Properties

Label 1008.4.bt.a.17.7
Level $1008$
Weight $4$
Character 1008.17
Analytic conductor $59.474$
Analytic rank $0$
Dimension $16$
CM no
Inner twists $4$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 1008 = 2^{4} \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1008.bt (of order \(6\), degree \(2\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(59.4739252858\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Defining polynomial: \(x^{16} - 48 x^{14} + 1647 x^{12} - 27620 x^{10} + 336765 x^{8} - 1200006 x^{6} + 3242464 x^{4} - 1762200 x^{2} + 810000\)
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{10}\cdot 3^{8} \)
Twist minimal: no (minimal twist has level 63)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 17.7
Root \(-4.21355 - 2.43270i\) of defining polynomial
Character \(\chi\) \(=\) 1008.17
Dual form 1008.4.bt.a.593.7

$q$-expansion

\(f(q)\) \(=\) \(q+(6.38217 + 11.0542i) q^{5} +(-2.53897 - 18.3454i) q^{7} +O(q^{10})\) \(q+(6.38217 + 11.0542i) q^{5} +(-2.53897 - 18.3454i) q^{7} +(46.8633 + 27.0565i) q^{11} +8.85528i q^{13} +(-34.4587 + 59.6841i) q^{17} +(141.898 - 81.9246i) q^{19} +(-81.3807 + 46.9852i) q^{23} +(-18.9642 + 32.8469i) q^{25} +119.620i q^{29} +(-85.6311 - 49.4391i) q^{31} +(186.590 - 145.150i) q^{35} +(-47.0949 - 81.5708i) q^{37} +259.347 q^{41} -5.01418 q^{43} +(-28.6747 - 49.6660i) q^{47} +(-330.107 + 93.1568i) q^{49} +(407.058 + 235.015i) q^{53} +690.718i q^{55} +(112.979 - 195.685i) q^{59} +(370.650 - 213.995i) q^{61} +(-97.8884 + 56.5159i) q^{65} +(81.9267 - 141.901i) q^{67} -79.8529i q^{71} +(666.447 + 384.774i) q^{73} +(377.379 - 928.422i) q^{77} +(267.408 + 463.165i) q^{79} -438.520 q^{83} -879.684 q^{85} +(12.8242 + 22.2121i) q^{89} +(162.454 - 22.4833i) q^{91} +(1811.23 + 1045.71i) q^{95} +1381.00i q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16q - 56q^{7} + O(q^{10}) \) \( 16q - 56q^{7} + 612q^{19} - 20q^{25} - 1128q^{31} - 1196q^{37} - 328q^{43} + 784q^{49} - 1632q^{61} - 308q^{67} + 4068q^{73} + 2176q^{79} - 4608q^{85} - 924q^{91} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1008\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(577\) \(757\) \(785\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{6}\right)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 6.38217 + 11.0542i 0.570839 + 0.988721i 0.996480 + 0.0838295i \(0.0267151\pi\)
−0.425642 + 0.904892i \(0.639952\pi\)
\(6\) 0 0
\(7\) −2.53897 18.3454i −0.137091 0.990558i
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 46.8633 + 27.0565i 1.28453 + 0.741623i 0.977673 0.210133i \(-0.0673897\pi\)
0.306856 + 0.951756i \(0.400723\pi\)
\(12\) 0 0
\(13\) 8.85528i 0.188924i 0.995528 + 0.0944620i \(0.0301131\pi\)
−0.995528 + 0.0944620i \(0.969887\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −34.4587 + 59.6841i −0.491615 + 0.851502i −0.999953 0.00965543i \(-0.996927\pi\)
0.508339 + 0.861157i \(0.330260\pi\)
\(18\) 0 0
\(19\) 141.898 81.9246i 1.71334 0.989199i 0.783383 0.621540i \(-0.213492\pi\)
0.929960 0.367660i \(-0.119841\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −81.3807 + 46.9852i −0.737785 + 0.425960i −0.821263 0.570549i \(-0.806730\pi\)
0.0834783 + 0.996510i \(0.473397\pi\)
\(24\) 0 0
\(25\) −18.9642 + 32.8469i −0.151713 + 0.262775i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 119.620i 0.765961i 0.923756 + 0.382981i \(0.125102\pi\)
−0.923756 + 0.382981i \(0.874898\pi\)
\(30\) 0 0
\(31\) −85.6311 49.4391i −0.496123 0.286437i 0.230988 0.972957i \(-0.425804\pi\)
−0.727111 + 0.686520i \(0.759137\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 186.590 145.150i 0.901129 0.700994i
\(36\) 0 0
\(37\) −47.0949 81.5708i −0.209253 0.362437i 0.742227 0.670149i \(-0.233770\pi\)
−0.951479 + 0.307712i \(0.900437\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 259.347 0.987883 0.493941 0.869495i \(-0.335556\pi\)
