Properties

Label 1008.3.cg.h.145.2
Level $1008$
Weight $3$
Character 1008.145
Analytic conductor $27.466$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 1008 = 2^{4} \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 1008.cg (of order \(6\), degree \(2\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(27.4660106475\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\sqrt{2}, \sqrt{-3})\)
Defining polynomial: \(x^{4} + 2 x^{2} + 4\)
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{2}\cdot 3 \)
Twist minimal: no (minimal twist has level 42)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 145.2
Root \(0.707107 + 1.22474i\) of defining polynomial
Character \(\chi\) \(=\) 1008.145
Dual form 1008.3.cg.h.577.2

$q$-expansion

\(f(q)\) \(=\) \(q+(1.24264 + 0.717439i) q^{5} +(-1.74264 - 6.77962i) q^{7} +O(q^{10})\) \(q+(1.24264 + 0.717439i) q^{5} +(-1.74264 - 6.77962i) q^{7} +(-3.00000 - 5.19615i) q^{11} +21.3280i q^{13} +(7.75736 - 4.47871i) q^{17} +(6.25736 + 3.61269i) q^{19} +(18.7279 - 32.4377i) q^{23} +(-11.4706 - 19.8676i) q^{25} +33.9411 q^{29} +(-38.2279 + 22.0709i) q^{31} +(2.69848 - 9.67487i) q^{35} +(13.9853 - 24.2232i) q^{37} -54.8313i q^{41} +1.48528 q^{43} +(-37.2426 - 21.5020i) q^{47} +(-42.9264 + 23.6289i) q^{49} +(-42.7279 - 74.0069i) q^{53} -8.60927i q^{55} +(-35.6985 + 20.6105i) q^{59} +(-1.02944 - 0.594346i) q^{61} +(-15.3015 + 26.5030i) q^{65} +(2.19848 + 3.80789i) q^{67} +137.397 q^{71} +(68.3528 - 39.4635i) q^{73} +(-30.0000 + 29.3939i) q^{77} +(49.1690 - 85.1633i) q^{79} -110.401i q^{83} +12.8528 q^{85} +(18.0000 + 10.3923i) q^{89} +(144.595 - 37.1670i) q^{91} +(5.18377 + 8.97855i) q^{95} +10.9867i q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 12 q^{5} + 10 q^{7} + O(q^{10}) \) \( 4 q - 12 q^{5} + 10 q^{7} - 12 q^{11} + 48 q^{17} + 42 q^{19} + 24 q^{23} + 22 q^{25} - 102 q^{31} - 108 q^{35} + 22 q^{37} - 28 q^{43} - 132 q^{47} - 2 q^{49} - 120 q^{53} - 24 q^{59} - 72 q^{61} - 180 q^{65} - 110 q^{67} + 312 q^{71} - 66 q^{73} - 120 q^{77} + 10 q^{79} - 288 q^{85} + 72 q^{89} + 222 q^{91} - 132 q^{95} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1008\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(577\) \(757\) \(785\)
\(\chi(n)\) \(1\) \(e\left(\frac{5}{6}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 1.24264 + 0.717439i 0.248528 + 0.143488i 0.619090 0.785320i \(-0.287502\pi\)
−0.370562 + 0.928808i \(0.620835\pi\)
\(6\) 0 0
\(7\) −1.74264 6.77962i −0.248949 0.968517i
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −3.00000 5.19615i −0.272727 0.472377i 0.696832 0.717234i \(-0.254592\pi\)
−0.969559 + 0.244857i \(0.921259\pi\)
\(12\) 0 0
\(13\) 21.3280i 1.64061i 0.571924 + 0.820306i \(0.306197\pi\)
−0.571924 + 0.820306i \(0.693803\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 7.75736 4.47871i 0.456315 0.263454i −0.254178 0.967157i \(-0.581805\pi\)
0.710494 + 0.703704i \(0.248472\pi\)
\(18\) 0 0
\(19\) 6.25736 + 3.61269i 0.329335 + 0.190141i 0.655546 0.755156i \(-0.272439\pi\)
−0.326211 + 0.945297i \(0.605772\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 18.7279 32.4377i 0.814257 1.41034i −0.0956024 0.995420i \(-0.530478\pi\)
0.909860 0.414916i \(-0.136189\pi\)
\(24\) 0 0
\(25\) −11.4706 19.8676i −0.458823 0.794704i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 33.9411 1.17038 0.585192 0.810895i \(-0.301019\pi\)
0.585192 + 0.810895i \(0.301019\pi\)
\(30\) 0 0
\(31\) −38.2279 + 22.0709i −1.23316 + 0.711965i −0.967687 0.252154i \(-0.918861\pi\)
−0.265472 + 0.964119i \(0.585528\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 2.69848 9.67487i 0.0770996 0.276425i
\(36\) 0 0
\(37\) 13.9853 24.2232i 0.377981 0.654682i −0.612788 0.790248i \(-0.709952\pi\)
0.990768 + 0.135566i \(0.0432853\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 54.8313i 1.33735i −0.743556 0.668674i \(-0.766862\pi\)
