Properties

Label 1008.3.dc.a.305.1
Level $1008$
Weight $3$
Character 1008.305
Analytic conductor $27.466$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1008,3,Mod(305,1008)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1008, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 3, 4]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1008.305");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1008 = 2^{4} \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 1008.dc (of order \(6\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(27.4660106475\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\sqrt{-2}, \sqrt{-3})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 2x^{2} + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 126)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 305.1
Root \(-1.22474 + 0.707107i\) of defining polynomial
Character \(\chi\) \(=\) 1008.305
Dual form 1008.3.dc.a.737.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.22474 + 0.707107i) q^{5} +(-6.50000 + 2.59808i) q^{7} +O(q^{10})\) \(q+(-1.22474 + 0.707107i) q^{5} +(-6.50000 + 2.59808i) q^{7} +(-6.12372 - 3.53553i) q^{11} +15.0000 q^{13} +(9.79796 + 5.65685i) q^{17} +(-6.50000 - 11.2583i) q^{19} +(-19.5959 + 11.3137i) q^{23} +(-11.5000 + 19.9186i) q^{25} -22.6274i q^{29} +(1.50000 - 2.59808i) q^{31} +(6.12372 - 7.77817i) q^{35} +(-8.50000 - 14.7224i) q^{37} -80.6102i q^{41} +85.0000 q^{43} +(62.4620 - 36.0624i) q^{47} +(35.5000 - 33.7750i) q^{49} +(-29.3939 - 16.9706i) q^{53} +10.0000 q^{55} +(-78.3837 - 45.2548i) q^{59} +(36.0000 + 62.3538i) q^{61} +(-18.3712 + 10.6066i) q^{65} +(21.5000 - 37.2391i) q^{67} -52.3259i q^{71} +(47.5000 - 82.2724i) q^{73} +(48.9898 + 7.07107i) q^{77} +(34.5000 + 59.7558i) q^{79} -60.8112i q^{83} -16.0000 q^{85} +(-117.576 + 67.8823i) q^{89} +(-97.5000 + 38.9711i) q^{91} +(15.9217 + 9.19239i) q^{95} +16.0000 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 26 q^{7}+O(q^{10}) \) Copy content Toggle raw display \( 4 q - 26 q^{7} + 60 q^{13} - 26 q^{19} - 46 q^{25} + 6 q^{31} - 34 q^{37} + 340 q^{43} + 142 q^{49} + 40 q^{55} + 144 q^{61} + 86 q^{67} + 190 q^{73} + 138 q^{79} - 64 q^{85} - 390 q^{91} + 64 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1008\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(577\) \(757\) \(785\)
\(\chi(n)\) \(1\) \(e\left(\frac{2}{3}\right)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −1.22474 + 0.707107i −0.244949 + 0.141421i −0.617449 0.786611i \(-0.711834\pi\)
0.372500 + 0.928032i \(0.378501\pi\)
\(6\) 0 0
\(7\) −6.50000 + 2.59808i −0.928571 + 0.371154i
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −6.12372 3.53553i −0.556702 0.321412i 0.195119 0.980780i \(-0.437491\pi\)
−0.751821 + 0.659367i \(0.770824\pi\)
\(12\) 0 0
\(13\) 15.0000 1.15385 0.576923 0.816798i \(-0.304253\pi\)
0.576923 + 0.816798i \(0.304253\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 9.79796 + 5.65685i 0.576351 + 0.332756i 0.759682 0.650295i \(-0.225355\pi\)
−0.183331 + 0.983051i \(0.558688\pi\)
\(18\) 0 0
\(19\) −6.50000 11.2583i −0.342105 0.592544i 0.642718 0.766103i \(-0.277807\pi\)
−0.984823 + 0.173559i \(0.944473\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −19.5959 + 11.3137i −0.851996 + 0.491900i −0.861324 0.508056i \(-0.830364\pi\)
0.00932753 + 0.999956i \(0.497031\pi\)
\(24\) 0 0
\(25\) −11.5000 + 19.9186i −0.460000 + 0.796743i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 22.6274i 0.780256i −0.920761 0.390128i \(-0.872431\pi\)
0.920761 0.390128i \(-0.127569\pi\)
\(30\) 0 0
\(31\) 1.50000 2.59808i 0.0483871 0.0838089i −0.840817 0.541319i \(-0.817925\pi\)
0.889205 + 0.457510i \(0.151259\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 6.12372 7.77817i 0.174964 0.222234i
\(36\) 0 0
\(37\) −8.50000 14.7224i −0.229730 0.397904i 0.727998 0.685579i \(-0.240451\pi\)
−0.957728 + 0.287675i \(0.907118\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 80.6102i 1.96610i −0.183333 0.983051i \(-0.558689\pi\)
0.183333 0.983051i \(-0.441311\pi\)
\(42\) 0 0
\(43\) 85.0000 1.97674 0.988372 0.152055i \(-0.0485890\pi\)
0.988372 + 0.152055i \(0.0485890\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 62.4620 36.0624i 1.32898 0.767286i 0.343837 0.939029i \(-0.388273\pi\)
0.985142 + 0.171743i \(0.0549400\pi\)
\(48\) 0 0
\(49\) 35.5000 33.7750i 0.724490 0.689286i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −29.3939 16.9706i −0.554601 0.320199i 0.196374 0.980529i \(-0.437083\pi\)
−0.750976 + 0.660330i \(0.770417\pi\)
\(54\) 0 0
\(55\) 10.0000 0.181818
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −78.3837 45.2548i −1.32854 0.767031i −0.343463 0.939166i \(-0.611600\pi\)
−0.985073 + 0.172135i \(0.944933\pi\)
\(60\) 0 0
\(61\) 36.0000 + 62.3538i 0.590164 + 1.02219i 0.994210 + 0.107455i \(0.0342702\pi\)
