Properties

Label 1008.3.cg.l
Level $1008$
Weight $3$
Character orbit 1008.cg
Analytic conductor $27.466$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 1008 = 2^{4} \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 1008.cg (of order \(6\), degree \(2\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(27.4660106475\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\sqrt{2}, \sqrt{-3})\)
Defining polynomial: \(x^{4} + 2 x^{2} + 4\)
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 3 \)
Twist minimal: no (minimal twist has level 14)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( 2 + \beta_{1} + 2 \beta_{3} ) q^{5} + ( -1 + 2 \beta_{1} - \beta_{2} - 2 \beta_{3} ) q^{7} +O(q^{10})\) \( q + ( 2 + \beta_{1} + 2 \beta_{3} ) q^{5} + ( -1 + 2 \beta_{1} - \beta_{2} - 2 \beta_{3} ) q^{7} + ( 9 + 9 \beta_{1} - \beta_{2} - \beta_{3} ) q^{11} + ( -6 - 12 \beta_{1} - 2 \beta_{2} ) q^{13} + ( 5 - 5 \beta_{1} + 2 \beta_{2} - 2 \beta_{3} ) q^{17} + ( -2 - \beta_{1} - \beta_{3} ) q^{19} + ( -15 \beta_{1} - 6 \beta_{2} + 3 \beta_{3} ) q^{23} + ( 2 + 2 \beta_{1} + 4 \beta_{2} + 4 \beta_{3} ) q^{25} + ( -12 - 2 \beta_{2} + 4 \beta_{3} ) q^{29} + ( 7 - 7 \beta_{1} - 15 \beta_{2} + 15 \beta_{3} ) q^{31} + ( -28 - 35 \beta_{1} - 7 \beta_{3} ) q^{35} + ( 31 \beta_{1} - 16 \beta_{2} + 8 \beta_{3} ) q^{37} + ( -2 - 4 \beta_{1} - 10 \beta_{2} ) q^{41} + ( 2 - 2 \beta_{2} + 4 \beta_{3} ) q^{43} + ( 58 + 29 \beta_{1} + \beta_{3} ) q^{47} + ( 15 + 40 \beta_{1} - 6 \beta_{2} + 16 \beta_{3} ) q^{49} + ( 39 + 39 \beta_{1} + 4 \beta_{2} + 4 \beta_{3} ) q^{53} + ( -3 - 6 \beta_{1} + 15 \beta_{2} ) q^{55} + ( -13 + 13 \beta_{1} - 25 \beta_{2} + 25 \beta_{3} ) q^{59} + ( -14 - 7 \beta_{1} - 32 \beta_{3} ) q^{61} + ( -42 \beta_{1} - 28 \beta_{2} + 14 \beta_{3} ) q^{65} + ( 29 + 29 \beta_{1} - 15 \beta_{2} - 15 \beta_{3} ) q^{67} + ( -6 - 10 \beta_{2} + 20 \beta_{3} ) q^{71} + ( 53 - 53 \beta_{1} + 16 \beta_{2} - 16 \beta_{3} ) q^{73} + ( -21 + 21 \beta_{1} - 28 \beta_{2} + 14 \beta_{3} ) q^{77} + ( 55 \beta_{1} - 10 \beta_{2} + 5 \beta_{3} ) q^{79} + ( 68 + 136 \beta_{1} + 4 \beta_{2} ) q^{83} + ( -9 - 8 \beta_{2} + 16 \beta_{3} ) q^{85} + ( 126 + 63 \beta_{1} - 24 \beta_{3} ) q^{89} + ( 18 + 48 \beta_{1} + 32 \beta_{2} - 20 \beta_{3} ) q^{91} + ( -15 - 15 \beta_{1} - 3 \beta_{2} - 