Properties

Label 1008.4.a.s
Level $1008$
Weight $4$
Character orbit 1008.a
Self dual yes
Analytic conductor $59.474$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 1008 = 2^{4} \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1008.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(59.4739252858\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 14)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

\(f(q)\) \(=\) \( q + 14 q^{5} + 7 q^{7}+O(q^{10}) \) Copy content Toggle raw display \( q + 14 q^{5} + 7 q^{7} - 28 q^{11} + 18 q^{13} - 74 q^{17} - 80 q^{19} - 112 q^{23} + 71 q^{25} - 190 q^{29} - 72 q^{31} + 98 q^{35} - 346 q^{37} - 162 q^{41} + 412 q^{43} + 24 q^{47} + 49 q^{49} - 318 q^{53} - 392 q^{55} - 200 q^{59} - 198 q^{61} + 252 q^{65} + 716 q^{67} + 392 q^{71} + 538 q^{73} - 196 q^{77} - 240 q^{79} - 1072 q^{83} - 1036 q^{85} - 810 q^{89} + 126 q^{91} - 1120 q^{95} + 1354 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
0 0 0 14.0000 0 7.00000 0 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \(-1\)
\(3\) \(-1\)
\(7\) \(-1\)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1008.4.a.s 1
3.b odd 2 1 112.4.a.a 1
4.b odd 2 1 126.4.a.h 1
12.b even 2 1 14.4.a.a 1
21.c even 2 1 784.4.a.s 1
24.f even 2 1 448.4.a.b 1
24.h odd 2 1 448.4.a.o 1
28.d even 2 1 882.4.a.i 1
28.f even 6 2 882.4.g.k 2
28.g odd 6 2 882.4.g.b 2
60.h even 2 1 350.4.a.l 1
60.l odd 4 2 350.4.c.b 2
84.h odd 2 1 98.4.a.a 1
84.j odd 6 2 98.4.c.f 2
84.n even 6 2 98.4.c.d 2
132.d odd 2 1 1694.4.a.g 1
156.h even 2 1 2366.4.a.h 1
420.o odd 2 1 2450.4.a.bo 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
14.4.a.a 1 12.b even 2 1
98.4.a.a 1 84.h odd 2 1
98.4.c.d 2 84.n even 6 2
98.4.c.f 2 84.j odd 6 2
112.4.a.a 1 3.b odd 2 1
126.4.a.h 1 4.b odd 2 1
350.4.a.l 1 60.h even 2 1
350.4.c.b 2 60.l odd 4 2
448.4.a.b 1 24.f even 2 1
448.4.a.o 1 24.h odd 2 1
784.4.a.s 1 21.c even 2 1
882.4.a.i 1 28.d even 2 1
882.4.g.b 2 28.g odd 6 2
882.4.g.k 2 28.f even 6 2
1008.4.a.s 1 1.a even 1 1 trivial
1694.4.a.g 1 132.d odd 2 1
2366.4.a.h 1 156.h even 2 1
2450.4.a.bo 1 420.o odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(1008))\):

\( T_{5} - 14 \) Copy content Toggle raw display
\( T_{11} + 28 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T \) Copy content Toggle raw display
$3$ \( T \) Copy content Toggle raw display
$5$ \( T - 14 \) Copy content Toggle raw display
$7$ \( T - 7 \) Copy content Toggle raw display
$11$ \( T + 28 \) Copy content Toggle raw display
$13$ \( T - 18 \) Copy content Toggle raw display
$17$ \( T + 74 \) Copy content Toggle raw display
$19$ \( T + 80 \) Copy content Toggle raw display
$23$ \( T + 112 \) Copy content Toggle raw display
$29$ \( T + 190 \) Copy content Toggle raw display
$31$ \( T + 72 \) Copy content Toggle raw display
$37$ \( T + 346 \) Copy content Toggle raw display
$41$ \( T + 162 \) Copy content Toggle raw display
$43$ \( T - 412 \) Copy content Toggle raw display
$47$ \( T - 24 \) Copy content Toggle raw display
$53$ \( T + 318 \) Copy content Toggle raw display
$59$ \( T + 200 \) Copy content Toggle raw display
$61$ \( T + 198 \) Copy content Toggle raw display
$67$ \( T - 716 \) Copy content Toggle raw display
$71$ \( T - 392 \) Copy content Toggle raw display
$73$ \( T - 538 \) Copy content Toggle raw display
$79$ \( T + 240 \) Copy content Toggle raw display
$83$ \( T + 1072 \) Copy content Toggle raw display
$89$ \( T + 810 \) Copy content Toggle raw display
$97$ \( T - 1354 \) Copy content Toggle raw display
show more
show less