0.743556 0.668674i \(-0.233138\pi\)
\(42\) 0 0
\(43\) 1.48528 0.0345414 0.0172707 0.999851i \(-0.494502\pi\)
0.0172707 + 0.999851i \(0.494502\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −37.2426 21.5020i −0.792397 0.457490i 0.0484090 0.998828i \(-0.484585\pi\)
−0.840806 + 0.541337i \(0.817918\pi\)
\(48\) 0 0
\(49\) −42.9264 + 23.6289i −0.876049 + 0.482222i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −42.7279 74.0069i −0.806187 1.39636i −0.915487 0.402348i \(-0.868194\pi\)
0.109299 0.994009i \(-0.465139\pi\)
\(54\) 0 0
\(55\) 8.60927i 0.156532i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −35.6985 + 20.6105i −0.605059 + 0.349331i −0.771029 0.636800i \(-0.780258\pi\)
0.165970 + 0.986131i \(0.446924\pi\)
\(60\) 0 0
\(61\) −1.02944 0.594346i −0.0168760 0.00974337i 0.491538 0.870856i \(-0.336435\pi\)
−0.508414 + 0.861113i \(0.669768\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −15.3015 + 26.5030i −0.235408 + 0.407738i
\(66\) 0 0
\(67\) 2.19848 + 3.80789i 0.0328132 + 0.0568341i 0.881966 0.471314i \(-0.156220\pi\)
−0.849152 + 0.528148i \(0.822887\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 137.397 1.93517 0.967584 0.252548i \(-0.0812687\pi\)
0.967584 + 0.252548i \(0.0812687\pi\)
\(72\) 0 0
\(73\) 68.3528 39.4635i 0.936340 0.540596i 0.0475288 0.998870i \(-0.484865\pi\)
0.888811 + 0.458274i \(0.151532\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −30.0000 + 29.3939i −0.389610 + 0.381739i
\(78\) 0 0
\(79\) 49.1690 85.1633i 0.622393 1.07802i −0.366646 0.930361i \(-0.619494\pi\)
0.989039 0.147656i \(-0.0471728\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 110.401i 1.33013i −0.746784 0.665067i \(-0.768403\pi\)
0.746784 0.665067i \(-0.231597\pi\)
\(84\) 0 0
\(85\) 12.8528 0.151210
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 18.0000 + 10.3923i 0.202247 + 0.116767i 0.597703 0.801717i \(-0.296080\pi\)
−0.395456 + 0.918485i \(0.629413\pi\)
\(90\) 0 0
\(91\) 144.595 37.1670i 1.58896 0.408428i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 5.18377 + 8.97855i 0.0545660 + 0.0945110i
\(96\) 0 0
\(97\) 10.9867i 0.113264i 0.998395 + 0.0566322i \(0.0180362\pi\)
−0.998395 + 0.0566322i \(0.981964\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 92.8234 53.5916i 0.919043 0.530610i 0.0357136 0.999362i \(-0.488630\pi\)
0.883330 + 0.468752i \(0.155296\pi\)
\(102\) 0 0
\(103\) −91.1102 52.6025i −0.884565 0.510704i −0.0124040 0.999923i \(-0.503948\pi\)
−0.872161 + 0.489219i \(0.837282\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −59.2721 + 102.662i −0.553945 + 0.959460i 0.444040 + 0.896007i \(0.353545\pi\)
−0.997985 + 0.0634534i \(0.979789\pi\)
\(108\) 0 0
\(109\) −55.5294 96.1798i −0.509444 0.882384i −0.999940 0.0109400i \(-0.996518\pi\)
0.490496 0.871444i \(-0.336816\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −101.397 −0.897318 −0.448659 0.893703i \(-0.648098\pi\)
−0.448659 + 0.893703i \(0.648098\pi\)
\(114\) 0 0
\(115\) 46.5442 26.8723i 0.404732 0.233672i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −43.8823 44.7871i −0.368758 0.376362i
\(120\) 0 0
\(121\) 42.5000 73.6122i 0.351240 0.608365i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 68.7897i 0.550317i
\(126\) 0 0
\(127\) −82.5736 −0.650186 −0.325093 0.945682i \(-0.605396\pi\)
−0.325093 + 0.945682i \(0.605396\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −52.4558 30.2854i −0.400426 0.231186i 0.286242 0.958157i \(-0.407594\pi\)
−0.686668 + 0.726971i \(0.740927\pi\)
\(132\) 0 0
\(133\) 13.5883 48.7181i 0.102168 0.366302i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 33.5147 + 58.0492i 0.244633 + 0.423717i 0.962028 0.272949i \(-0.0879992\pi\)
−0.717395 + 0.696666i \(0.754666\pi\)
\(138\) 0 0
\(139\) 91.5525i 0.658651i 0.944216 + 0.329326i \(0.106821\pi\)