−0.404046 + 0.914739i \(0.632396\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −18.3712 + 10.6066i −0.282633 + 0.163178i
\(66\) 0 0
\(67\) 21.5000 37.2391i 0.320896 0.555807i −0.659778 0.751461i \(-0.729349\pi\)
0.980673 + 0.195654i \(0.0626828\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 52.3259i 0.736985i −0.929631 0.368492i \(-0.879874\pi\)
0.929631 0.368492i \(-0.120126\pi\)
\(72\) 0 0
\(73\) 47.5000 82.2724i 0.650685 1.12702i −0.332272 0.943184i \(-0.607815\pi\)
0.982957 0.183836i \(-0.0588515\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 48.9898 + 7.07107i 0.636231 + 0.0918320i
\(78\) 0 0
\(79\) 34.5000 + 59.7558i 0.436709 + 0.756402i 0.997433 0.0716005i \(-0.0228107\pi\)
−0.560725 + 0.828002i \(0.689477\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 60.8112i 0.732665i −0.930484 0.366332i \(-0.880613\pi\)
0.930484 0.366332i \(-0.119387\pi\)
\(84\) 0 0
\(85\) −16.0000 −0.188235
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −117.576 + 67.8823i −1.32107 + 0.762722i −0.983900 0.178721i \(-0.942804\pi\)
−0.337173 + 0.941443i \(0.609471\pi\)
\(90\) 0 0
\(91\) −97.5000 + 38.9711i −1.07143 + 0.428254i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 15.9217 + 9.19239i 0.167597 + 0.0967620i
\(96\) 0 0
\(97\) 16.0000 0.164948 0.0824742 0.996593i \(-0.473718\pi\)
0.0824742 + 0.996593i \(0.473718\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 60.0125 + 34.6482i 0.594183 + 0.343052i 0.766750 0.641946i \(-0.221873\pi\)
−0.172567 + 0.984998i \(0.555206\pi\)
\(102\) 0 0
\(103\) −30.5000 52.8275i −0.296117 0.512889i 0.679127 0.734020i \(-0.262358\pi\)
−0.975244 + 0.221131i \(0.929025\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 146.969 84.8528i 1.37355 0.793017i 0.382173 0.924091i \(-0.375176\pi\)
0.991373 + 0.131074i \(0.0418425\pi\)
\(108\) 0 0
\(109\) 32.5000 56.2917i 0.298165 0.516437i −0.677551 0.735476i \(-0.736959\pi\)
0.975716 + 0.219039i \(0.0702921\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 137.179i 1.21397i −0.794713 0.606985i \(-0.792379\pi\)
0.794713 0.606985i \(-0.207621\pi\)
\(114\) 0 0
\(115\) 16.0000 27.7128i 0.139130 0.240981i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −78.3837 11.3137i −0.658686 0.0950732i
\(120\) 0 0
\(121\) −35.5000 61.4878i −0.293388 0.508164i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 67.8823i 0.543058i
\(126\) 0 0
\(127\) 171.000 1.34646 0.673228 0.739435i \(-0.264907\pi\)
0.673228 + 0.739435i \(0.264907\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −101.654 + 58.6899i −0.775983 + 0.448014i −0.835005 0.550242i \(-0.814535\pi\)
0.0590215 + 0.998257i \(0.481202\pi\)
\(132\) 0 0
\(133\) 71.5000 + 56.2917i 0.537594 + 0.423245i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −186.161 107.480i −1.35884 0.784527i −0.369373 0.929281i \(-0.620428\pi\)
−0.989468 + 0.144754i \(0.953761\pi\)
\(138\) 0 0
\(139\) 83.0000 0.597122 0.298561 0.954391i \(-0.403493\pi\)
0.298561 + 0.954391i \(0.403493\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −91.8559 53.0330i −0.642349 0.370860i
\(144\) 0 0
\(145\) 16.0000 + 27.7128i 0.110345 + 0.191123i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 88.1816 50.9117i 0.591823 0.341689i −0.173995 0.984747i \(-0.555668\pi\)
0.765818 + 0.643057i \(0.222334\pi\)
\(150\) 0 0
\(151\) 20.0000 34.6410i 0.132450 0.229411i −0.792170 0.610300i \(-0.791049\pi\)
0.924621 + 0.380889i \(0.124382\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 4.24264i 0.0273719i
\(156\) 0 0
\(157\) −148.000 + 256.344i −0.942675 + 1.63276i −0.182335 + 0.983237i \(0.558365\pi\)
−0.760340 + 0.649525i \(0.774968\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 97.9796 124.451i 0.608569 0.772986i
\(162\) 0 0
\(163\) 64.0000 + 110.851i 0.392638 + 0.680069i 0.992797 0.119812i \(-0.0382292\pi\)
−0.600159 + 0.799881i \(0.704896\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 60.8112i 0.364139i 0.983286 + 0.182069i \(0.0582796\pi\)
−0.983286 + 0.182069i \(0.941720\pi\)
\(168\) 0 0
\(169\) 56.0000 0.331361
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 97.9796 56.5685i 0.566356 0.326986i −0.189337 0.981912i \(-0.560634\pi\)
0.755693 + 0.654926i \(0.227300\pi\)
\(174\) 0 0
\(175\) 23.0000 159.349i 0.131429 0.910564i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −25.7196 14.8492i −0.143685 0.0829567i 0.426434 0.904519i \(-0.359770\pi\)
−0.570119 + 0.821562i \(0.693103\pi\)
\(180\) 0 0
\(181\) 81.0000 0.447514 0.223757 0.974645i \(-0.428168\pi\)
0.223757 + 0.974645i \(0.428168\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 20.8207 + 12.0208i 0.112544 + 0.0649774i
\(186\) 0 0
\(187\) −40.0000 69.2820i −0.213904 0.370492i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 55.1135 31.8198i 0.288552 0.166596i −0.348736 0.937221i \(-0.613389\pi\)
0.637289 + 0.770625i \(0.280056\pi\)
