Properties

Label 1008.3.cg.h
Level $1008$
Weight $3$
Character orbit 1008.cg
Analytic conductor $27.466$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 1008 = 2^{4} \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 1008.cg (of order \(6\), degree \(2\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(27.4660106475\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\sqrt{2}, \sqrt{-3})\)
Defining polynomial: \(x^{4} + 2 x^{2} + 4\)
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{2}\cdot 3 \)
Twist minimal: no (minimal twist has level 42)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( -4 - 2 \beta_{1} + \beta_{3} ) q^{5} + ( -5 \beta_{1} - \beta_{3} ) q^{7} +O(q^{10})\) \( q + ( -4 - 2 \beta_{1} + \beta_{3} ) q^{5} + ( -5 \beta_{1} - \beta_{3} ) q^{7} + ( -6 - 6 \beta_{1} ) q^{11} + ( 1 + 2 \beta_{1} + 4 \beta_{2} ) q^{13} + ( 8 - 8 \beta_{1} + \beta_{2} - \beta_{3} ) q^{17} + ( 14 + 7 \beta_{1} - \beta_{3} ) q^{19} + ( -12 \beta_{1} - 6 \beta_{2} + 3 \beta_{3} ) q^{23} + ( 11 + 11 \beta_{1} - 4 \beta_{2} - 4 \beta_{3} ) q^{25} + ( -4 \beta_{2} + 8 \beta_{3} ) q^{29} + ( -17 + 17 \beta_{1} + 3 \beta_{2} - 3 \beta_{3} ) q^{31} + ( -34 - 14 \beta_{1} - 3 \beta_{2} + 7 \beta_{3} ) q^{35} + ( -11 \beta_{1} - 4 \beta_{2} + 2 \beta_{3} ) q^{37} + ( -26 - 52 \beta_{1} - 2 \beta_{2} ) q^{41} + ( -7 - \beta_{2} + 2 \beta_{3} ) q^{43} + ( -44 - 22 \beta_{1} - \beta_{3} ) q^{47} + ( -1 - \beta_{1} + 10 \beta_{2} - 10 \beta_{3} ) q^{49} + ( -60 - 60 \beta_{1} - 3 \beta_{2} - 3 \beta_{3} ) q^{53} + ( 12 + 24 \beta_{1} - 6 \beta_{2} ) q^{55} + ( -4 + 4 \beta_{1} + 7 \beta_{2} - 7 \beta_{3} ) q^{59} + ( -24 - 12 \beta_{1} + 4 \beta_{3} ) q^{61} + ( 90 \beta_{1} - 14 \beta_{2} + 7 \beta_{3} ) q^{65} + ( -55 - 55 \beta_{1} + 7 \beta_{2} + 7 \beta_{3} ) q^{67} + ( 78 - 7 \beta_{2} + 14 \beta_{3} ) q^{71} + ( -11 + 11 \beta_{1} - 20 \beta_{2} + 20 \beta_{3} ) q^{73} + ( -30 + 6 \beta_{2} ) q^{77} + ( -5 \beta_{1} - 22 \beta_{2} + 11 \beta_{3} ) q^{79} + ( -10 - 20 \beta_{1} - 19 \beta_{2} ) q^{83} + ( -72 - 10 \beta_{2} + 20 \beta_{3} ) q^{85} + ( 24 + 12 \beta_{1} ) q^{89} + ( 10 - 91 \beta_{1} - 2 \beta_{2} + 21 \beta_{3} ) q^{91} + ( -66 - 66 \beta_{1} + 9 \beta_{2} + 9 \beta_{3} ) q^{95} + ( 12 + 24 \beta_{1} - 2 \beta_{2} ) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4q - 12q^{5} + 10q^{7} + O(q^{10}) \) \( 4q - 12q^{5} + 10q^{7} - 12q^{11} + 48q^{17} + 42q^{19} + 24q^{23} + 22q^{25} - 102q^{31} - 108q^{35} + 22q^{37} - 28q^{43} - 132q^{47} - 2q^{49} - 120q^{53} - 24q^{59} - 72q^{61} - 180q^{65} - 110q^{67} + 312q^{71} - 66q^{73} - 120q^{77} + 10q^{79} - 288q^{85} + 72q^{89} + 222q^{91} - 132q^{95} + O(q^{100}) \)

Basis of coefficient ring in terms of a root \(\nu\) of \(x^{4} + 2 x^{2} + 4\):