−0.944216 + 0.329326i \(0.893179\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 110.823 63.9839i 0.774989 0.447440i
\(144\) 0 0
\(145\) 42.1766 + 24.3507i 0.290873 + 0.167936i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 40.5442 70.2245i 0.272108 0.471306i −0.697293 0.716786i \(-0.745612\pi\)
0.969402 + 0.245480i \(0.0789457\pi\)
\(150\) 0 0
\(151\) −25.6030 44.3457i −0.169556 0.293680i 0.768708 0.639600i \(-0.220900\pi\)
−0.938264 + 0.345920i \(0.887567\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −63.3381 −0.408633
\(156\) 0 0
\(157\) 162.000 93.5307i 1.03185 0.595737i 0.114334 0.993442i \(-0.463527\pi\)
0.917513 + 0.397705i \(0.130193\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −252.551 70.4409i −1.56864 0.437521i
\(162\) 0 0
\(163\) 41.9706 72.6951i 0.257488 0.445982i −0.708080 0.706132i \(-0.750439\pi\)
0.965568 + 0.260149i \(0.0837718\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 127.620i 0.764190i 0.924123 + 0.382095i \(0.124797\pi\)
−0.924123 + 0.382095i \(0.875203\pi\)
\(168\) 0 0
\(169\) −285.882 −1.69161
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 123.816 + 71.4853i 0.715701 + 0.413210i 0.813168 0.582029i \(-0.197741\pi\)
−0.0974675 + 0.995239i \(0.531074\pi\)
\(174\) 0 0
\(175\) −114.706 + 112.388i −0.655461 + 0.642218i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −84.6396 146.600i −0.472847 0.818995i 0.526670 0.850070i \(-0.323440\pi\)
−0.999517 + 0.0310748i \(0.990107\pi\)
\(180\) 0 0
\(181\) 209.969i 1.16005i 0.814600 + 0.580024i \(0.196957\pi\)
−0.814600 + 0.580024i \(0.803043\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 34.7574 20.0672i 0.187878 0.108471i
\(186\) 0 0
\(187\) −46.5442 26.8723i −0.248899 0.143702i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −33.3015 + 57.6799i −0.174353 + 0.301989i −0.939937 0.341347i \(-0.889117\pi\)
0.765584 + 0.643336i \(0.222450\pi\)
\(192\) 0 0
\(193\) 4.89697 + 8.48180i 0.0253729 + 0.0439472i 0.878433 0.477865i \(-0.158589\pi\)
−0.853060 + 0.521813i \(0.825256\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 267.161 1.35615 0.678075 0.734993i \(-0.262815\pi\)
0.678075 + 0.734993i \(0.262815\pi\)
\(198\) 0 0
\(199\) 113.397 65.4698i 0.569834 0.328994i −0.187249 0.982312i \(-0.559957\pi\)
0.757083 + 0.653319i \(0.226624\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −59.1472 230.108i −0.291365 1.13354i
\(204\) 0 0
\(205\) 39.3381 68.1356i 0.191893 0.332369i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 43.3523i 0.207427i
\(210\) 0 0
\(211\) 23.0883 0.109423 0.0547116 0.998502i \(-0.482576\pi\)
0.0547116 + 0.998502i \(0.482576\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 1.84567 + 1.06560i 0.00858452 + 0.00495627i
\(216\) 0 0
\(217\) 216.250 + 220.709i 0.996543 + 1.01709i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 95.5219 + 165.449i 0.432226 + 0.748637i
\(222\) 0 0
\(223\) 228.631i 1.02525i 0.858613 + 0.512625i \(0.171327\pi\)
−0.858613 + 0.512625i \(0.828673\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 56.8234 32.8070i 0.250323 0.144524i −0.369589 0.929195i \(-0.620502\pi\)
0.619912 + 0.784671i \(0.287168\pi\)
\(228\) 0 0
\(229\) 80.9558 + 46.7399i 0.353519 + 0.204104i 0.666234 0.745743i \(-0.267905\pi\)
−0.312715 + 0.949847i \(0.601239\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −118.757 + 205.694i −0.509688 + 0.882806i 0.490249 + 0.871583i \(0.336906\pi\)
−0.999937 + 0.0112234i \(0.996427\pi\)
\(234\) 0 0
\(235\) −30.8528 53.4386i −0.131289 0.227398i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 366.853 1.53495 0.767475 0.641079i \(-0.221513\pi\)
0.767475 + 0.641079i \(0.221513\pi\)
\(240\) 0 0
\(241\) −364.617 + 210.512i −1.51293 + 0.873493i −0.513049 + 0.858359i \(0.671484\pi\)
−0.999885 + 0.0151343i \(0.995182\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −70.2944 1.43488i −0.286916 0.00585664i