0.493941 + 0.869495i \(0.335556\pi\)
\(42\) 0 0
\(43\) −5.01418 −0.0177827 −0.00889133 0.999960i \(-0.502830\pi\)
−0.00889133 + 0.999960i \(0.502830\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −28.6747 49.6660i −0.0889921 0.154139i 0.818093 0.575086i \(-0.195031\pi\)
−0.907085 + 0.420947i \(0.861698\pi\)
\(48\) 0 0
\(49\) −330.107 + 93.1568i −0.962412 + 0.271594i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 407.058 + 235.015i 1.05497 + 0.609090i 0.924038 0.382301i \(-0.124868\pi\)
0.130937 + 0.991391i \(0.458202\pi\)
\(54\) 0 0
\(55\) 690.718i 1.69339i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 112.979 195.685i 0.249299 0.431798i −0.714033 0.700112i \(-0.753133\pi\)
0.963331 + 0.268314i \(0.0864666\pi\)
\(60\) 0 0
\(61\) 370.650 213.995i 0.777982 0.449168i −0.0577325 0.998332i \(-0.518387\pi\)
0.835715 + 0.549164i \(0.185054\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −97.8884 + 56.5159i −0.186793 + 0.107845i
\(66\) 0 0
\(67\) 81.9267 141.901i 0.149387 0.258746i −0.781614 0.623762i \(-0.785603\pi\)
0.931001 + 0.365016i \(0.118937\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 79.8529i 0.133476i −0.997771 0.0667380i \(-0.978741\pi\)
0.997771 0.0667380i \(-0.0212592\pi\)
\(72\) 0 0
\(73\) 666.447 + 384.774i 1.06852 + 0.616909i 0.927776 0.373138i \(-0.121718\pi\)
0.140741 + 0.990046i \(0.455051\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 377.379 928.422i 0.558523 1.37407i
\(78\) 0 0
\(79\) 267.408 + 463.165i 0.380833 + 0.659622i 0.991182 0.132511i \(-0.0423040\pi\)
−0.610349 + 0.792133i \(0.708971\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −438.520 −0.579926 −0.289963 0.957038i \(-0.593643\pi\)
−0.289963 + 0.957038i \(0.593643\pi\)
\(84\) 0 0
\(85\) −879.684 −1.12253
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 12.8242 + 22.2121i 0.0152737 + 0.0264548i 0.873561 0.486714i \(-0.161805\pi\)
−0.858288 + 0.513169i \(0.828471\pi\)
\(90\) 0 0
\(91\) 162.454 22.4833i 0.187140 0.0258999i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 1811.23 + 1045.71i 1.95608 + 1.12935i
\(96\) 0 0
\(97\) 1381.00i 1.44555i 0.691081 + 0.722777i \(0.257135\pi\)
−0.691081 + 0.722777i \(0.742865\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −356.808 + 618.009i −0.351522 + 0.608854i −0.986516 0.163663i \(-0.947669\pi\)
0.634994 + 0.772517i \(0.281002\pi\)
\(102\) 0 0
\(103\) −1552.42 + 896.288i −1.48509 + 0.857416i −0.999856 0.0169695i \(-0.994598\pi\)
−0.485232 + 0.874385i \(0.661265\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 19.5366 11.2794i 0.0176511 0.0101909i −0.491148 0.871076i \(-0.663423\pi\)
0.508800 + 0.860885i \(0.330089\pi\)
\(108\) 0 0
\(109\) −476.210 + 824.820i −0.418465 + 0.724802i −0.995785 0.0917154i \(-0.970765\pi\)
0.577320 + 0.816518i \(0.304098\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 120.145i 0.100020i −0.998749 0.0500102i \(-0.984075\pi\)
0.998749 0.0500102i \(-0.0159254\pi\)
\(114\) 0 0
\(115\) −1038.77 599.735i −0.842312 0.486309i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 1182.42 + 480.622i 0.910859 + 0.370240i
\(120\) 0 0
\(121\) 798.612 + 1383.24i 0.600009 + 1.03925i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 1111.41 0.795262
\(126\) 0 0
\(127\) −884.302 −0.617867 −0.308934 0.951084i \(-0.599972\pi\)
−0.308934 + 0.951084i \(0.599972\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 803.439 + 1391.60i 0.535853 + 0.928125i 0.999122 + 0.0419070i \(0.0133433\pi\)
−0.463268 + 0.886218i \(0.653323\pi\)
\(132\) 0 0
\(133\) −1863.21 2395.16i −1.21474 1.56156i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −615.297 355.242i −0.383711 0.221535i 0.295721 0.955274i \(-0.404440\pi\)
−0.679431 + 0.733739i \(0.737773\pi\)
\(138\) 0 0
\(139\) 1531.91i 0.934782i 0.884051 + 0.467391i \(0.154806\pi\)