\(192\) 0 0
\(193\) 111.500 193.124i 0.577720 1.00064i −0.418020 0.908438i \(-0.637276\pi\)
0.995740 0.0922029i \(-0.0293909\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 158.392i 0.804020i 0.915635 + 0.402010i \(0.131688\pi\)
−0.915635 + 0.402010i \(0.868312\pi\)
\(198\) 0 0
\(199\) −68.0000 + 117.779i −0.341709 + 0.591857i −0.984750 0.173975i \(-0.944339\pi\)
0.643042 + 0.765831i \(0.277672\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 58.7878 + 147.078i 0.289595 + 0.724523i
\(204\) 0 0
\(205\) 57.0000 + 98.7269i 0.278049 + 0.481595i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 91.9239i 0.439827i
\(210\) 0 0
\(211\) −272.000 −1.28910 −0.644550 0.764562i \(-0.722955\pi\)
−0.644550 + 0.764562i \(0.722955\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −104.103 + 60.1041i −0.484201 + 0.279554i
\(216\) 0 0
\(217\) −3.00000 + 20.7846i −0.0138249 + 0.0957816i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 146.969 + 84.8528i 0.665020 + 0.383949i
\(222\) 0 0
\(223\) −248.000 −1.11211 −0.556054 0.831146i \(-0.687685\pi\)
−0.556054 + 0.831146i \(0.687685\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 143.295 + 82.7315i 0.631256 + 0.364456i 0.781238 0.624233i \(-0.214588\pi\)
−0.149982 + 0.988689i \(0.547922\pi\)
\(228\) 0 0
\(229\) −216.500 374.989i −0.945415 1.63751i −0.754918 0.655819i \(-0.772324\pi\)
−0.190496 0.981688i \(-0.561010\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −197.184 + 113.844i −0.846283 + 0.488602i −0.859395 0.511312i \(-0.829160\pi\)
0.0131120 + 0.999914i \(0.495826\pi\)
\(234\) 0 0
\(235\) −51.0000 + 88.3346i −0.217021 + 0.375892i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 343.654i 1.43788i −0.695071 0.718941i \(-0.744627\pi\)
0.695071 0.718941i \(-0.255373\pi\)
\(240\) 0 0
\(241\) −79.0000 + 136.832i −0.327801 + 0.567768i −0.982075 0.188490i \(-0.939641\pi\)
0.654274 + 0.756257i \(0.272974\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −19.5959 + 66.4680i −0.0799833 + 0.271298i
\(246\) 0 0
\(247\) −97.5000 168.875i −0.394737 0.683704i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 237.588i 0.946565i 0.880911 + 0.473283i \(0.156931\pi\)
−0.880911 + 0.473283i \(0.843069\pi\)
\(252\) 0 0
\(253\) 160.000 0.632411
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −275.568 + 159.099i −1.07225 + 0.619062i −0.928795 0.370595i \(-0.879154\pi\)
−0.143453 + 0.989657i \(0.545821\pi\)
\(258\) 0 0
\(259\) 93.5000 + 73.6122i 0.361004 + 0.284217i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −146.969 84.8528i −0.558819 0.322634i 0.193852 0.981031i \(-0.437902\pi\)
−0.752671 + 0.658396i \(0.771235\pi\)
\(264\) 0 0
\(265\) 48.0000 0.181132
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 420.087 + 242.538i 1.56166 + 0.901627i 0.997089 + 0.0762447i \(0.0242930\pi\)
0.564574 + 0.825382i \(0.309040\pi\)
\(270\) 0 0
\(271\) 108.000 + 187.061i 0.398524 + 0.690264i 0.993544 0.113447i \(-0.0361892\pi\)
−0.595020 + 0.803711i \(0.702856\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 140.846 81.3173i 0.512166 0.295699i
\(276\) 0 0
\(277\) −152.500 + 264.138i −0.550542 + 0.953566i 0.447694 + 0.894187i \(0.352245\pi\)
−0.998236 + 0.0593790i \(0.981088\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 22.6274i 0.0805246i 0.999189 + 0.0402623i \(0.0128194\pi\)
−0.999189 + 0.0402623i \(0.987181\pi\)
\(282\) 0 0
\(283\) 78.5000 135.966i 0.277385 0.480445i −0.693349 0.720602i \(-0.743866\pi\)
0.970734 + 0.240157i \(0.0771989\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 209.431 + 523.966i 0.729726 + 1.82567i
\(288\) 0 0
\(289\) −80.5000 139.430i −0.278547 0.482457i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 101.823i 0.347520i 0.984788 + 0.173760i \(0.0555917\pi\)
−0.984788 + 0.173760i \(0.944408\pi\)
\(294\) 0 0
\(295\) 128.000 0.433898
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −293.939 + 169.706i −0.983073 + 0.567577i
\(300\) 0 0
\(301\) −552.500 + 220.836i −1.83555 + 0.733676i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −88.1816 50.9117i −0.289120 0.166924i
\(306\) 0 0
\(307\) 11.0000 0.0358306 0.0179153 0.999840i \(-0.494297\pi\)
0.0179153 + 0.999840i \(0.494297\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 454.380 + 262.337i 1.46103 + 0.843526i 0.999059 0.0433690i \(-0.0138091\pi\)
0.461971 + 0.886895i \(0.347142\pi\)
\(312\) 0 0
\(313\) −276.500 478.912i −0.883387 1.53007i −0.847552 0.530713i \(-0.821924\pi\)
−0.0358348 0.999358i \(-0.511409\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 117.576 67.8823i 0.370901 0.214140i −0.302951 0.953006i \(-0.597972\pi\)
0.673852 + 0.738866i \(0.264639\pi\)
\(318\) 0 0
\(319\) −80.0000 + 138.564i −0.250784 + 0.434370i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 147.078i 0.455350i
\(324\) 0 0