\(246\) 0 0
\(247\) −77.0513 + 133.457i −0.311949 + 0.540311i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 146.621i 0.584148i 0.956396 + 0.292074i \(0.0943454\pi\)
−0.956396 + 0.292074i \(0.905655\pi\)
\(252\) 0 0
\(253\) −224.735 −0.888281
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −21.7279 12.5446i −0.0845444 0.0488118i 0.457132 0.889399i \(-0.348877\pi\)
−0.541676 + 0.840587i \(0.682210\pi\)
\(258\) 0 0
\(259\) −188.595 52.6025i −0.728168 0.203098i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 45.3381 + 78.5279i 0.172388 + 0.298585i 0.939254 0.343222i \(-0.111518\pi\)
−0.766866 + 0.641807i \(0.778185\pi\)
\(264\) 0 0
\(265\) 122.619i 0.462712i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 59.2355 34.1996i 0.220206 0.127136i −0.385839 0.922566i \(-0.626088\pi\)
0.606046 + 0.795430i \(0.292755\pi\)
\(270\) 0 0
\(271\) 106.971 + 61.7595i 0.394725 + 0.227895i 0.684206 0.729289i \(-0.260149\pi\)
−0.289480 + 0.957184i \(0.593482\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −68.8234 + 119.206i −0.250267 + 0.433475i
\(276\) 0 0
\(277\) 136.441 + 236.323i 0.492567 + 0.853151i 0.999963 0.00856145i \(-0.00272523\pi\)
−0.507396 + 0.861713i \(0.669392\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −133.103 −0.473675 −0.236837 0.971549i \(-0.576111\pi\)
−0.236837 + 0.971549i \(0.576111\pi\)
\(282\) 0 0
\(283\) 111.507 64.3787i 0.394018 0.227486i −0.289882 0.957063i \(-0.593616\pi\)
0.683900 + 0.729576i \(0.260283\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −371.735 + 95.5512i −1.29524 + 0.332931i
\(288\) 0 0
\(289\) −104.382 + 180.795i −0.361184 + 0.625589i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 308.984i 1.05455i −0.849694 0.527276i \(-0.823213\pi\)
0.849694 0.527276i \(-0.176787\pi\)
\(294\) 0 0
\(295\) −59.1472 −0.200499
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 691.831 + 399.429i 2.31381 + 1.33588i
\(300\) 0 0
\(301\) −2.58831 10.0696i −0.00859904 0.0334539i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −0.852814 1.47712i −0.00279611 0.00484301i
\(306\) 0 0
\(307\) 606.090i 1.97423i 0.160003 + 0.987117i \(0.448850\pi\)
−0.160003 + 0.987117i \(0.551150\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −176.044 + 101.639i −0.566057 + 0.326813i −0.755573 0.655064i \(-0.772641\pi\)
0.189516 + 0.981878i \(0.439308\pi\)
\(312\) 0 0
\(313\) −351.294 202.820i −1.12234 0.647986i −0.180346 0.983603i \(-0.557722\pi\)
−0.941999 + 0.335617i \(0.891055\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −13.0294 + 22.5676i −0.0411023 + 0.0711913i −0.885845 0.463982i \(-0.846420\pi\)
0.844742 + 0.535173i \(0.179754\pi\)
\(318\) 0 0
\(319\) −101.823 176.363i −0.319196 0.552863i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 64.7208 0.200374
\(324\) 0 0
\(325\) 423.735 244.644i 1.30380 0.752750i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −80.8751 + 289.961i −0.245821 + 0.881341i
\(330\) 0 0
\(331\) −54.3162 + 94.0785i −0.164097 + 0.284225i −0.936334 0.351110i \(-0.885804\pi\)
0.772237 + 0.635335i \(0.219138\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 6.30911i 0.0188332i
\(336\) 0 0
\(337\) 441.735 1.31079 0.655393 0.755288i \(-0.272503\pi\)
0.655393 + 0.755288i \(0.272503\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 229.368 + 132.425i 0.672632 + 0.388344i
\(342\) 0 0
\(343\) 235.000 + 249.848i 0.685131 + 0.728420i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −17.0955 29.6102i −0.0492664 0.0853320i 0.840341 0.542059i \(-0.182355\pi\)
−0.889607 + 0.456727i \(0.849022\pi\)
\(348\) 0 0
\(349\) 221.787i 0.635493i −0.948176 0.317746i \(-0.897074\pi\)
0.948176 0.317746i \(-0.102926\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −387.448 + 223.693i −1.09759 + 0.633692i −0.935586 0.353099i \(-0.885128\pi\)
