Properties

Label 1008.3.m.a
Level $1008$
Weight $3$
Character orbit 1008.m
Analytic conductor $27.466$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1008,3,Mod(127,1008)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1008, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0, 0, 0])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1008.127"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1008 = 2^{4} \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 1008.m (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,0,0,-16] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(27.4660106475\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-7}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 112)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \sqrt{-7}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - 8 q^{5} - \beta q^{7} - 4 \beta q^{11} - 4 q^{13} + 2 q^{17} - 10 \beta q^{19} + 8 \beta q^{23} + 39 q^{25} - 14 q^{29} + 12 \beta q^{31} + 8 \beta q^{35} + 14 q^{37} - 46 q^{41} - 4 \beta q^{43} + 12 \beta q^{47} + \cdots - 178 q^{97} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 16 q^{5} - 8 q^{13} + 4 q^{17} + 78 q^{25} - 28 q^{29} + 28 q^{37} - 92 q^{41} - 14 q^{49} + 44 q^{53} + 96 q^{61} + 64 q^{65} - 220 q^{73} - 56 q^{77} - 32 q^{85} + 268 q^{89} - 356 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1008\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(577\) \(757\) \(785\)
\(\chi(n)\) \(-1\) \(1\) \(1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
127.1
0.500000 + 1.32288i
0.500000 1.32288i
0 0 0 −8.00000 0 2.64575i 0 0 0
127.2 0 0 0 −8.00000 0 2.64575i 0 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
4.b odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1008.3.m.a 2
3.b odd 2 1 112.3.d.a 2
4.b odd 2 1 inner 1008.3.m.a 2
12.b even 2 1 112.3.d.a 2
21.c even 2 1 784.3.d.d 2
21.g even 6 2 784.3.r.m 4
21.h odd 6 2 784.3.r.k 4
24.f even 2 1 448.3.d.a 2
24.h odd 2 1 448.3.d.a 2
48.i odd 4 2 1792.3.g.b 4
48.k even 4 2 1792.3.g.b 4
84.h odd 2 1 784.3.d.d 2
84.j odd 6 2 784.3.r.m 4
84.n even 6 2 784.3.r.k 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
112.3.d.a 2 3.b odd 2 1
112.3.d.a 2 12.b even 2 1
448.3.d.a 2 24.f even 2 1
448.3.d.a 2 24.h odd 2 1
784.3.d.d 2 21.c even 2 1
784.3.d.d 2 84.h odd 2 1
784.3.r.k 4 21.h odd 6 2
784.3.r.k 4 84.n even 6 2
784.3.r.m 4 21.g even 6 2
784.3.r.m 4 84.j odd 6 2
1008.3.m.a 2 1.a even 1 1 trivial
1008.3.m.a 2 4.b odd 2 1 inner
1792.3.g.b 4 48.i odd 4 2
1792.3.g.b 4 48.k even 4 2

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{5} + 8 \) acting on \(S_{3}^{\mathrm{new}}(1008, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( T^{2} \) Copy content Toggle raw display
$5$ \( (T + 8)^{2} \) Copy content Toggle raw display
$7$ \( T^{2} + 7 \) Copy content Toggle raw display
$11$ \( T^{2} + 112 \) Copy content Toggle raw display
$13$ \( (T + 4)^{2} \) Copy content Toggle raw display
$17$ \( (T - 2)^{2} \) Copy content Toggle raw display
$19$ \( T^{2} + 700 \) Copy content Toggle raw display
$23$ \( T^{2} + 448 \) Copy content Toggle raw display
$29$ \( (T + 14)^{2} \) Copy content Toggle raw display
$31$ \( T^{2} + 1008 \) Copy content Toggle raw display
$37$ \( (T - 14)^{2} \) Copy content Toggle raw display
$41$ \( (T + 46)^{2} \) Copy content Toggle raw display
$43$ \( T^{2} + 112 \) Copy content Toggle raw display
$47$ \( T^{2} + 1008 \) Copy content Toggle raw display
$53$ \( (T - 22)^{2} \) Copy content Toggle raw display
$59$ \( T^{2} + 8092 \) Copy content Toggle raw display
$61$ \( (T - 48)^{2} \) Copy content Toggle raw display
$67$ \( T^{2} + 4032 \) Copy content Toggle raw display
$71$ \( T^{2} + 7168 \) Copy content Toggle raw display
$73$ \( (T + 110)^{2} \) Copy content Toggle raw display
$79$ \( T^{2} + 16128 \) Copy content Toggle raw display
$83$ \( T^{2} + 1372 \) Copy content Toggle raw display
$89$ \( (T - 134)^{2} \) Copy content Toggle raw display
$97$ \( (T + 178)^{2} \) Copy content Toggle raw display
show more
show less