876i
\(534\) 0 0
\(535\) −20083.1 11595.0i −1.62293 0.936998i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −11042.7 + 14077.1i −0.882454 + 1.12494i
\(540\) 0 0
\(541\) −10144.2 17570.4i −0.806165 1.39632i −0.915502 0.402314i \(-0.868206\pi\)
0.109336 0.994005i \(-0.465127\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −10855.7 −0.853225
\(546\) 0 0
\(547\) 3726.23 0.291265 0.145633 0.989339i \(-0.453478\pi\)
0.145633 + 0.989339i \(0.453478\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 15659.7 + 27123.4i 1.21075 + 2.09709i
\(552\) 0 0
\(553\) −4889.75 + 14155.8i −0.376010 + 1.08855i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −2400.90 1386.16i −0.182638 0.105446i 0.405894 0.913920i \(-0.366960\pi\)
−0.588531 + 0.808474i \(0.700294\pi\)
\(558\) 0 0
\(559\) 6585.52i 0.498279i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 6501.90 11261.6i 0.486718 0.843021i −0.513165 0.858290i \(-0.671527\pi\)
0.999883 + 0.0152692i \(0.00486053\pi\)
\(564\) 0 0
\(565\) 18456.5 10655.9i 1.37429 0.793446i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −9698.81 + 5599.61i −0.714579 + 0.412562i −0.812754 0.582607i \(-0.802033\pi\)
0.0981755 + 0.995169i \(0.468699\pi\)
\(570\) 0 0
\(571\) −7242.52 + 12544.4i −0.530805 + 0.919382i 0.468548 + 0.883438i \(0.344777\pi\)
−0.999354 + 0.0359441i \(0.988556\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 15497.2i 1.12396i
\(576\) 0 0
\(577\) 10364.2 + 5983.80i 0.747780 + 0.431731i 0.824891 0.565291i \(-0.191236\pi\)
−0.0771109 + 0.997023i \(0.524570\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 11447.4 + 13194.8i 0.817417 + 0.942193i
\(582\) 0 0
\(583\) 8974.08 + 15543.6i 0.637510 + 1.10420i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −12202.6 −0.858017 −0.429009 0.903300i \(-0.641137\pi\)
−0.429009 + 0.903300i \(0.641137\pi\)
\(588\) 0 0
\(589\) 26414.1 1.84783
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 5152.12 + 8923.73i 0.356783 + 0.617966i 0.987421 0.158111i \(-0.0505403\pi\)
−0.630639 + 0.776077i \(0.717207\pi\)
\(594\) 0 0
\(595\) 21652.4 + 24957.6i 1.49187 + 1.71960i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 1846.43 + 1066.04i 0.125949 + 0.0727165i 0.561651 0.827374i \(-0.310167\pi\)
−0.435702 + 0.900091i \(0.643500\pi\)
\(600\) 0 0
\(601\) 3844.71i 0.260947i 0.991452 + 0.130473i \(0.0416497\pi\)
−0.991452 + 0.130473i \(0.958350\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 15184.4 26300.2i 1.02039 1.76736i
\(606\) 0 0
\(607\) 5692.75 3286.71i 0.380662 0.219775i −0.297444 0.954739i \(-0.596134\pi\)
0.678106 + 0.734964i \(0.262801\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 1932.37 1115.65i 0.127946 0.0738699i
\(612\) 0 0
\(613\) 4464.58 7732.88i 0.294164 0.509508i −0.680626 0.732631i \(-0.738292\pi\)
0.974790 + 0.223124i \(0.0716253\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 20869.2i 1.36169i −0.732429 0.680843i \(-0.761613\pi\)
0.732429 0.680843i \(-0.238387\pi\)
\(618\) 0 0
\(619\) 11798.1 + 6811.63i 0.766083 + 0.442298i 0.831475 0.555562i \(-0.187497\pi\)
−0.0653928 + 0.997860i \(0.520830\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 6959.86 20148.8i 0.447578 1.29573i
\(624\) 0 0
\(625\) −32268.5 55890.7i −2.06518 3.57700i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −1964.79 −0.124549
\(630\) 0 0
\(631\) 20380.3 1.28578 0.642890 0.765959i \(-0.277735\pi\)
0.642890 + 0.765959i \(0.277735\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 6269.00 + 10858.2i 0.391776 + 0.678576i
\(636\) 0 0
\(637\) 18675.8 + 2662.04i 1.16163 + 0.165579i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −22692.6 13101.6i −1.39829 0.807302i −0.404074 0.914726i \(-0.632406\pi\)
−0.994213 + 0.107425i \(0.965740\pi\)
\(642\) 0 0
\(643\) 21463.4i 1.31639i −0.752850 0.658193i \(-0.771321\pi\)
0.752850 0.658193i \(-0.228679\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −782.398 + 1355.15i −0.0475414 + 0.0823440i −0.888817 0.458263i \(-0.848472\pi\)
0.841275 + 0.540607i \(0.181805\pi\)
\(648\) 0 0
\(649\) −12855.1 + 7421.90i −0.777515 + 0.448898i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 2832.40 1635.29i 0.169740 0.0979996i −0.412723 0.910857i \(-0.635422\pi\)
0.582463 + 0.812857i \(0.302089\pi\)
\(654\) 0 0
\(655\) −2307.23 + 3996.25i −0.137635 + 0.238391i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 3271.53i 0.193385i 0.995314 + 0.0966924i \(0.0308263\pi\)
−0.995314 + 0.0966924i \(0.969174\pi\)
\(660\) 0 0
\(661\) −8150.02 4705.41i −0.479575 0.276883i 0.240665 0.970608i \(-0.422635\pi\)