−0.162000 + 0.986791i \(0.551794\pi\)
\(354\) 0 0
\(355\) 170.735 + 98.5739i 0.480944 + 0.277673i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −145.882 + 252.675i −0.406357 + 0.703831i −0.994478 0.104941i \(-0.966534\pi\)
0.588121 + 0.808773i \(0.299868\pi\)
\(360\) 0 0
\(361\) −154.397 267.423i −0.427692 0.740785i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 113.251 0.310276
\(366\) 0 0
\(367\) 363.169 209.676i 0.989561 0.571324i 0.0844183 0.996430i \(-0.473097\pi\)
0.905143 + 0.425107i \(0.139763\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −427.279 + 418.646i −1.15170 + 1.12843i
\(372\) 0 0
\(373\) −15.6909 + 27.1775i −0.0420668 + 0.0728618i −0.886292 0.463127i \(-0.846728\pi\)
0.844225 + 0.535988i \(0.180061\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 723.895i 1.92015i
\(378\) 0 0
\(379\) −206.779 −0.545590 −0.272795 0.962072i \(-0.587948\pi\)
−0.272795 + 0.962072i \(0.587948\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −431.772 249.283i −1.12734 0.650871i −0.184076 0.982912i \(-0.558929\pi\)
−0.943265 + 0.332041i \(0.892263\pi\)
\(384\) 0 0
\(385\) −58.3675 + 15.0029i −0.151604 + 0.0389685i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −324.213 561.554i −0.833453 1.44358i −0.895284 0.445496i \(-0.853027\pi\)
0.0618308 0.998087i \(-0.480306\pi\)
\(390\) 0 0
\(391\) 335.508i 0.858077i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 122.199 70.5516i 0.309364 0.178612i
\(396\) 0 0
\(397\) 65.6026 + 37.8757i 0.165246 + 0.0954047i 0.580342 0.814373i \(-0.302919\pi\)
−0.415096 + 0.909777i \(0.636252\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −282.125 + 488.655i −0.703553 + 1.21859i 0.263658 + 0.964616i \(0.415071\pi\)
−0.967211 + 0.253974i \(0.918262\pi\)
\(402\) 0 0
\(403\) −470.727 815.324i −1.16806 2.02314i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −167.823 −0.412342
\(408\) 0 0
\(409\) −309.559 + 178.724i −0.756868 + 0.436978i −0.828170 0.560477i \(-0.810618\pi\)
0.0713023 + 0.997455i \(0.477284\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 201.941 + 206.105i 0.488962 + 0.499044i
\(414\) 0 0
\(415\) 79.2061 137.189i 0.190858 0.330576i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 502.175i 1.19851i 0.800559 + 0.599254i \(0.204536\pi\)
−0.800559 + 0.599254i \(0.795464\pi\)
\(420\) 0 0
\(421\) 33.7939 0.0802706 0.0401353 0.999194i \(-0.487221\pi\)
0.0401353 + 0.999194i \(0.487221\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −177.963 102.747i −0.418735 0.241757i
\(426\) 0 0
\(427\) −2.23550 + 8.01492i −0.00523536 + 0.0187703i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −251.860 436.234i −0.584362 1.01214i −0.994955 0.100326i \(-0.968012\pi\)
0.410593 0.911819i \(-0.365322\pi\)
\(432\) 0 0
\(433\) 837.548i 1.93429i 0.254224 + 0.967145i \(0.418180\pi\)
−0.254224 + 0.967145i \(0.581820\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 234.375 135.316i 0.536326 0.309648i
\(438\) 0 0
\(439\) 164.558 + 95.0079i 0.374848 + 0.216419i 0.675575 0.737292i \(-0.263896\pi\)
−0.300726 + 0.953711i \(0.597229\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 84.7279 146.753i 0.191259 0.331271i −0.754408 0.656405i \(-0.772076\pi\)
0.945668 + 0.325134i \(0.105409\pi\)
\(444\) 0 0
\(445\) 14.9117 + 25.8278i 0.0335094 + 0.0580400i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −18.1035 −0.0403195 −0.0201598 0.999797i \(-0.506417\pi\)
−0.0201598 + 0.999797i \(0.506417\pi\)
\(450\) 0 0
\(451\) −284.912 + 164.494i −0.631733 + 0.364731i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 206.345 + 57.5532i 0.453506 + 0.126491i
\(456\) 0 0
\(457\) 164.412 284.769i 0.359763 0.623128i −0.628158 0.778086i \(-0.716191\pi\)
0.987921 + 0.154958i \(0.0495242\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 794.331i 1.72306i 0.507706 + 0.861530i \(0.330494\pi\)