−0.884051 + 0.467391i \(0.845194\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −239.593 + 414.987i −0.140110 + 0.242678i
\(144\) 0 0
\(145\) −1322.31 + 763.435i −0.757322 + 0.437240i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 2079.39 1200.54i 1.14329 0.660079i 0.196046 0.980595i \(-0.437190\pi\)
0.947243 + 0.320516i \(0.103856\pi\)
\(150\) 0 0
\(151\) 1233.99 2137.33i 0.665035 1.15188i −0.314240 0.949343i \(-0.601750\pi\)
0.979276 0.202532i \(-0.0649169\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 1262.12i 0.654036i
\(156\) 0 0
\(157\) 2109.74 + 1218.06i 1.07246 + 0.619184i 0.928852 0.370451i \(-0.120797\pi\)
0.143606 + 0.989635i \(0.454130\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 1068.59 + 1373.67i 0.523083 + 0.672424i
\(162\) 0 0
\(163\) 1638.50 + 2837.97i 0.787347 + 1.36372i 0.927587 + 0.373607i \(0.121879\pi\)
−0.140240 + 0.990118i \(0.544787\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 365.585 0.169400 0.0847000 0.996406i \(-0.473007\pi\)
0.0847000 + 0.996406i \(0.473007\pi\)
\(168\) 0 0
\(169\) 2118.58 0.964308
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 1046.47 + 1812.53i 0.459892 + 0.796557i 0.998955 0.0457089i \(-0.0145547\pi\)
−0.539062 + 0.842266i \(0.681221\pi\)
\(174\) 0 0
\(175\) 650.739 + 264.508i 0.281093 + 0.114257i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 1524.01 + 879.890i 0.636370 + 0.367408i 0.783215 0.621751i \(-0.213578\pi\)
−0.146845 + 0.989160i \(0.546912\pi\)
\(180\) 0 0
\(181\) 3197.54i 1.31310i −0.754282 0.656551i \(-0.772015\pi\)
0.754282 0.656551i \(-0.227985\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 601.135 1041.20i 0.238899 0.413786i
\(186\) 0 0
\(187\) −3229.69 + 1864.66i −1.26299 + 0.729186i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 475.772 274.687i 0.180239 0.104061i −0.407166 0.913354i \(-0.633483\pi\)
0.587405 + 0.809293i \(0.300150\pi\)
\(192\) 0 0
\(193\) 352.238 610.094i 0.131371 0.227542i −0.792834 0.609437i \(-0.791395\pi\)
0.924205 + 0.381896i \(0.124729\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 5317.81i 1.92324i 0.274384 + 0.961620i \(0.411526\pi\)
−0.274384 + 0.961620i \(0.588474\pi\)
\(198\) 0 0
\(199\) 2155.80 + 1244.65i 0.767942 + 0.443371i 0.832140 0.554566i \(-0.187116\pi\)
−0.0641982 + 0.997937i \(0.520449\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 2194.48 303.711i 0.758729 0.105007i
\(204\) 0 0
\(205\) 1655.20 + 2866.88i 0.563922 + 0.976741i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 8866.38 2.93445
\(210\) 0 0
\(211\) 3454.31 1.12704 0.563519 0.826103i \(-0.309447\pi\)
0.563519 + 0.826103i \(0.309447\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −32.0013 55.4279i −0.0101510 0.0175821i
\(216\) 0 0
\(217\) −689.566 + 1696.46i −0.215718 + 0.530706i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −528.520 305.141i −0.160869 0.0928778i
\(222\) 0 0
\(223\) 3896.38i 1.17005i −0.811016 0.585024i \(-0.801085\pi\)
0.811016 0.585024i \(-0.198915\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 302.747 524.374i 0.0885201 0.153321i −0.818366 0.574698i \(-0.805120\pi\)
0.906886 + 0.421377i \(0.138453\pi\)
\(228\) 0 0
\(229\) −1912.98 + 1104.46i −0.552023 + 0.318711i −0.749938 0.661509i \(-0.769917\pi\)
0.197914 + 0.980219i \(0.436583\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −2065.77 + 1192.67i −0.580829 + 0.335342i −0.761463 0.648209i \(-0.775518\pi\)
0.180634 + 0.983550i \(0.442185\pi\)
\(234\) 0 0
\(235\) 366.013 633.953i 0.101600 0.175977i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 3017.95i 0.816798i −0.912803 0.408399i \(-0.866087\pi\)
0.912803 0.408399i \(-0.133913\pi\)
\(240\) 0 0
\(241\) −2178.48 1257.75i −0.582275 0.336176i 0.179762 0.983710i \(-0.442467\pi\)