\(\beta_{0}\)\(=\)\( 1 \)
\(\beta_{1}\)\(=\)\( \nu^{2} \)\(/2\)
\(\beta_{2}\)\(=\)\( \nu^{3} + 4 \nu \)
\(\beta_{3}\)\(=\)\( -\nu^{3} + 2 \nu \)
\(1\)\(=\)\(\beta_0\)
\(\nu\)\(=\)\((\)\(\beta_{3} + \beta_{2}\)\()/6\)
\(\nu^{2}\)\(=\)\(2 \beta_{1}\)
\(\nu^{3}\)\(=\)\((\)\(-2 \beta_{3} + \beta_{2}\)\()/3\)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1008\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(577\) \(757\) \(785\)
\(\chi(n)\) \(1\) \(-\beta_{1}\) \(1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
145.1
−0.707107 1.22474i
0.707107 + 1.22474i
−0.707107 + 1.22474i
0.707107 1.22474i
0 0 0 −7.24264 4.18154i 0 6.74264 1.88064i 0 0 0
145.2 0 0 0 1.24264 + 0.717439i 0 −1.74264 6.77962i 0 0 0
577.1 0 0 0 −7.24264 + 4.18154i 0 6.74264 + 1.88064i 0 0 0
577.2 0 0 0 1.24264 0.717439i 0 −1.74264 + 6.77962i 0 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.d odd 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1008.3.cg.h 4
3.b odd 2 1 336.3.bh.e 4
4.b odd 2 1 126.3.n.a 4
7.d odd 6 1 inner 1008.3.cg.h 4
12.b even 2 1 42.3.g.a 4
21.g even 6 1 336.3.bh.e 4
21.g even 6 1 2352.3.f.e 4
21.h odd 6 1 2352.3.f.e 4
28.d even 2 1 882.3.n.e 4
28.f even 6 1 126.3.n.a 4
28.f even 6 1 882.3.c.b 4
28.g odd 6 1 882.3.c.b 4
28.g odd 6 1 882.3.n.e 4
60.h even 2 1 1050.3.p.a 4
60.l odd 4 2 1050.3.q.a 8
84.h odd 2 1 294.3.g.a 4
84.j odd 6 1 42.3.g.a 4
84.j odd 6 1 294.3.c.a 4
84.n even 6 1 294.3.c.a 4
84.n even 6 1 294.3.g.a 4
420.be odd 6 1 1050.3.p.a 4
420.br even 12 2 1050.3.q.a 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
42.3.g.a 4 12.b even 2 1
42.3.g.a 4 84.j odd 6 1
126.3.n.a 4 4.b odd 2 1
126.3.n.a 4 28.f even 6 1
294.3.c.a 4 84.j odd 6 1
294.3.c.a 4 84.n even 6 1
294.3.g.a 4 84.h odd 2 1
294.3.g.a 4 84.n even 6 1
336.3.bh.e 4 3.b odd 2 1
336.3.bh.e 4 21.g even 6 1
882.3.c.b 4 28.f even 6 1
882.3.c.b 4 28.g odd 6 1
882.3.n.e 4 28.d even 2 1
882.3.n.e 4 28.g odd 6 1
1008.3.cg.h 4 1.a even 1 1 trivial
1008.3.cg.h 4 7.d odd 6 1 inner
1050.3.p.a 4 60.h even 2 1
1050.3.p.a 4 420.be odd 6 1
1050.3.q.a 8 60.l odd 4 2
1050.3.q.a 8 420.br even 12 2
2352.3.f.e 4 21.g even 6 1
2352.3.f.e 4 21.h odd 6 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{3}^{\mathrm{new}}(1008, [\chi])\):

\( T_{5}^{4} + 12 T_{5}^{3} + 36 T_{5}^{2} - 144 T_{5} + 144 \)
\( T_{11}^{2} + 6 T_{11} + 36 \)
\( T_{13}^{4} + 774 T_{13}^{2} + 145161 \)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} \)
$3$ \( T^{4} \)
$5$ \( 144 - 144 T + 36 T^{2} + 12 T^{3} + T^{4} \)
$7$ \( 2401 - 490 T + 51 T^{2} - 10 T^{3} + T^{4} \)
$11$ \( ( 36 + 6 T + T^{2} )^{2} \)
$13$ \( 145161 + 774 T^{2} + T^{4} \)
$17$ \( 28224 - 8064 T + 936 T^{2} - 48 T^{3} + T^{4} \)
$19$ \( 15129 - 5166 T + 711 T^{2} - 42 T^{3} + T^{4} \)
$23$ \( 254016 + 12096 T + 1080 T^{2} - 24 T^{3} + T^{4} \)
$29$ \( ( -1152 + T^{2} )^{2} \)
$31$ \( 423801 + 66402 T + 4119 T^{2} + 102 T^{3} + T^{4} \)
$37$ \( 27889 + 3674 T + 651 T^{2} - 22 T^{3} + T^{4} \)
$41$ \( 3732624 + 4248 T^{2} + T^{4} \)
$43$ \( ( -23 + 14 T + T^{2} )^{2} \)
$47$ \( 2039184 + 188496 T + 7236 T^{2} + 132 T^{3} + T^{4} \)
$53$ \( 8714304 + 354240 T + 11448 T^{2} + 120 T^{3} + T^{4} \)
$59$ \( 1272384 - 27072 T - 936 T^{2} + 24 T^{3} + T^{4} \)
$61$ \( 2304 + 3456 T + 1776 T^{2} + 72 T^{3} + T^{4} \)
$67$ \( 253009 - 55330 T + 12603 T^{2} + 110 T^{3} + T^{4} \)
$71$ \( ( 2556 - 156 T + T^{2} )^{2} \)
$73$ \( 85322169 - 609642 T - 7785 T^{2} + 66 T^{3} + T^{4} \)
$79$ \( 75463969 + 86870 T + 8787 T^{2} - 10 T^{3} + T^{4} \)
$83$ \( 69956496 + 17928 T^{2} + T^{4} \)
$89$ \( ( 432 - 36 T + T^{2} )^{2} \)
$97$ \( 112896 + 1056 T^{2} + T^{4} \)
show more
show less