\(325\) −172.500 + 298.779i −0.530769 + 0.919319i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −312.310 + 396.687i −0.949270 + 1.20574i
\(330\) 0 0
\(331\) −30.5000 52.8275i −0.0921450 0.159600i 0.816268 0.577673i \(-0.196039\pi\)
−0.908413 + 0.418073i \(0.862706\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 60.8112i 0.181526i
\(336\) 0 0
\(337\) 135.000 0.400593 0.200297 0.979735i \(-0.435809\pi\)
0.200297 + 0.979735i \(0.435809\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −18.3712 + 10.6066i −0.0538744 + 0.0311044i
\(342\) 0 0
\(343\) −143.000 + 311.769i −0.416910 + 0.908948i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 88.1816 + 50.9117i 0.254126 + 0.146720i 0.621652 0.783294i \(-0.286462\pi\)
−0.367526 + 0.930013i \(0.619795\pi\)
\(348\) 0 0
\(349\) −152.000 −0.435530 −0.217765 0.976001i \(-0.569877\pi\)
−0.217765 + 0.976001i \(0.569877\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −334.355 193.040i −0.947182 0.546856i −0.0549778 0.998488i \(-0.517509\pi\)
−0.892205 + 0.451632i \(0.850842\pi\)
\(354\) 0 0
\(355\) 37.0000 + 64.0859i 0.104225 + 0.180524i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −39.1918 + 22.6274i −0.109169 + 0.0630290i −0.553591 0.832789i \(-0.686743\pi\)
0.444421 + 0.895818i \(0.353409\pi\)
\(360\) 0 0
\(361\) 96.0000 166.277i 0.265928 0.460601i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 134.350i 0.368083i
\(366\) 0 0
\(367\) 50.5000 87.4686i 0.137602 0.238334i −0.788986 0.614411i \(-0.789394\pi\)
0.926588 + 0.376077i \(0.122727\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 235.151 + 33.9411i 0.633830 + 0.0914855i
\(372\) 0 0
\(373\) 155.500 + 269.334i 0.416890 + 0.722075i 0.995625 0.0934411i \(-0.0297867\pi\)
−0.578735 + 0.815516i \(0.696453\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 339.411i 0.900295i
\(378\) 0 0
\(379\) −91.0000 −0.240106 −0.120053 0.992768i \(-0.538306\pi\)
−0.120053 + 0.992768i \(0.538306\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −284.141 + 164.049i −0.741882 + 0.428326i −0.822753 0.568399i \(-0.807563\pi\)
0.0808712 + 0.996725i \(0.474230\pi\)
\(384\) 0 0
\(385\) −65.0000 + 25.9808i −0.168831 + 0.0674825i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 596.451 + 344.361i 1.53329 + 0.885247i 0.999207 + 0.0398163i \(0.0126773\pi\)
0.534085 + 0.845431i \(0.320656\pi\)
\(390\) 0 0
\(391\) −256.000 −0.654731
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −84.5074 48.7904i −0.213943 0.123520i
\(396\) 0 0
\(397\) 139.500 + 241.621i 0.351385 + 0.608617i 0.986492 0.163807i \(-0.0523774\pi\)
−0.635107 + 0.772424i \(0.719044\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(402\) 0 0
\(403\) 22.5000 38.9711i 0.0558313 0.0967026i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 120.208i 0.295352i
\(408\) 0 0
\(409\) 111.500 193.124i 0.272616 0.472185i −0.696915 0.717154i \(-0.745444\pi\)
0.969531 + 0.244969i \(0.0787778\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 627.069 + 90.5097i 1.51833 + 0.219152i
\(414\) 0 0
\(415\) 43.0000 + 74.4782i 0.103614 + 0.179466i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 581.242i 1.38721i −0.720355 0.693606i \(-0.756021\pi\)
0.720355 0.693606i \(-0.243979\pi\)
\(420\) 0 0
\(421\) 153.000 0.363420 0.181710 0.983352i \(-0.441837\pi\)
0.181710 + 0.983352i \(0.441837\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −225.353 + 130.108i −0.530242 + 0.306136i
\(426\) 0 0
\(427\) −396.000 311.769i −0.927400 0.730139i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −121.250 70.0036i −0.281322 0.162421i 0.352700 0.935737i \(-0.385264\pi\)
−0.634022 + 0.773315i \(0.718597\pi\)
\(432\) 0 0
\(433\) 137.000 0.316397 0.158199 0.987407i \(-0.449431\pi\)
0.158199 + 0.987407i \(0.449431\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 254.747 + 147.078i 0.582945 + 0.336563i
\(438\) 0 0
\(439\) −300.000 519.615i −0.683371 1.18363i −0.973946 0.226781i \(-0.927180\pi\)
0.290574 0.956852i \(-0.406154\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −548.686 + 316.784i −1.23857 + 0.715088i −0.968801 0.247838i \(-0.920280\pi\)
−0.269767 + 0.962926i \(0.586947\pi\)
\(444\) 0 0
\(445\) 96.0000 166.277i 0.215730 0.373656i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 383.252i 0.853568i −0.904354 0.426784i \(-0.859647\pi\)
0.904354 0.426784i \(-0.140353\pi\)
\(450\) 0 0
\(451\) −285.000 + 493.634i −0.631929 + 1.09453i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 91.8559 116.673i 0.201881 0.256423i
\(456\) 0 0
\(457\) 119.500 + 206.980i 0.261488 + 0.452910i 0.966638 0.256148i \(-0.0824535\pi\)
−0.705150 + 0.709059i \(0.749120\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 452.548i 0.981667i 0.871253 + 0.490833i \(0.163308\pi\)
−0.871253 + 0.490833i \(0.836692\pi\)
\(462\) 0 0
\(463\) −211.000 −0.455724 −0.227862 0.973693i \(-0.573173\pi\)