−0.762037 + 0.647534i \(0.775800\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −3136.58 3054.54i −0.817913 0.796521i
\(246\) 0 0
\(247\) 725.465 + 1256.54i 0.186883 + 0.323692i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 1306.11 0.328451 0.164226 0.986423i \(-0.447488\pi\)
0.164226 + 0.986423i \(0.447488\pi\)
\(252\) 0 0
\(253\) −5085.03 −1.26361
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −3735.91 6470.79i −0.906770 1.57057i −0.818524 0.574473i \(-0.805207\pi\)
−0.0882460 0.996099i \(-0.528126\pi\)
\(258\) 0 0
\(259\) −1376.88 + 1071.08i −0.330328 + 0.256964i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −1330.77 768.318i −0.312010 0.180139i 0.335816 0.941928i \(-0.390988\pi\)
−0.647825 + 0.761789i \(0.724321\pi\)
\(264\) 0 0
\(265\) 5999.62i 1.39077i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −1958.09 + 3391.52i −0.443818 + 0.768715i −0.997969 0.0637010i \(-0.979710\pi\)
0.554151 + 0.832416i \(0.313043\pi\)
\(270\) 0 0
\(271\) −3117.42 + 1799.84i −0.698780 + 0.403441i −0.806893 0.590698i \(-0.798853\pi\)
0.108113 + 0.994139i \(0.465519\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −1777.45 + 1026.21i −0.389760 + 0.225028i
\(276\) 0 0
\(277\) −142.040 + 246.021i −0.0308100 + 0.0533645i −0.881019 0.473080i \(-0.843142\pi\)
0.850209 + 0.526445i \(0.176475\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 321.256i 0.0682011i −0.999418 0.0341006i \(-0.989143\pi\)
0.999418 0.0341006i \(-0.0108566\pi\)
\(282\) 0 0
\(283\) −5891.40 3401.40i −1.23748 0.714460i −0.268903 0.963167i \(-0.586661\pi\)
−0.968579 + 0.248707i \(0.919994\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −658.474 4757.82i −0.135430 0.978556i
\(288\) 0 0
\(289\) 81.7017 + 141.511i 0.0166297 + 0.0288035i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −3180.05 −0.634063 −0.317031 0.948415i \(-0.602686\pi\)
−0.317031 + 0.948415i \(0.602686\pi\)
\(294\) 0 0
\(295\) 2884.20 0.569237
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −416.067 720.649i −0.0804741 0.139385i
\(300\) 0 0
\(301\) 12.7308 + 91.9871i 0.00243785 + 0.0176148i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 4731.11 + 2731.51i 0.888204 + 0.512805i
\(306\) 0 0
\(307\) 2976.39i 0.553328i −0.960967 0.276664i \(-0.910771\pi\)
0.960967 0.276664i \(-0.0892289\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −2340.89 + 4054.55i −0.426817 + 0.739268i −0.996588 0.0825352i \(-0.973698\pi\)
0.569772 + 0.821803i \(0.307032\pi\)
\(312\) 0 0
\(313\) −850.477 + 491.023i −0.153584 + 0.0886718i −0.574823 0.818278i \(-0.694929\pi\)
0.421238 + 0.906950i \(0.361596\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −4269.80 + 2465.17i −0.756516 + 0.436775i −0.828044 0.560664i \(-0.810546\pi\)
0.0715272 + 0.997439i \(0.477213\pi\)
\(318\) 0 0
\(319\) −3236.50 + 5605.79i −0.568055 + 0.983899i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 11292.0i 1.94522i
\(324\) 0 0
\(325\) −290.868 167.933i −0.0496445 0.0286623i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −838.338 + 652.148i −0.140483 + 0.109283i
\(330\) 0 0
\(331\) −2017.25 3493.99i −0.334980 0.580202i 0.648501 0.761214i \(-0.275396\pi\)
−0.983481 + 0.181012i \(0.942063\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 2091.48 0.341104
\(336\) 0 0
\(337\) 2771.62 0.448011 0.224006 0.974588i \(-0.428087\pi\)
0.224006 + 0.974588i \(0.428087\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −2675.30 4633.76i −0.424856 0.735872i
\(342\) 0 0
\(343\) 2547.13 + 5819.43i 0.400968 + 0.916092i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −3743.15 2161.11i −0.579085 0.334335i 0.181685 0.983357i \(-0.441845\pi\)
−0.760770 + 0.649022i \(0.775178\pi\)
\(348\) 0 0
\(349\) 1331.65i 0.204245i −0.994772 0.102122i \(-0.967437\pi\)
0.994772 0.102122i \(-0.0325634\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 5674.26 9828.10i 0.855553 1.48186i −0.0205782 0.999788i \(-0.506551\pi\)
