Properties

Label 1008.2.t.g.961.3
Level $1008$
Weight $2$
Character 1008.961
Analytic conductor $8.049$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1008,2,Mod(193,1008)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1008, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 2, 4])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1008.193"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1008 = 2^{4} \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1008.t (of order \(3\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,0,-4,0,10] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(8.04892052375\)
Analytic rank: \(0\)
Dimension: \(6\)
Relative dimension: \(3\) over \(\Q(\zeta_{3})\)
Coefficient field: 6.0.309123.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 3x^{5} + 10x^{4} - 15x^{3} + 19x^{2} - 12x + 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 126)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 961.3
Root \(0.500000 + 0.224437i\) of defining polynomial
Character \(\chi\) \(=\) 1008.961
Dual form 1008.2.t.g.193.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.349814 + 1.69636i) q^{3} +3.69963 q^{5} +(1.40545 + 2.24159i) q^{7} +(-2.75526 + 1.18682i) q^{9} +1.47710 q^{11} +(-1.34981 - 2.33795i) q^{13} +(1.29418 + 6.27589i) q^{15} +(3.28799 + 5.69497i) q^{17} +(0.444368 - 0.769668i) q^{19} +(-3.31089 + 3.16828i) q^{21} -6.28799 q^{23} +8.68725 q^{25} +(-2.97710 - 4.25874i) q^{27} +(1.25526 - 2.17417i) q^{29} +(3.40545 - 5.89841i) q^{31} +(0.516710 + 2.50569i) q^{33} +(5.19963 + 8.29305i) q^{35} +(-1.38874 + 2.40536i) q^{37} +(3.49381 - 3.10761i) q^{39} +(-2.05563 - 3.56046i) q^{41} +(-0.00618986 + 0.0107211i) q^{43} +(-10.1934 + 4.39079i) q^{45} +(-3.49381 - 6.05146i) q^{47} +(-3.04944 + 6.30087i) q^{49} +(-8.51052 + 7.56979i) q^{51} +(-1.60507 - 2.78007i) q^{53} +5.46472 q^{55} +(1.46108 + 0.484566i) q^{57} +(3.45489 - 5.98404i) q^{59} +(2.86652 + 4.96497i) q^{61} +(-6.53273 - 4.50815i) q^{63} +(-4.99381 - 8.64953i) q^{65} +(-4.73236 + 8.19669i) q^{67} +(-2.19963 - 10.6667i) q^{69} +5.46472 q^{71} +(-6.03273 - 10.4490i) q^{73} +(3.03892 + 14.7367i) q^{75} +(2.07598 + 3.31105i) q^{77} +(5.72617 + 9.91802i) q^{79} +(6.18292 - 6.53999i) q^{81} +(-2.23855 + 3.87728i) q^{83} +(12.1643 + 21.0693i) q^{85} +(4.12729 + 1.36881i) q^{87} +(-4.43818 + 7.68715i) q^{89} +(3.34362 - 6.31159i) q^{91} +(11.1971 + 3.71351i) q^{93} +(1.64400 - 2.84748i) q^{95} +(-6.58836 + 11.4114i) q^{97} +(-4.06979 + 1.75305i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 4 q^{3} + 10 q^{5} + 2 q^{7} - 4 q^{9} - 2 q^{11} - 2 q^{13} + 2 q^{15} - 4 q^{17} + 3 q^{19} - 7 q^{21} - 14 q^{23} + 4 q^{25} - 7 q^{27} - 5 q^{29} + 14 q^{31} - 4 q^{33} + 19 q^{35} - 9 q^{37}+ \cdots + 41 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1008\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(577\) \(757\) \(785\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{3}\right)\) \(1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.349814 + 1.69636i 0.201965 + 0.979393i
\(4\) 0 0
\(5\) 3.69963 1.65452 0.827262 0.561816i \(-0.189897\pi\)
0.827262 + 0.561816i \(0.189897\pi\)
\(6\) 0 0
\(7\) 1.40545 + 2.24159i 0.531209 + 0.847241i