−0.227862 + 0.973693i \(0.573173\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −270.669 + 156.271i −0.579590 + 0.334627i −0.760971 0.648786i \(-0.775277\pi\)
0.181380 + 0.983413i \(0.441944\pi\)
\(468\) 0 0
\(469\) −43.0000 + 297.913i −0.0916844 + 0.635208i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −520.517 300.520i −1.10046 0.635350i
\(474\) 0 0
\(475\) 299.000 0.629474
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 607.473 + 350.725i 1.26821 + 0.732202i 0.974649 0.223737i \(-0.0718258\pi\)
0.293562 + 0.955940i \(0.405159\pi\)
\(480\) 0 0
\(481\) −127.500 220.836i −0.265073 0.459119i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −19.5959 + 11.3137i −0.0404040 + 0.0233272i
\(486\) 0 0
\(487\) 209.500 362.865i 0.430185 0.745102i −0.566704 0.823921i \(-0.691782\pi\)
0.996889 + 0.0788195i \(0.0251151\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 169.706i 0.345633i 0.984954 + 0.172816i \(0.0552867\pi\)
−0.984954 + 0.172816i \(0.944713\pi\)
\(492\) 0 0
\(493\) 128.000 221.703i 0.259635 0.449701i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 135.947 + 340.118i 0.273535 + 0.684343i
\(498\) 0 0
\(499\) 93.5000 + 161.947i 0.187375 + 0.324543i 0.944374 0.328873i \(-0.106669\pi\)
−0.756999 + 0.653416i \(0.773335\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 173.948i 0.345822i 0.984937 + 0.172911i \(0.0553172\pi\)
−0.984937 + 0.172911i \(0.944683\pi\)
\(504\) 0 0
\(505\) −98.0000 −0.194059
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −224.128 + 129.401i −0.440331 + 0.254225i −0.703738 0.710460i \(-0.748487\pi\)
0.263407 + 0.964685i \(0.415154\pi\)
\(510\) 0 0
\(511\) −95.0000 + 658.179i −0.185910 + 1.28802i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 74.7094 + 43.1335i 0.145067 + 0.0837544i
\(516\) 0 0
\(517\) −510.000 −0.986460
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 352.727 + 203.647i 0.677018 + 0.390877i 0.798731 0.601689i \(-0.205505\pi\)
−0.121712 + 0.992565i \(0.538839\pi\)
\(522\) 0 0
\(523\) −405.500 702.347i −0.775335 1.34292i −0.934606 0.355684i \(-0.884248\pi\)
0.159272 0.987235i \(-0.449085\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 29.3939 16.9706i 0.0557759 0.0322022i
\(528\) 0 0
\(529\) −8.50000 + 14.7224i −0.0160681 + 0.0278307i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 1209.15i 2.26858i
\(534\) 0 0
\(535\) −120.000 + 207.846i −0.224299 + 0.388497i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −336.805 + 81.3173i −0.624870 + 0.150867i
\(540\) 0 0
\(541\) 172.500 + 298.779i 0.318854 + 0.552271i 0.980249 0.197766i \(-0.0633687\pi\)
−0.661395 + 0.750038i \(0.730035\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 91.9239i 0.168668i
\(546\) 0 0
\(547\) 864.000 1.57952 0.789762 0.613413i \(-0.210204\pi\)
0.789762 + 0.613413i \(0.210204\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −254.747 + 147.078i −0.462336 + 0.266930i
\(552\) 0 0
\(553\) −379.500 298.779i −0.686257 0.540287i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −821.804 474.469i −1.47541 0.851829i −0.475795 0.879556i \(-0.657840\pi\)
−0.999616 + 0.0277272i \(0.991173\pi\)
\(558\) 0 0
\(559\) 1275.00 2.28086
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 640.542 + 369.817i 1.13773 + 0.656868i 0.945867 0.324554i \(-0.105214\pi\)
0.191862 + 0.981422i \(0.438547\pi\)
\(564\) 0 0
\(565\) 97.0000 + 168.009i 0.171681 + 0.297361i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 665.036 383.959i 1.16878 0.674796i 0.215388 0.976528i \(-0.430898\pi\)
0.953393 + 0.301732i \(0.0975649\pi\)
\(570\) 0 0
\(571\) 238.500 413.094i 0.417688 0.723457i −0.578018 0.816024i \(-0.696174\pi\)
0.995706 + 0.0925665i \(0.0295071\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 520.431i 0.905097i
\(576\) 0 0
\(577\) 131.500 227.765i 0.227903 0.394739i −0.729283 0.684212i \(-0.760146\pi\)
0.957186 + 0.289472i \(0.0934798\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 157.992 + 395.273i 0.271931 + 0.680332i
\(582\) 0 0
\(583\) 120.000 + 207.846i 0.205832 + 0.356511i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 531.744i 0.905868i −0.891544 0.452934i \(-0.850377\pi\)
0.891544 0.452934i \(-0.149623\pi\)
\(588\) 0 0
\(589\) −39.0000 −0.0662139
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −694.430 + 400.930i −1.17105 + 0.676104i −0.953926 0.300041i \(-0.903000\pi\)
−0.217120 + 0.976145i \(0.569666\pi\)
\(594\) 0 0
\(595\) 104.000 41.5692i 0.174790 0.0698642i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −676.059 390.323i −1.12865 0.651624i −0.185052 0.982729i \(-0.559245\pi\)
−0.943594 + 0.331104i \(0.892579\pi\)
\(600\) 0 0
\(601\) 383.000 0.637271 0.318636 0.947877i \(-0.396775\pi\)
0.318636 + 0.947877i \(0.396775\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 86.9569 + 50.2046i 0.143730 + 0.0829828i
\(606\) 0 0