−0.507706 + 0.861530i \(0.669506\pi\)
\(462\) 0 0
\(463\) 403.396 0.871266 0.435633 0.900124i \(-0.356525\pi\)
0.435633 + 0.900124i \(0.356525\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −2.44870 1.41376i −0.00524347 0.00302732i 0.497376 0.867535i \(-0.334297\pi\)
−0.502619 + 0.864508i \(0.667630\pi\)
\(468\) 0 0
\(469\) 21.9848 21.5407i 0.0468760 0.0459289i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −4.45584 7.71775i −0.00942039 0.0163166i
\(474\) 0 0
\(475\) 165.758i 0.348965i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 328.669 189.757i 0.686157 0.396153i −0.116014 0.993248i \(-0.537012\pi\)
0.802171 + 0.597095i \(0.203678\pi\)
\(480\) 0 0
\(481\) 516.632 + 298.278i 1.07408 + 0.620120i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −7.88225 + 13.6525i −0.0162521 + 0.0281494i
\(486\) 0 0
\(487\) 287.757 + 498.410i 0.590877 + 1.02343i 0.994115 + 0.108333i \(0.0345513\pi\)
−0.403238 + 0.915095i \(0.632115\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 238.441 0.485623 0.242811 0.970074i \(-0.421930\pi\)
0.242811 + 0.970074i \(0.421930\pi\)
\(492\) 0 0
\(493\) 263.294 152.013i 0.534064 0.308342i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −239.434 931.499i −0.481758 1.87424i
\(498\) 0 0
\(499\) −143.287 + 248.180i −0.287148 + 0.497355i −0.973128 0.230266i \(-0.926040\pi\)
0.685980 + 0.727620i \(0.259374\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 25.4374i 0.0505714i 0.999680 + 0.0252857i \(0.00804954\pi\)
−0.999680 + 0.0252857i \(0.991950\pi\)
\(504\) 0 0
\(505\) 153.795 0.304544
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 697.889 + 402.926i 1.37110 + 0.791603i 0.991066 0.133370i \(-0.0425800\pi\)
0.380031 + 0.924974i \(0.375913\pi\)
\(510\) 0 0
\(511\) −386.662 394.635i −0.756677 0.772280i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −75.4781 130.732i −0.146559 0.253848i
\(516\) 0 0
\(517\) 258.025i 0.499080i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 661.706 382.036i 1.27007 0.733274i 0.295068 0.955476i \(-0.404658\pi\)
0.975001 + 0.222202i \(0.0713244\pi\)
\(522\) 0 0
\(523\) 153.096 + 88.3900i 0.292726 + 0.169006i 0.639171 0.769065i \(-0.279278\pi\)
−0.346444 + 0.938071i \(0.612611\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −197.698 + 342.424i −0.375139 + 0.649761i
\(528\) 0 0
\(529\) −436.970 756.854i −0.826030 1.43073i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 1169.44 2.19407
\(534\) 0 0
\(535\) −147.308 + 85.0482i −0.275342 + 0.158969i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 251.558 + 152.166i 0.466713 + 0.282311i
\(540\) 0 0
\(541\) −8.58831 + 14.8754i −0.0158749 + 0.0274961i −0.873854 0.486189i \(-0.838387\pi\)
0.857979 + 0.513685i \(0.171720\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 159.356i 0.292396i
\(546\) 0 0
\(547\) −212.676 −0.388805 −0.194402 0.980922i \(-0.562277\pi\)
−0.194402 + 0.980922i \(0.562277\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 212.382 + 122.619i 0.385448 + 0.222538i
\(552\) 0 0
\(553\) −663.058 184.938i −1.19902 0.334427i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −440.823 763.528i −0.791424 1.37079i −0.925085 0.379760i \(-0.876007\pi\)
0.133661 0.991027i \(-0.457327\pi\)
\(558\) 0 0
\(559\) 31.6780i 0.0566691i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 664.301 383.534i 1.17993 0.681233i 0.223932 0.974605i \(-0.428111\pi\)
0.955998 + 0.293372i \(0.0947774\pi\)
\(564\) 0 0
\(565\) −126.000 72.7461i −0.223009 0.128754i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −14.6468 + 25.3689i −0.0257412 + 0.0445851i −0.878609 0.477542i \(-0.841528\pi\)
0.852868 + 0.522127i \(0.174861\pi\)
\(570\) 0 0
\(571\) 482.521 + 835.752i 0.845046 + 1.46366i 0.885581 + 0.464485i \(0.153761\pi\)
−0.0405347 + 0.999178i \(0.512906\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −859.279 −1.49440
