Properties

Label 1008.4.a.y
Level $1008$
Weight $4$
Character orbit 1008.a
Self dual yes
Analytic conductor $59.474$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1008,4,Mod(1,1008)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1008.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1008, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 1008 = 2^{4} \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1008.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,0,0,-14,0,-14,0,0,0,18,0,48] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(59.4739252858\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{177}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 44 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 168)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \sqrt{177}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \beta - 7) q^{5} - 7 q^{7} + ( - 3 \beta + 9) q^{11} + (2 \beta + 24) q^{13} + (9 \beta - 17) q^{17} + (4 \beta + 8) q^{19} + (7 \beta + 55) q^{23} + (14 \beta + 101) q^{25} + ( - 4 \beta - 106) q^{29}+ \cdots + (10 \beta - 68) q^{97}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 14 q^{5} - 14 q^{7} + 18 q^{11} + 48 q^{13} - 34 q^{17} + 16 q^{19} + 110 q^{23} + 202 q^{25} - 212 q^{29} + 136 q^{31} + 98 q^{35} - 24 q^{37} - 694 q^{41} + 584 q^{43} - 316 q^{47} + 98 q^{49} - 560 q^{53}+ \cdots - 136 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
7.15207
−6.15207
0 0 0 −20.3041 0 −7.00000 0 0 0
1.2 0 0 0 6.30413 0 −7.00000 0 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(3\) \( -1 \)
\(7\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1008.4.a.y 2
3.b odd 2 1 336.4.a.n 2
4.b odd 2 1 504.4.a.j 2
12.b even 2 1 168.4.a.h 2
21.c even 2 1 2352.4.a.bv 2
24.f even 2 1 1344.4.a.bd 2
24.h odd 2 1 1344.4.a.bl 2
84.h odd 2 1 1176.4.a.p 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
168.4.a.h 2 12.b even 2 1
336.4.a.n 2 3.b odd 2 1
504.4.a.j 2 4.b odd 2 1
1008.4.a.y 2 1.a even 1 1 trivial
1176.4.a.p 2 84.h odd 2 1
1344.4.a.bd 2 24.f even 2 1
1344.4.a.bl 2 24.h odd 2 1
2352.4.a.bv 2 21.c even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(1008))\):

\( T_{5}^{2} + 14T_{5} - 128 \) Copy content Toggle raw display
\( T_{11}^{2} - 18T_{11} - 1512 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( T^{2} \) Copy content Toggle raw display
$5$ \( T^{2} + 14T - 128 \) Copy content Toggle raw display
$7$ \( (T + 7)^{2} \) Copy content Toggle raw display
$11$ \( T^{2} - 18T - 1512 \) Copy content Toggle raw display
$13$ \( T^{2} - 48T - 132 \) Copy content Toggle raw display
$17$ \( T^{2} + 34T - 14048 \) Copy content Toggle raw display
$19$ \( T^{2} - 16T - 2768 \) Copy content Toggle raw display
$23$ \( T^{2} - 110T - 5648 \) Copy content Toggle raw display
$29$ \( T^{2} + 212T + 8404 \) Copy content Toggle raw display
$31$ \( T^{2} - 136T + 1792 \) Copy content Toggle raw display
$37$ \( T^{2} + 24T - 119508 \) Copy content Toggle raw display
$41$ \( T^{2} + 694T + 106072 \) Copy content Toggle raw display
$43$ \( T^{2} - 584T + 73936 \) Copy content Toggle raw display
$47$ \( T^{2} + 316T + 24256 \) Copy content Toggle raw display
$53$ \( T^{2} + 560T + 72028 \) Copy content Toggle raw display
$59$ \( T^{2} + 492T - 59136 \) Copy content Toggle raw display
$61$ \( T^{2} + 604T - 47564 \) Copy content Toggle raw display
$67$ \( T^{2} - 1020 T + 242400 \) Copy content Toggle raw display
$71$ \( T^{2} + 1710 T + 620400 \) Copy content Toggle raw display
$73$ \( T^{2} + 1312 T + 423964 \) Copy content Toggle raw display
$79$ \( T^{2} - 556T - 234944 \) Copy content Toggle raw display
$83$ \( T^{2} + 264T - 163824 \) Copy content Toggle raw display
$89$ \( T^{2} + 70T - 1596200 \) Copy content Toggle raw display
$97$ \( T^{2} + 136T - 13076 \) Copy content Toggle raw display
show more
show less