\(607\) −382.500 662.509i −0.630148 1.09145i −0.987521 0.157487i \(-0.949661\pi\)
0.357373 0.933962i \(-0.383673\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 936.930 540.937i 1.53344 0.885330i
\(612\) 0 0
\(613\) −204.000 + 353.338i −0.332790 + 0.576408i −0.983058 0.183296i \(-0.941323\pi\)
0.650268 + 0.759705i \(0.274657\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 914.996i 1.48298i −0.670966 0.741488i \(-0.734120\pi\)
0.670966 0.741488i \(-0.265880\pi\)
\(618\) 0 0
\(619\) −473.500 + 820.126i −0.764943 + 1.32492i 0.175333 + 0.984509i \(0.443900\pi\)
−0.940276 + 0.340412i \(0.889434\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 587.878 746.705i 0.943624 1.19856i
\(624\) 0 0
\(625\) −239.500 414.826i −0.383200 0.663722i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 192.333i 0.305776i
\(630\) 0 0
\(631\) 760.000 1.20444 0.602219 0.798331i \(-0.294284\pi\)
0.602219 + 0.798331i \(0.294284\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −209.431 + 120.915i −0.329813 + 0.190418i
\(636\) 0 0
\(637\) 532.500 506.625i 0.835950 0.795329i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −401.716 231.931i −0.626703 0.361827i 0.152771 0.988262i \(-0.451180\pi\)
−0.779474 + 0.626435i \(0.784514\pi\)
\(642\) 0 0
\(643\) 19.0000 0.0295490 0.0147745 0.999891i \(-0.495297\pi\)
0.0147745 + 0.999891i \(0.495297\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −1003.07 579.120i −1.55033 0.895086i −0.998114 0.0613872i \(-0.980448\pi\)
−0.552220 0.833698i \(-0.686219\pi\)
\(648\) 0 0
\(649\) 320.000 + 554.256i 0.493066 + 0.854016i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 892.839 515.481i 1.36729 0.789404i 0.376707 0.926332i \(-0.377056\pi\)
0.990581 + 0.136928i \(0.0437230\pi\)
\(654\) 0 0
\(655\) 83.0000 143.760i 0.126718 0.219481i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 972.979i 1.47645i −0.674556 0.738224i \(-0.735665\pi\)
0.674556 0.738224i \(-0.264335\pi\)
\(660\) 0 0
\(661\) 200.500 347.276i 0.303328 0.525380i −0.673559 0.739133i \(-0.735235\pi\)
0.976888 + 0.213753i \(0.0685688\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −127.373 18.3848i −0.191539 0.0276463i
\(666\) 0 0
\(667\) 256.000 + 443.405i 0.383808 + 0.664775i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 509.117i 0.758743i
\(672\) 0 0
\(673\) 665.000 0.988113 0.494056 0.869430i \(-0.335514\pi\)
0.494056 + 0.869430i \(0.335514\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −793.635 + 458.205i −1.17228 + 0.676817i −0.954216 0.299117i \(-0.903308\pi\)
−0.218065 + 0.975934i \(0.569975\pi\)
\(678\) 0 0
\(679\) −104.000 + 41.5692i −0.153166 + 0.0612212i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 117.576 + 67.8823i 0.172146 + 0.0993884i 0.583597 0.812043i \(-0.301645\pi\)
−0.411452 + 0.911432i \(0.634978\pi\)
\(684\) 0 0
\(685\) 304.000 0.443796
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −440.908 254.558i −0.639925 0.369461i
\(690\) 0 0
\(691\) 110.500 + 191.392i 0.159913 + 0.276978i 0.934837 0.355077i \(-0.115545\pi\)
−0.774924 + 0.632054i \(0.782212\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −101.654 + 58.6899i −0.146264 + 0.0844458i
\(696\) 0 0
\(697\) 456.000 789.815i 0.654232 1.13316i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 192.333i 0.274370i −0.990545 0.137185i \(-0.956195\pi\)
0.990545 0.137185i \(-0.0438054\pi\)
\(702\) 0 0
\(703\) −110.500 + 191.392i −0.157183 + 0.272250i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −480.100 69.2965i −0.679066 0.0980148i
\(708\) 0 0
\(709\) 164.000 + 284.056i 0.231312 + 0.400644i 0.958194 0.286118i \(-0.0923649\pi\)
−0.726883 + 0.686762i \(0.759032\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 67.8823i 0.0952065i
\(714\) 0 0
\(715\) 150.000 0.209790
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 878.142 506.996i 1.22134 0.705140i 0.256135 0.966641i \(-0.417551\pi\)
0.965203 + 0.261501i \(0.0842175\pi\)
\(720\) 0 0
\(721\) 335.500 + 264.138i 0.465326 + 0.366349i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 450.706 + 260.215i 0.621664 + 0.358918i
\(726\) 0 0
\(727\) −1069.00 −1.47043 −0.735213 0.677836i \(-0.762918\pi\)
−0.735213 + 0.677836i \(0.762918\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 832.827 + 480.833i 1.13930 + 0.657774i
\(732\) 0 0
\(733\) −247.500 428.683i −0.337653 0.584833i 0.646337 0.763052i \(-0.276300\pi\)
−0.983991 + 0.178219i \(0.942967\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −263.320 + 152.028i −0.357286 + 0.206279i
\(738\) 0 0
\(739\) 226.500 392.310i 0.306495 0.530865i −0.671098 0.741369i \(-0.734177\pi\)
0.977593 + 0.210503i \(0.0675103\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 538.815i 0.725189i 0.931947 + 0.362594i \(0.118109\pi\)
−0.931947 + 0.362594i \(0.881891\pi\)
\(744\) 0 0