\(576\) 0 0
\(577\) 227.883 131.568i 0.394944 0.228021i −0.289356 0.957222i \(-0.593441\pi\)
0.684300 + 0.729201i \(0.260108\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −748.477 + 192.389i −1.28826 + 0.331135i
\(582\) 0 0
\(583\) −256.368 + 444.042i −0.439738 + 0.761649i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 436.477i 0.743572i −0.928318 0.371786i \(-0.878746\pi\)
0.928318 0.371786i \(-0.121254\pi\)
\(588\) 0 0
\(589\) −318.941 −0.541496
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −603.603 348.490i −1.01788 0.587673i −0.104391 0.994536i \(-0.533289\pi\)
−0.913489 + 0.406863i \(0.866623\pi\)
\(594\) 0 0
\(595\) −22.3978 87.1372i −0.0376434 0.146449i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −199.206 345.035i −0.332564 0.576018i 0.650450 0.759549i \(-0.274581\pi\)
−0.983014 + 0.183531i \(0.941247\pi\)
\(600\) 0 0
\(601\) 36.1691i 0.0601816i −0.999547 0.0300908i \(-0.990420\pi\)
0.999547 0.0300908i \(-0.00957964\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 105.624 60.9823i 0.174586 0.100797i
\(606\) 0 0
\(607\) −27.3457 15.7880i −0.0450505 0.0260099i 0.477306 0.878737i \(-0.341613\pi\)
−0.522356 + 0.852727i \(0.674947\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 458.595 794.310i 0.750565 1.30002i
\(612\) 0 0
\(613\) 204.632 + 354.434i 0.333821 + 0.578195i 0.983258 0.182220i \(-0.0583285\pi\)
−0.649436 + 0.760416i \(0.724995\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −1227.38 −1.98927 −0.994636 0.103436i \(-0.967016\pi\)
−0.994636 + 0.103436i \(0.967016\pi\)
\(618\) 0 0
\(619\) −412.022 + 237.881i −0.665625 + 0.384299i −0.794417 0.607373i \(-0.792223\pi\)
0.128792 + 0.991672i \(0.458890\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 39.0883 140.143i 0.0627421 0.224949i
\(624\) 0 0
\(625\) −237.412 + 411.209i −0.379859 + 0.657935i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 250.544i 0.398322i
\(630\) 0 0
\(631\) 54.9420 0.0870713 0.0435357 0.999052i \(-0.486138\pi\)
0.0435357 + 0.999052i \(0.486138\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −102.609 59.2415i −0.161589 0.0932937i
\(636\) 0 0
\(637\) −503.956 915.533i −0.791139 1.43726i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −114.551 198.409i −0.178707 0.309530i 0.762731 0.646716i \(-0.223858\pi\)
−0.941438 + 0.337186i \(0.890525\pi\)
\(642\) 0 0
\(643\) 854.640i 1.32914i −0.747224 0.664572i \(-0.768614\pi\)
0.747224 0.664572i \(-0.231386\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 868.632 501.505i 1.34255 0.775124i 0.355372 0.934725i \(-0.384354\pi\)
0.987182 + 0.159601i \(0.0510207\pi\)
\(648\) 0 0
\(649\) 214.191 + 123.663i 0.330032 + 0.190544i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 635.382 1100.51i 0.973020 1.68532i 0.286698 0.958021i \(-0.407442\pi\)
0.686321 0.727299i \(-0.259224\pi\)
\(654\) 0 0
\(655\) −43.4558 75.2677i −0.0663448 0.114913i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −783.308 −1.18863 −0.594315 0.804232i \(-0.702577\pi\)
−0.594315 + 0.804232i \(0.702577\pi\)
\(660\) 0 0
\(661\) 72.5589 41.8919i 0.109771 0.0633765i −0.444109 0.895973i \(-0.646480\pi\)
0.553881 + 0.832596i \(0.313146\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 51.8377 50.7903i 0.0779514 0.0763764i
\(666\) 0 0
\(667\) 635.647 1100.97i 0.952994 1.65063i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 7.13215i 0.0106291i
\(672\) 0 0
\(673\) 415.676 0.617647 0.308823 0.951119i \(-0.400065\pi\)
0.308823 + 0.951119i \(0.400065\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −685.279 395.646i −1.01223 0.584411i −0.100386 0.994949i \(-0.532008\pi\)
−0.911844 + 0.410538i \(0.865341\pi\)
\(678\) 0 0
\(679\) 74.4853 19.1458i 0.109698 0.0281970i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 164.080 + 284.195i 0.240235 + 0.416099i 0.960781 0.277308i \(-0.0894423\pi\)