3 \beta_{3} ) q^{95} + ( -22 - 44 \beta_{1} - 26 \beta_{2} ) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 6 q^{5} - 8 q^{7} + O(q^{10}) \) \( 4 q + 6 q^{5} - 8 q^{7} + 18 q^{11} + 30 q^{17} - 6 q^{19} + 30 q^{23} + 4 q^{25} - 48 q^{29} + 42 q^{31} - 42 q^{35} - 62 q^{37} + 8 q^{43} + 174 q^{47} - 20 q^{49} + 78 q^{53} - 78 q^{59} - 42 q^{61} + 84 q^{65} + 58 q^{67} - 24 q^{71} + 318 q^{73} - 126 q^{77} - 110 q^{79} - 36 q^{85} + 378 q^{89} - 24 q^{91} - 30 q^{95} + O(q^{100}) \)

Basis of coefficient ring in terms of a root \(\nu\) of \(x^{4} + 2 x^{2} + 4\):

\(\beta_{0}\)\(=\)\( 1 \)
\(\beta_{1}\)\(=\)\( \nu^{2} \)\(/2\)
\(\beta_{2}\)\(=\)\((\)\( \nu^{3} + 4 \nu \)\()/2\)
\(\beta_{3}\)\(=\)\((\)\( -\nu^{3} + 2 \nu \)\()/2\)
\(1\)\(=\)\(\beta_0\)
\(\nu\)\(=\)\((\)\(\beta_{3} + \beta_{2}\)\()/3\)
\(\nu^{2}\)\(=\)\(2 \beta_{1}\)
\(\nu^{3}\)\(=\)\((\)\(-4 \beta_{3} + 2 \beta_{2}\)\()/3\)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1008\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(577\) \(757\) \(785\)
\(\chi(n)\) \(1\) \(-\beta_{1}\) \(1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
145.1
−0.707107 1.22474i
0.707107 + 1.22474i
−0.707107 + 1.22474i
0.707107 1.22474i
0 0 0 −2.74264 1.58346i 0 2.24264 + 6.63103i 0 0 0
145.2 0 0 0 5.74264 + 3.31552i 0 −6.24264 3.16693i 0 0 0
577.1 0 0 0 −2.74264 + 1.58346i 0 2.24264 6.63103i 0 0 0
577.2 0 0 0 5.74264 3.31552i 0 −6.24264 + 3.16693i 0 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.d odd 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1008.3.cg.l 4
3.b odd 2 1 112.3.s.b 4
4.b odd 2 1 126.3.n.c 4
7.d odd 6 1 inner 1008.3.cg.l 4
12.b even 2 1 14.3.d.a 4
21.c even 2 1 784.3.s.c 4
21.g even 6 1 112.3.s.b 4
21.g even 6 1 784.3.c.e 4
21.h odd 6 1 784.3.c.e 4
21.h odd 6 1 784.3.s.c 4
24.f even 2 1 448.3.s.d 4
24.h odd 2 1 448.3.s.c 4
28.d even 2 1 882.3.n.b 4
28.f even 6 1 126.3.n.c 4
28.f even 6 1 882.3.c.f 4
28.g odd 6 1 882.3.c.f 4
28.g odd 6 1 882.3.n.b 4
60.h even 2 1 350.3.k.a 4
60.l odd 4 2 350.3.i.a 8
84.h odd 2 1 98.3.d.a 4
84.j odd 6 1 14.3.d.a 4
84.j odd 6 1 98.3.b.b 4
84.n even 6 1 98.3.b.b 4
84.n even 6 1 98.3.d.a 4
168.ba even 6 1 448.3.s.c 4
168.be odd 6 1 448.3.s.d 4
420.be odd 6 1 350.3.k.a 4
420.br even 12 2 350.3.i.a 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