\(745\) −72.0000 + 124.708i −0.0966443 + 0.167393i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −734.847 + 933.381i −0.981104 + 1.24617i
\(750\) 0 0
\(751\) −169.500 293.583i −0.225699 0.390922i 0.730830 0.682560i \(-0.239133\pi\)
−0.956529 + 0.291637i \(0.905800\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 56.5685i 0.0749252i
\(756\) 0 0
\(757\) 198.000 0.261559 0.130779 0.991411i \(-0.458252\pi\)
0.130779 + 0.991411i \(0.458252\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 313.535 181.019i 0.412004 0.237870i −0.279647 0.960103i \(-0.590217\pi\)
0.691650 + 0.722233i \(0.256884\pi\)
\(762\) 0 0
\(763\) −65.0000 + 450.333i −0.0851900 + 0.590214i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −1175.76 678.823i −1.53293 0.885036i
\(768\) 0 0
\(769\) −929.000 −1.20806 −0.604031 0.796961i \(-0.706440\pi\)
−0.604031 + 0.796961i \(0.706440\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 148.194 + 85.5599i 0.191713 + 0.110686i 0.592784 0.805361i \(-0.298029\pi\)
−0.401071 + 0.916047i \(0.631362\pi\)
\(774\) 0 0
\(775\) 34.5000 + 59.7558i 0.0445161 + 0.0771042i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −907.536 + 523.966i −1.16500 + 0.672614i
\(780\) 0 0
\(781\) −185.000 + 320.429i −0.236876 + 0.410281i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 418.607i 0.533258i
\(786\) 0 0
\(787\) 45.0000 77.9423i 0.0571792 0.0990372i −0.836019 0.548701i \(-0.815123\pi\)
0.893198 + 0.449663i \(0.148456\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 356.401 + 891.662i 0.450570 + 1.12726i
\(792\) 0 0
\(793\) 540.000 + 935.307i 0.680958 + 1.17945i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 1154.00i 1.44793i −0.689838 0.723964i \(-0.742318\pi\)
0.689838 0.723964i \(-0.257682\pi\)
\(798\) 0 0
\(799\) 816.000 1.02128
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −581.754 + 335.876i −0.724475 + 0.418276i
\(804\) 0 0
\(805\) −32.0000 + 221.703i −0.0397516 + 0.275407i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 148.194 + 85.5599i 0.183182 + 0.105760i 0.588787 0.808288i \(-0.299606\pi\)
−0.405605 + 0.914049i \(0.632939\pi\)
\(810\) 0 0
\(811\) 554.000 0.683107 0.341554 0.939862i \(-0.389047\pi\)
0.341554 + 0.939862i \(0.389047\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −156.767 90.5097i −0.192353 0.111055i
\(816\) 0 0
\(817\) −552.500 956.958i −0.676255 1.17131i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 919.783 531.037i 1.12032 0.646818i 0.178838 0.983879i \(-0.442766\pi\)
0.941483 + 0.337061i \(0.109433\pi\)
\(822\) 0 0
\(823\) 428.000 741.318i 0.520049 0.900751i −0.479680 0.877444i \(-0.659247\pi\)
0.999728 0.0233070i \(-0.00741951\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 1022.48i 1.23637i −0.786033 0.618184i \(-0.787869\pi\)
0.786033 0.618184i \(-0.212131\pi\)
\(828\) 0 0
\(829\) −519.500 + 899.800i −0.626659 + 1.08540i 0.361559 + 0.932349i \(0.382245\pi\)
−0.988218 + 0.153055i \(0.951089\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 538.888 130.108i 0.646924 0.156192i
\(834\) 0 0
\(835\) −43.0000 74.4782i −0.0514970 0.0891954i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 656.195i 0.782116i 0.920366 + 0.391058i \(0.127891\pi\)
−0.920366 + 0.391058i \(0.872109\pi\)
\(840\) 0 0
\(841\) 329.000 0.391201
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −68.5857 + 39.5980i −0.0811665 + 0.0468615i
\(846\) 0 0
\(847\) 390.500 + 307.439i 0.461039 + 0.362974i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 333.131 + 192.333i 0.391458 + 0.226008i
\(852\) 0 0
\(853\) 1463.00 1.71512 0.857562 0.514381i \(-0.171978\pi\)
0.857562 + 0.514381i \(0.171978\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 58.7878 + 33.9411i 0.0685971 + 0.0396046i 0.533906 0.845544i \(-0.320724\pi\)
−0.465309 + 0.885148i \(0.654057\pi\)
\(858\) 0 0
\(859\) −731.000 1266.13i −0.850990 1.47396i −0.880316 0.474387i \(-0.842670\pi\)
0.0293268 0.999570i \(-0.490664\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 699.329 403.758i 0.810347 0.467854i −0.0367295 0.999325i \(-0.511694\pi\)
0.847076 + 0.531471i \(0.178361\pi\)
\(864\) 0 0
\(865\) −80.0000 + 138.564i −0.0924855 + 0.160190i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 487.904i 0.561454i
\(870\) 0 0
\(871\) 322.500 558.586i 0.370264 0.641316i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 176.363 + 441.235i 0.201558 + 0.504268i
\(876\) 0 0
\(877\) −740.000 1281.72i −0.843786 1.46148i −0.886672 0.462400i \(-0.846989\pi\)
0.0428860 0.999080i \(-0.486345\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 712.764i 0.809039i −0.914529 0.404520i \(-0.867439\pi\)
0.914529 0.404520i \(-0.132561\pi\)
\(882\) 0 0
\(883\) 115.000 0.130238 0.0651189 0.997878i \(-0.479257\pi\)
0.0651189 + 0.997878i \(0.479257\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −1032.46 + 596.091i −1.16399 + 0.672030i −0.952257 0.305297i \(-0.901244\pi\)