0.876131 0.482073i \(-0.160116\pi\)
\(354\) 0 0
\(355\) 882.713 509.634i 0.131970 0.0761932i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −7247.49 + 4184.34i −1.06548 + 0.615156i −0.926943 0.375201i \(-0.877574\pi\)
−0.138538 + 0.990357i \(0.544240\pi\)
\(360\) 0 0
\(361\) 9993.77 17309.7i 1.45703 2.52365i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 9822.76i 1.40862i
\(366\) 0 0
\(367\) −2351.31 1357.53i −0.334434 0.193086i 0.323374 0.946271i \(-0.395183\pi\)
−0.657808 + 0.753186i \(0.728516\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 3277.93 8064.33i 0.458711 1.12851i
\(372\) 0 0
\(373\) −3048.56 5280.25i −0.423186 0.732979i 0.573063 0.819511i \(-0.305755\pi\)
−0.996249 + 0.0865320i \(0.972422\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −1059.27 −0.144708
\(378\) 0 0
\(379\) 9922.24 1.34478 0.672389 0.740198i \(-0.265268\pi\)
0.672389 + 0.740198i \(0.265268\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −609.532 1055.74i −0.0813202 0.140851i 0.822497 0.568769i \(-0.192580\pi\)
−0.903817 + 0.427919i \(0.859247\pi\)
\(384\) 0 0
\(385\) 12671.5 1753.71i 1.67740 0.232149i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −11374.6 6567.15i −1.48256 0.855958i −0.482759 0.875753i \(-0.660365\pi\)
−0.999804 + 0.0197949i \(0.993699\pi\)
\(390\) 0 0
\(391\) 6476.19i 0.837634i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −3413.29 + 5911.99i −0.434788 + 0.753075i
\(396\) 0 0
\(397\) 2697.68 1557.51i 0.341040 0.196900i −0.319692 0.947522i \(-0.603579\pi\)
0.660732 + 0.750622i \(0.270246\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 9724.47 5614.42i 1.21101 0.699179i 0.248034 0.968751i \(-0.420216\pi\)
0.962980 + 0.269572i \(0.0868822\pi\)
\(402\) 0 0
\(403\) 437.797 758.287i 0.0541147 0.0937295i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 5096.90i 0.620747i
\(408\) 0 0
\(409\) −10739.4 6200.41i −1.29836 0.749610i −0.318242 0.948010i \(-0.603092\pi\)
−0.980121 + 0.198399i \(0.936426\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −3876.78 1575.81i −0.461898 0.187749i
\(414\) 0 0
\(415\) −2798.71 4847.51i −0.331044 0.573385i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −8260.19 −0.963095 −0.481547 0.876420i \(-0.659925\pi\)
−0.481547 + 0.876420i \(0.659925\pi\)
\(420\) 0 0
\(421\) 5571.81 0.645020 0.322510 0.946566i \(-0.395473\pi\)
0.322510 + 0.946566i \(0.395473\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −1306.96 2263.72i −0.149169 0.258368i
\(426\) 0 0
\(427\) −4866.89 6256.40i −0.551582 0.709060i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −6094.88 3518.88i −0.681160 0.393268i 0.119132 0.992878i \(-0.461989\pi\)
−0.800292 + 0.599611i \(0.795322\pi\)
\(432\) 0 0
\(433\) 9212.26i 1.02243i 0.859452 + 0.511216i \(0.170805\pi\)
−0.859452 + 0.511216i \(0.829195\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −7698.48 + 13334.2i −0.842719 + 1.45963i
\(438\) 0 0
\(439\) 7345.30 4240.81i 0.798570 0.461054i −0.0444012 0.999014i \(-0.514138\pi\)
0.842971 + 0.537959i \(0.180805\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 11305.9 6527.49i 1.21255 0.700068i 0.249239 0.968442i \(-0.419820\pi\)
0.963315 + 0.268374i \(0.0864863\pi\)
\(444\) 0 0
\(445\) −163.692 + 283.523i −0.0174376 + 0.0302029i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 14114.0i 1.48348i −0.670689 0.741738i \(-0.734002\pi\)
0.670689 0.741738i \(-0.265998\pi\)
\(450\) 0 0
\(451\) 12153.9 + 7017.03i 1.26896 + 0.732637i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 1285.34 + 1652.31i 0.132435 + 0.170245i
\(456\) 0 0
\(457\) 4486.87 + 7771.49i 0.459271 + 0.795481i 0.998923 0.0464073i \(-0.0147772\pi\)
−0.539651 + 0.841889i \(0.681444\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −955.010 −0.0964842 −0.0482421 0.998836i \(-0.515362\pi\)