14.3.d.a 4 12.b even 2 1
14.3.d.a 4 84.j odd 6 1
98.3.b.b 4 84.j odd 6 1
98.3.b.b 4 84.n even 6 1
98.3.d.a 4 84.h odd 2 1
98.3.d.a 4 84.n even 6 1
112.3.s.b 4 3.b odd 2 1
112.3.s.b 4 21.g even 6 1
126.3.n.c 4 4.b odd 2 1
126.3.n.c 4 28.f even 6 1
350.3.i.a 8 60.l odd 4 2
350.3.i.a 8 420.br even 12 2
350.3.k.a 4 60.h even 2 1
350.3.k.a 4 420.be odd 6 1
448.3.s.c 4 24.h odd 2 1
448.3.s.c 4 168.ba even 6 1
448.3.s.d 4 24.f even 2 1
448.3.s.d 4 168.be odd 6 1
784.3.c.e 4 21.g even 6 1
784.3.c.e 4 21.h odd 6 1
784.3.s.c 4 21.c even 2 1
784.3.s.c 4 21.h odd 6 1
882.3.c.f 4 28.f even 6 1
882.3.c.f 4 28.g odd 6 1
882.3.n.b 4 28.d even 2 1
882.3.n.b 4 28.g odd 6 1
1008.3.cg.l 4 1.a even 1 1 trivial
1008.3.cg.l 4 7.d odd 6 1 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{3}^{\mathrm{new}}(1008, [\chi])\):

\( T_{5}^{4} - 6 T_{5}^{3} - 9 T_{5}^{2} + 126 T_{5} + 441 \)
\( T_{11}^{4} - 18 T_{11}^{3} + 261 T_{11}^{2} - 1134 T_{11} + 3969 \)
\( T_{13}^{4} + 264 T_{13}^{2} + 7056 \)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} \)
$3$ \( T^{4} \)
$5$ \( 441 + 126 T - 9 T^{2} - 6 T^{3} + T^{4} \)
$7$ \( 2401 + 392 T + 42 T^{2} + 8 T^{3} + T^{4} \)
$11$ \( 3969 - 1134 T + 261 T^{2} - 18 T^{3} + T^{4} \)
$13$ \( 7056 + 264 T^{2} + T^{4} \)
$17$ \( 2601 - 1530 T + 351 T^{2} - 30 T^{3} + T^{4} \)
$19$ \( 9 - 18 T + 9 T^{2} + 6 T^{3} + T^{4} \)
$23$ \( 3969 - 1890 T + 837 T^{2} - 30 T^{3} + T^{4} \)
$29$ \( ( 72 + 24 T + T^{2} )^{2} \)
$31$ \( 1447209 + 50526 T - 615 T^{2} - 42 T^{3} + T^{4} \)
$37$ \( 36481 - 11842 T + 4035 T^{2} + 62 T^{3} + T^{4} \)
$41$ \( 345744 + 1224 T^{2} + T^{4} \)
$43$ \( ( -68 - 4 T + T^{2} )^{2} \)
$47$ \( 6335289 - 437958 T + 12609 T^{2} - 174 T^{3} + T^{4} \)
$53$ \( 1520289 - 96174 T + 4851 T^{2} - 78 T^{3} + T^{4} \)
$59$ \( 10517049 - 252954 T - 1215 T^{2} + 78 T^{3} + T^{4} \)
$61$ \( 35964009 - 251874 T - 5409 T^{2} + 42 T^{3} + T^{4} \)
$67$ \( 10297681 + 186122 T + 6573 T^{2} - 58 T^{3} + T^{4} \)
$71$ \( ( -1764 + 12 T + T^{2} )^{2} \)
$73$ \( 47485881 - 2191338 T + 40599 T^{2} - 318 T^{3} + T^{4} \)
$79$ \( 6630625 + 283250 T + 9525 T^{2} + 110 T^{3} + T^{4} \)
$83$ \( 189778176 + 27936 T^{2} + T^{4} \)
$89$ \( 71419401 - 3194478 T + 56079 T^{2} - 378 T^{3} + T^{4} \)
$97$ \( 6780816 + 11016 T^{2} + T^{4} \)
show more
show less