−0.720239 + 0.693726i \(0.755968\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 10087.2 + 52166.8i 0.588216 + 3.04202i
\(666\) 0 0
\(667\) −5244.30 9083.40i −0.304438 0.527302i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −23299.0 −1.34046
\(672\) 0 0
\(673\) −15000.7 −0.859187 −0.429594 0.903022i \(-0.641343\pi\)
−0.429594 + 0.903022i \(0.641343\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −10894.9 18870.5i −0.618501 1.07127i −0.989759 0.142745i \(-0.954407\pi\)
0.371259 0.928529i \(-0.378926\pi\)
\(678\) 0 0
\(679\) −21787.9 + 18902.5i −1.23144 + 1.06835i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −11577.3 6684.18i −0.648601 0.374470i 0.139319 0.990248i \(-0.455509\pi\)
−0.787920 + 0.615778i \(0.788842\pi\)
\(684\) 0 0
\(685\) 7046.65i 0.393049i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 9462.16 16388.9i 0.523192 0.906196i
\(690\) 0 0
\(691\) −2603.71 + 1503.26i −0.143343 + 0.0827591i −0.569956 0.821675i \(-0.693040\pi\)
0.426613 + 0.904434i \(0.359707\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −9292.81 + 5365.20i −0.507189 + 0.292826i
\(696\) 0 0
\(697\) −4173.04 + 7227.92i −0.226779 + 0.392793i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 5449.86i 0.293635i −0.989164 0.146818i \(-0.953097\pi\)
0.989164 0.146818i \(-0.0469030\pi\)
\(702\) 0 0
\(703\) −2736.27 1579.79i −0.146800 0.0847551i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −27578.5 + 5332.68i −1.46704 + 0.283672i
\(708\) 0 0
\(709\) −7610.90 13182.5i −0.403150 0.698277i 0.590954 0.806705i \(-0.298751\pi\)
−0.994104 + 0.108429i \(0.965418\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −8845.86 −0.464628
\(714\) 0 0
\(715\) −62685.3 −3.27874
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −1575.16 2728.27i −0.0817020 0.141512i 0.822279 0.569084i \(-0.192702\pi\)
−0.903981 + 0.427572i \(0.859369\pi\)
\(720\) 0 0
\(721\) −17596.1 6078.13i −0.908896 0.313955i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 72808.0 + 42035.7i 3.72968 + 2.15333i
\(726\) 0 0
\(727\) 30799.4i 1.57123i 0.618713 + 0.785617i \(0.287655\pi\)
−0.618713 + 0.785617i \(0.712345\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 4888.24 8466.69i 0.247330 0.428388i
\(732\) 0 0
\(733\) 7439.96 4295.46i 0.374899 0.216448i −0.300697 0.953720i \(-0.597219\pi\)
0.675597 + 0.737271i \(0.263886\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −10257.7 + 5922.26i −0.512681 + 0.295996i
\(738\) 0 0
\(739\) −15874.5 + 27495.4i −0.790192 + 1.36865i 0.135655 + 0.990756i \(0.456686\pi\)
−0.925847 + 0.377897i \(0.876647\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 15722.6i 0.776323i 0.921591 + 0.388161i \(0.126890\pi\)
−0.921591 + 0.388161i \(0.873110\pi\)
\(744\) 0 0
\(745\) −4025.44 2324.09i −0.197961 0.114293i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 18578.4 + 6417.42i 0.906327 + 0.313067i
\(750\) 0 0
\(751\) −15181.8 26295.7i −0.737674 1.27769i −0.953540 0.301265i \(-0.902591\pi\)
0.215867 0.976423i \(-0.430742\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −4351.46 −0.209756
\(756\) 0 0
\(757\) −28207.3 −1.35431 −0.677155 0.735841i \(-0.736787\pi\)
−0.677155 + 0.735841i \(0.736787\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −13564.9 23495.1i −0.646160 1.11918i −0.984032 0.177990i \(-0.943041\pi\)
0.337873 0.941192i \(-0.390293\pi\)
\(762\) 0 0
\(763\) 9033.85 1746.82i 0.428633 0.0828821i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 13554.3 + 7825.56i 0.638091 + 0.368402i
\(768\) 0 0
\(769\) 8577.68i 0.402235i 0.979567 + 0.201118i \(0.0644574\pi\)
−0.979567 + 0.201118i \(0.935543\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −700.177 + 1212.74i −0.0325790 + 0.0564286i −0.881855 0.471520i \(-0.843705\pi\)
0.849276 + 0.527949i \(0.177039\pi\)
\(774\) 0 0
\(775\) 61404.7 35452.0i 2.84609 1.64319i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −11623.2 + 6710.64i −0.534587 + 0.308644i
\(780\) 0 0
\(781\) −23132.8 + 40067.2i −1.05987 + 1.83574i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 2328.63i 0.105876i
\(786\) 0 0
\(787\) 3002.03 + 1733.22i 0.135973 + 0.0785041i 0.566443 0.824101i \(-0.308319\pi\)
−0.430470 + 0.902605i \(0.641652\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −13644.4 + 11837.4i −0.613324 + 0.532100i
\(792\) 0 0
\(793\) 12283.1 + 21274.9i 0.550043 + 0.952703i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 37737.6 1.67721 0.838604 0.544741i \(-0.183372\pi\)
0.838604 + 0.544741i \(0.183372\pi\)
\(798\) 0 0
\(799\) −3312.47 −0.146667
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 194.801 + 337.405i 0.00856087 +