−0.0482421 + 0.998836i \(0.515362\pi\)
\(462\) 0 0
\(463\) −12004.5 −1.20496 −0.602479 0.798135i \(-0.705820\pi\)
−0.602479 + 0.798135i \(0.705820\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 2532.46 + 4386.34i 0.250938 + 0.434638i 0.963784 0.266683i \(-0.0859276\pi\)
−0.712846 + 0.701320i \(0.752594\pi\)
\(468\) 0 0
\(469\) −2811.24 1142.69i −0.276783 0.112505i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −234.981 135.666i −0.0228423 0.0131880i
\(474\) 0 0
\(475\) 6214.52i 0.600299i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −7606.85 + 13175.5i −0.725607 + 1.25679i 0.233116 + 0.972449i \(0.425108\pi\)
−0.958724 + 0.284340i \(0.908226\pi\)
\(480\) 0 0
\(481\) 722.332 417.038i 0.0684730 0.0395329i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −15265.9 + 8813.75i −1.42925 + 0.825179i
\(486\) 0 0
\(487\) 7905.92 13693.5i 0.735629 1.27415i −0.218817 0.975766i \(-0.570220\pi\)
0.954447 0.298382i \(-0.0964468\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 18064.2i 1.66034i −0.557512 0.830169i \(-0.688244\pi\)
0.557512 0.830169i \(-0.311756\pi\)
\(492\) 0 0
\(493\) −7139.42 4121.94i −0.652217 0.376558i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −1464.93 + 202.744i −0.132216 + 0.0182984i
\(498\) 0 0
\(499\) −5262.33 9114.62i −0.472092 0.817688i 0.527398 0.849619i \(-0.323168\pi\)
−0.999490 + 0.0319305i \(0.989834\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 7790.82 0.690607 0.345304 0.938491i \(-0.387776\pi\)
0.345304 + 0.938491i \(0.387776\pi\)
\(504\) 0 0
\(505\) −9108.83 −0.802649
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 5098.24 + 8830.41i 0.443960 + 0.768961i 0.997979 0.0635430i \(-0.0202400\pi\)
−0.554019 + 0.832504i \(0.686907\pi\)
\(510\) 0 0
\(511\) 5366.74 13203.2i 0.464600 1.14300i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −19815.6 11440.5i −1.69549 0.978892i
\(516\) 0 0
\(517\) 3103.35i 0.263994i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 963.789 1669.33i 0.0810449 0.140374i −0.822654 0.568542i \(-0.807508\pi\)
0.903699 + 0.428168i \(0.140841\pi\)
\(522\) 0 0
\(523\) 6716.70 3877.89i 0.561569 0.324222i −0.192206 0.981355i \(-0.561564\pi\)
0.753775 + 0.657133i \(0.228231\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 5901.47 3407.21i 0.487803 0.281633i
\(528\) 0 0
\(529\) −1668.28 + 2889.55i −0.137115 + 0.237491i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 2296.59i 0.186635i
\(534\) 0 0
\(535\) 249.371 + 143.975i 0.0201519 + 0.0116347i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −17990.4 4565.93i −1.43767 0.364876i
\(540\) 0 0
\(541\) −8380.42 14515.3i −0.665993 1.15353i −0.979015 0.203788i \(-0.934675\pi\)
0.313022 0.949746i \(-0.398659\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −12157.0 −0.955503
\(546\) 0 0
\(547\) −5869.79 −0.458819 −0.229410 0.973330i \(-0.573680\pi\)
−0.229410 + 0.973330i \(0.573680\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 9799.82 + 16973.8i 0.757688 + 1.31235i
\(552\) 0 0
\(553\) 7818.00 6081.67i 0.601185 0.467666i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −18756.5 10829.1i −1.42682 0.823774i −0.429951 0.902852i \(-0.641469\pi\)
−0.996868 + 0.0790779i \(0.974802\pi\)
\(558\) 0 0
\(559\) 44.4019i 0.00335957i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −4795.36 + 8305.80i −0.358970 + 0.621755i −0.987789 0.155797i \(-0.950205\pi\)
0.628819 + 0.777552i \(0.283539\pi\)
\(564\) 0 0
\(565\) 1328.11 766.787i 0.0988923 0.0570955i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 14405.5 8317.01i 1.06135 0.612772i 0.135546 0.990771i \(-0.456721\pi\)
0.925806 + 0.377999i \(0.123388\pi\)
\(570\) 0 0
\(571\) 3165.51 5482.83i 0.232001 0.401838i −0.726396 0.687277i \(-0.758806\pi\)
0.958397 + 0.285439i \(0.0921394\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 3564.14i 0.258495i