−0.720546 + 0.693407i \(0.756109\pi\)
\(684\) 0 0
\(685\) 96.1791i 0.140407i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 1578.42 911.300i 2.29088 1.32264i
\(690\) 0 0
\(691\) −875.182 505.287i −1.26654 0.731240i −0.292212 0.956353i \(-0.594391\pi\)
−0.974333 + 0.225113i \(0.927725\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −65.6833 + 113.767i −0.0945084 + 0.163693i
\(696\) 0 0
\(697\) −245.574 425.346i −0.352329 0.610252i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 0.103464 0.000147594 7.37972e−5 1.00000i \(-0.499977\pi\)
7.37972e−5 1.00000i \(0.499977\pi\)
\(702\) 0 0
\(703\) 175.022 101.049i 0.248964 0.143740i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −525.088 535.916i −0.742699 0.758014i
\(708\) 0 0
\(709\) −602.588 + 1043.71i −0.849912 + 1.47209i 0.0313734 + 0.999508i \(0.490012\pi\)
−0.881286 + 0.472584i \(0.843321\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 1653.37i 2.31889i
\(714\) 0 0
\(715\) 183.618 0.256809
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 850.925 + 491.282i 1.18348 + 0.683285i 0.956818 0.290688i \(-0.0938840\pi\)
0.226666 + 0.973973i \(0.427217\pi\)
\(720\) 0 0
\(721\) −197.852 + 709.359i −0.274414 + 0.983855i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −389.324 674.329i −0.536998 0.930108i
\(726\) 0 0
\(727\) 630.440i 0.867181i −0.901110 0.433590i \(-0.857247\pi\)
0.901110 0.433590i \(-0.142753\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 11.5219 6.65215i 0.0157618 0.00910007i
\(732\) 0 0
\(733\) 258.486 + 149.237i 0.352641 + 0.203597i 0.665848 0.746088i \(-0.268070\pi\)
−0.313207 + 0.949685i \(0.601403\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 13.1909 22.8473i 0.0178981 0.0310004i
\(738\) 0 0
\(739\) 172.684 + 299.097i 0.233672 + 0.404732i 0.958886 0.283792i \(-0.0915924\pi\)
−0.725214 + 0.688524i \(0.758259\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 683.616 0.920076 0.460038 0.887899i \(-0.347836\pi\)
0.460038 + 0.887899i \(0.347836\pi\)
\(744\) 0 0
\(745\) 100.764 58.1759i 0.135253 0.0780885i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 799.301 + 222.939i 1.06716 + 0.297648i
\(750\) 0 0
\(751\) −289.169 + 500.855i −0.385045 + 0.666918i −0.991775 0.127990i \(-0.959148\pi\)
0.606730 + 0.794908i \(0.292481\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 73.4744i 0.0973171i
\(756\) 0 0
\(757\) 1204.82 1.59158 0.795788 0.605576i \(-0.207057\pi\)
0.795788 + 0.605576i \(0.207057\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 202.669 + 117.011i 0.266319 + 0.153760i 0.627214 0.778847i \(-0.284195\pi\)
−0.360894 + 0.932607i \(0.617529\pi\)
\(762\) 0 0
\(763\) −555.294 + 544.075i −0.727778 + 0.713074i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −439.581 761.376i −0.573117 0.992668i
\(768\) 0 0
\(769\) 1290.16i 1.67771i −0.544358 0.838853i \(-0.683226\pi\)
0.544358 0.838853i \(-0.316774\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −345.646 + 199.559i −0.447149 + 0.258161i −0.706625 0.707588i \(-0.749783\pi\)
0.259477 + 0.965749i \(0.416450\pi\)
\(774\) 0 0
\(775\) 876.992 + 506.331i 1.13160 + 0.653331i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 198.088 343.099i 0.254285 0.440435i
\(780\) 0 0
\(781\) −412.191 713.936i −0.527773 0.914130i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 268.410 0.341924
\(786\) 0 0
\(787\) 1348.16 778.361i 1.71304 0.989023i 0.782637 0.622478i \(-0.213874\pi\)
0.930401 0.366544i \(-0.119459\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 176.698 + 687.433i 0.223386 + 0.869068i
\(792\) 0 0
\(793\) 12.6762 21.9558i 0.0159851 0.0276870i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 600.232i 0.753114i 0.926393 + 0.376557i \(0.122892\pi\)
−0.926393 + 0.376557i \(0.877108\pi\)
\(798\) 0 0
\(799\) −385.206