−0.211734 + 0.977327i \(0.567911\pi\)
\(888\) 0 0
\(889\) −1111.50 + 444.271i −1.25028 + 0.499742i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −812.006 468.812i −0.909301 0.524985i
\(894\) 0 0
\(895\) 42.0000 0.0469274
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −58.7878 33.9411i −0.0653924 0.0377543i
\(900\) 0 0
\(901\) −192.000 332.554i −0.213097 0.369094i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −99.2043 + 57.2756i −0.109618 + 0.0632880i
\(906\) 0 0
\(907\) −250.500 + 433.879i −0.276185 + 0.478367i −0.970433 0.241369i \(-0.922404\pi\)
0.694248 + 0.719736i \(0.255737\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 203.647i 0.223542i −0.993734 0.111771i \(-0.964348\pi\)
0.993734 0.111771i \(-0.0356523\pi\)
\(912\) 0 0
\(913\) −215.000 + 372.391i −0.235487 + 0.407876i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 508.269 645.588i 0.554274 0.704022i
\(918\) 0 0
\(919\) −326.500 565.515i −0.355277 0.615359i 0.631888 0.775060i \(-0.282280\pi\)
−0.987165 + 0.159701i \(0.948947\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 784.889i 0.850367i
\(924\) 0 0
\(925\) 391.000 0.422703
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 11.0227 6.36396i 0.0118651 0.00685033i −0.494056 0.869430i \(-0.664486\pi\)
0.505921 + 0.862580i \(0.331153\pi\)
\(930\) 0 0
\(931\) −611.000 180.133i −0.656284 0.193484i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 97.9796 + 56.5685i 0.104791 + 0.0605011i
\(936\) 0 0
\(937\) 761.000 0.812166 0.406083 0.913836i \(-0.366894\pi\)
0.406083 + 0.913836i \(0.366894\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −244.949 141.421i −0.260307 0.150288i 0.364168 0.931333i \(-0.381354\pi\)
−0.624475 + 0.781045i \(0.714687\pi\)
\(942\) 0 0
\(943\) 912.000 + 1579.63i 0.967126 + 1.67511i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 934.480 539.522i 0.986780 0.569718i 0.0824695 0.996594i \(-0.473719\pi\)
0.904310 + 0.426876i \(0.140386\pi\)
\(948\) 0 0
\(949\) 712.500 1234.09i 0.750790 1.30041i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 1074.80i 1.12781i 0.825840 + 0.563905i \(0.190701\pi\)
−0.825840 + 0.563905i \(0.809299\pi\)
\(954\) 0 0
\(955\) −45.0000 + 77.9423i −0.0471204 + 0.0816150i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 1489.29 + 214.960i 1.55296 + 0.224151i
\(960\) 0 0
\(961\) 476.000 + 824.456i 0.495317 + 0.857915i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 315.370i 0.326808i
\(966\) 0 0
\(967\) −1163.00 −1.20269 −0.601344 0.798990i \(-0.705368\pi\)
−0.601344 + 0.798990i \(0.705368\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −1352.12 + 780.646i −1.39250 + 0.803961i −0.993592 0.113030i \(-0.963944\pi\)
−0.398909 + 0.916990i \(0.630611\pi\)
\(972\) 0 0
\(973\) −539.500 + 215.640i −0.554471 + 0.221624i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 981.021 + 566.393i 1.00412 + 0.579726i 0.909463 0.415784i \(-0.136493\pi\)
0.0946520 + 0.995510i \(0.469826\pi\)
\(978\) 0 0
\(979\) 960.000 0.980592
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 264.545 + 152.735i 0.269120 + 0.155376i 0.628488 0.777820i \(-0.283674\pi\)
−0.359368 + 0.933196i \(0.617008\pi\)
\(984\) 0 0
\(985\) −112.000 193.990i −0.113706 0.196944i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −1665.65 + 961.665i −1.68418 + 0.972361i
\(990\) 0 0
\(991\) −486.500 + 842.643i −0.490918 + 0.850295i −0.999945 0.0104551i \(-0.996672\pi\)
0.509027 + 0.860751i \(0.330005\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 192.333i 0.193300i
\(996\) 0 0
\(997\) 39.5000 68.4160i 0.0396189 0.0686219i −0.845536 0.533918i \(-0.820719\pi\)
0.885155 + 0.465296i \(0.154052\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1008.3.dc.a.305.1 4
3.2 odd 2 inner 1008.3.dc.a.305.2 4
4.3 odd 2 126.3.s.b.53.1 4
7.2 even 3 inner 1008.3.dc.a.737.2 4
12.11 even 2 126.3.s.b.53.2 yes 4
21.2 odd 6 inner 1008.3.dc.a.737.1 4
28.3 even 6 882.3.b.d.197.1 2
28.11 odd 6 882.3.b.c.197.1 2
28.19 even 6 882.3.s.c.863.2 4
28.23 odd 6 126.3.s.b.107.2 yes 4
28.27 even 2 882.3.s.c.557.1 4
84.11 even 6 882.3.b.c.197.2 2
84.23 even 6 126.3.s.b.107.1 yes 4
84.47 odd 6 882.3.s.c.863.1 4
84.59 odd 6 882.3.b.d.197.2 2
84.83 odd 2 882.3.s.c.557.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
126.3.s.b.53.1 4 4.3 odd 2
126.3.s.b.53.2 yes 4 12.11 even 2
126.3.s.b.107.1 yes 4 84.23 even 6
126.3.s.b.107.2 yes 4 28.23 odd 6
882.3.b.c.197.1 2 28.11 odd 6
882.3.b.c.197.2 2 84.11 even 6
882.3.b.d.197.1 2 28.3 even 6
882.3.b.d.197.2 2 84.59 odd 6
882.3.s.c.557.1 4 28.27 even 2
882.3.s.c.557.2 4 84.83 odd 2
882.3.s.c.863.1 4 84.47 odd 6
882.3.s.c.863.2 4 28.19 even 6
1008.3.dc.a.305.1 4 1.1 even 1 trivial
1008.3.dc.a.305.2 4 3.2 odd 2 inner
1008.3.dc.a.737.1 4 21.2 odd 6 inner
1008.3.dc.a.737.2 4 7.2 even 3 inner