\(576\) 0 0
\(577\) 8431.94 + 4868.18i 0.608364 + 0.351239i 0.772325 0.635228i \(-0.219094\pi\)
−0.163961 + 0.986467i \(0.552427\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 1113.39 + 8044.83i 0.0795028 + 0.574450i
\(582\) 0 0
\(583\) 12717.4 + 22027.1i 0.903430 + 1.56479i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −10940.3 −0.769255 −0.384628 0.923072i \(-0.625670\pi\)
−0.384628 + 0.923072i \(0.625670\pi\)
\(588\) 0 0
\(589\) −16201.1 −1.13337
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 12430.4 + 21530.0i 0.860799 + 1.49095i 0.871159 + 0.491000i \(0.163369\pi\)
−0.0103608 + 0.999946i \(0.503298\pi\)
\(594\) 0 0
\(595\) 2233.49 + 16138.2i 0.153889 + 1.11193i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −20207.8 11667.0i −1.37841 0.795825i −0.386442 0.922314i \(-0.626296\pi\)
−0.991968 + 0.126488i \(0.959629\pi\)
\(600\) 0 0
\(601\) 13012.4i 0.883175i 0.897218 + 0.441587i \(0.145584\pi\)
−0.897218 + 0.441587i \(0.854416\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −10193.8 + 17656.1i −0.685017 + 1.18648i
\(606\) 0 0
\(607\) −7355.69 + 4246.81i −0.491859 + 0.283975i −0.725345 0.688385i \(-0.758320\pi\)
0.233486 + 0.972360i \(0.424987\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 439.806 253.922i 0.0291205 0.0168127i
\(612\) 0 0
\(613\) 4569.79 7915.11i 0.301097 0.521514i −0.675288 0.737554i \(-0.735981\pi\)
0.976385 + 0.216040i \(0.0693140\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 7360.91i 0.480290i −0.970737 0.240145i \(-0.922805\pi\)
0.970737 0.240145i \(-0.0771950\pi\)
\(618\) 0 0
\(619\) −19878.5 11476.9i −1.29077 0.745225i −0.311978 0.950089i \(-0.600991\pi\)
−0.978790 + 0.204864i \(0.934325\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 374.930 291.660i 0.0241112 0.0187562i
\(624\) 0 0
\(625\) 9463.74 + 16391.7i 0.605679 + 1.04907i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 6491.31 0.411487
\(630\) 0 0
\(631\) −21126.0 −1.33282 −0.666412 0.745584i \(-0.732171\pi\)
−0.666412 + 0.745584i \(0.732171\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −5643.77 9775.29i −0.352703 0.610899i
\(636\) 0 0
\(637\) −824.929 2923.19i −0.0513106 0.181823i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −15447.5 8918.61i −0.951855 0.549554i −0.0581985 0.998305i \(-0.518536\pi\)
−0.893657 + 0.448751i \(0.851869\pi\)
\(642\) 0 0
\(643\) 25449.0i 1.56082i 0.625266 + 0.780412i \(0.284991\pi\)
−0.625266 + 0.780412i \(0.715009\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 13149.2 22775.1i 0.798993 1.38390i −0.121280 0.992618i \(-0.538700\pi\)
0.920273 0.391277i \(-0.127967\pi\)
\(648\) 0 0
\(649\) 10589.1 6113.64i 0.640462 0.369771i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 8203.79 4736.46i 0.491637 0.283847i −0.233616 0.972329i \(-0.575056\pi\)
0.725253 + 0.688482i \(0.241723\pi\)
\(654\) 0 0
\(655\) −10255.4 + 17762.8i −0.611771 + 1.05962i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 22384.5i 1.32318i 0.749865 + 0.661591i \(0.230118\pi\)
−0.749865 + 0.661591i \(0.769882\pi\)
\(660\) 0 0
\(661\) −19857.3 11464.6i −1.16847 0.674618i −0.215153 0.976580i \(-0.569025\pi\)
−0.953320 + 0.301962i \(0.902359\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 14585.4 35882.7i 0.850521 2.09244i
\(666\) 0 0
\(667\) −5620.37 9734.77i −0.326269 0.565115i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 23159.9 1.33245
\(672\) 0 0
\(673\) −4873.86 −0.279158 −0.139579 0.990211i \(-0.544575\pi\)
−0.139579 + 0.990211i \(0.544575\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 8123.71 + 14070.7i 0.461181 + 0.798789i 0.999020 0.0442583i \(-0.0140925\pi\)
−0.537839 + 0.843048i \(0.680759\pi\)
\(678\) 0 0
\(679\) 25334.9 3506.30i 1.43191 0.198173i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 18786.2 + 10846.2i 1.05247 + 0.607641i 0.923339 0.383987i \(-0.125449\pi\)
0.129127 + 0.991628i \(0.458783\pi\)
\(684\) 0 0
\(685\) 9068.85i 0.505844i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −2081.12 + 3604.61i −0.115072 + 0.199310i
\(690\) 0 0
\(691\) 19499.9 11258.3i 1.07353 0.619803i 0.144387 0.989521i \(-0.453879\pi\)
0.929144 + 0.369718i \(0.120546\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −16934.1 + 9776.90i −0.924239 + 0.533610i
\(696\) 0 0
\(697\) −8936.75 + 15478.9i −0.485658 + 0.841184i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 33929.0i 1.82807i −0.405631 0.914037i \(-0.632948\pi\)
0.405631 0.914037i \(-0.367052\pi\)
\(702\) 0 0
\(703\) −13365.3 7716.46i −0.717044 0.413986i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 12243.6 + 4976.68i 0.651296 + 0.264734i
\(708\) 0 0
\(709\) −9593.62 16616.6i −0.508175 0.880185i −0.999955 0.00946553i \(-0.996987\pi\)
0.491780 0.870719i \(-0.336346\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 9291.63 0.488043
\(714\) 0 0
\(715\) −6116.49 −0.319922
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −6883.43 11922.4i −0.357036 0.618404i 0.630429 0.776247i \(-0.282879\pi\)
−0.987464 + 0.157844i \(0.949546\pi\)
\(720\) 0 0
\(721\) 20384.3 + 26204.0i 1.05291 + 1.35352i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −3929.15 2268.49i −0.201276 0.116207i
\(726\) 0 0
\(727\) 12226.1i 0.623717i 0.950129 + 0.311858i \(0.100951\pi\)
−0.950129 + 0.311858i \(0.899049\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 172.782 299.267i 0.00874222 0.0151420i
\(732\) 0 0
\(733\) 2256.76 1302.94i 0.113718 0.0656553i −0.442062 0.896984i \(-0.645753\pi\)
0.555780 + 0.831329i \(0.312420\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 7678.71 4433.30i 0.383784 0.221578i
\(738\) 0 0
\(739\) 16871.7 29222.7i 0.839833 1.45463i −0.0502016 0.998739i \(-0.515986\pi\)
0.890034 0.455894i \(-0.150680\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 14586.9i 0.720244i 0.932905 + 0.360122i \(0.117265\pi\)
−0.932905 + 0.360122i \(0.882735\pi\)
\(744\) 0 0
\(745\) 26542.0 + 15324.0i 1.30527 + 0.753597i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −256.528 329.768i −0.0125145 0.0160874i
\(750\) 0 0
\(751\) −3757.62 6508.39i −0.182580 0.316238i 0.760178 0.649714i \(-0.225111\pi\)
−0.942758 + 0.333477i \(0.891778\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 31502.0 1.51851
\(756\) 0 0
\(757\) 23917.4 1.14834 0.574169 0.818737i \(-0.305325\pi\)
0.574169 + 0.818737i \(0.305325\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −6099.27 10564.2i −0.290537 0.503224i 0.683400 0.730044i \(-0.260500\pi\)
−0.973937 + 0.226820i \(0.927167\pi\)
\(762\) 0 0
\(763\) 16340.7 + 6642.07i 0.775327 + 0.315150i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 1732.85 + 1000.46i 0.0815769 + 0.0470985i
\(768\) 0 0
\(769\) 2013.08i 0.0943999i −0.998885 0.0471999i \(-0.984970\pi\)
0.998885 0.0471999i \(-0.0150298\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −15139.1 + 26221.7i −0.704418 + 1.22009i 0.262483 + 0.964937i \(0.415459\pi\)
−0.966901 + 0.255152i \(0.917875\pi\)
\(774\) 0 0
\(775\) 3247.85 1875.14i 0.150537 0.0869125i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 36800.7 21246.9i 1.69258 0.977213i
\(780\) 0 0
\(781\) 2160.54 3742.17i 0.0989888 0.171454i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 31095.5i 1.41382i
\(786\) 0 0
\(787\) −24839.3 14341.0i −1.12507 0.649557i −0.182377 0.983229i \(-0.558379\pi\)
−0.942689 + 0.333671i \(0.891712\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −2204.11 + 305.045i −0.0990761 + 0.0137119i
\(792\) 0 0
\(793\) 1894.99 + 3282.21i 0.0848586 + 0.146979i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 27108.9 1.20483 0.602413 0.798184i \(-0.294206\pi\)
0.602413 + 0.798184i \(0.294206\pi\)
\(798\) 0 0
\(799\) 3952.36 0.174999
\(800\) 0