\(8\) 0 0
\(9\) −2.75526 + 1.18682i −0.918420 + 0.395607i
\(10\) 0 0
\(11\) 1.47710 0.445362 0.222681 0.974891i \(-0.428519\pi\)
0.222681 + 0.974891i \(0.428519\pi\)
\(12\) 0 0
\(13\) −1.34981 2.33795i −0.374371 0.648430i 0.615862 0.787854i \(-0.288808\pi\)
−0.990233 + 0.139425i \(0.955475\pi\)
\(14\) 0 0
\(15\) 1.29418 + 6.27589i 0.334156 + 1.62043i
\(16\) 0 0
\(17\) 3.28799 + 5.69497i 0.797455 + 1.38123i 0.921268 + 0.388927i \(0.127154\pi\)
−0.123813 + 0.992306i \(0.539512\pi\)
\(18\) 0 0
\(19\) 0.444368 0.769668i 0.101945 0.176574i −0.810541 0.585682i \(-0.800827\pi\)
0.912486 + 0.409108i \(0.134160\pi\)
\(20\) 0 0
\(21\) −3.31089 + 3.16828i −0.722496 + 0.691375i
\(22\) 0 0
\(23\) −6.28799 −1.31114 −0.655568 0.755136i \(-0.727571\pi\)
−0.655568 + 0.755136i \(0.727571\pi\)
\(24\) 0 0
\(25\) 8.68725 1.73745
\(26\) 0 0
\(27\) −2.97710 4.25874i −0.572943 0.819595i
\(28\) 0 0
\(29\) 1.25526 2.17417i 0.233096 0.403734i −0.725622 0.688094i \(-0.758448\pi\)
0.958718 + 0.284360i \(0.0917810\pi\)
\(30\) 0 0
\(31\) 3.40545 5.89841i 0.611636 1.05938i −0.379329 0.925262i \(-0.623845\pi\)
0.990965 0.134123i \(-0.0428217\pi\)
\(32\) 0 0
\(33\) 0.516710 + 2.50569i 0.0899477 + 0.436185i
\(34\) 0 0
\(35\) 5.19963 + 8.29305i 0.878898 + 1.40178i
\(36\) 0 0
\(37\) −1.38874 + 2.40536i −0.228307 + 0.395439i −0.957306 0.289075i \(-0.906652\pi\)
0.729000 + 0.684514i \(0.239986\pi\)
\(38\) 0 0
\(39\) 3.49381 3.10761i 0.559457 0.497617i
\(40\) 0 0
\(41\) −2.05563 3.56046i −0.321036 0.556050i 0.659666 0.751559i \(-0.270698\pi\)
−0.980702 + 0.195508i \(0.937364\pi\)
\(42\) 0 0
\(43\) −0.00618986 + 0.0107211i −0.000943944 + 0.00163496i −0.866497 0.499182i \(-0.833634\pi\)
0.865553 + 0.500817i \(0.166967\pi\)
\(44\) 0 0
\(45\) −10.1934 + 4.39079i −1.51955 + 0.654541i
\(46\) 0 0
\(47\) −3.49381 6.05146i −0.509625 0.882696i −0.999938 0.0111494i \(-0.996451\pi\)
0.490313 0.871546i \(-0.336882\pi\)
\(48\) 0 0
\(49\) −3.04944 + 6.30087i −0.435635 + 0.900124i
\(50\) 0 0
\(51\) −8.51052 + 7.56979i −1.19171 + 1.05998i
\(52\) 0 0
\(53\) −1.60507 2.78007i −0.220474 0.381872i 0.734478 0.678632i \(-0.237427\pi\)
−0.954952 + 0.296760i \(0.904094\pi\)
\(54\) 0 0
\(55\) 5.46472 0.736863
\(56\) 0 0
\(57\) 1.46108 + 0.484566i 0.193525 + 0.0641824i
\(58\) 0 0
\(59\) 3.45489 5.98404i 0.449788 0.779056i −0.548584 0.836096i \(-0.684833\pi\)
0.998372 + 0.0570397i \(0.0181661\pi\)
\(60\) 0 0
\(61\) 2.86652 + 4.96497i 0.367021 + 0.635699i 0.989098 0.147257i \(-0.0470444\pi\)
−0.622077 + 0.782956i \(0.713711\pi\)
\(62\) 0 0
\(63\) −6.53273 4.50815i −0.823047 0.567973i
\(64\) 0 0
\(65\) −4.99381 8.64953i −0.619406 1.07284i
\(66\) 0 0
\(67\) −4.73236 + 8.19669i −0.578150 + 1.00138i 0.417542 + 0.908658i \(0.362892\pi\)
−0.995692 + 0.0927271i \(0.970442\pi\)
\(68\) 0 0
\(69\) −2.19963 10.6667i −0.264804 1.28412i
\(70\) 0 0
\(71\) 5.46472 0.648543 0.324271 0.945964i \(-0.394881\pi\)
0.324271 + 0.945964i \(0.394881\pi\)
\(72\) 0 0
\(73\) −6.03273 10.4490i −0.706078 1.22296i −0.966301 0.257414i \(-0.917130\pi\)
0.260223 0.965548i \(-0.416204\pi\)
\(74\) 0 0
\(75\) 3.03892 + 14.7367i 0.350904 + 1.70165i
\(76\) 0 0
\(77\) 2.07598 + 3.31105i 0.236580 + 0.377329i
\(78\) 0 0
\(79\) 5.72617 + 9.91802i 0.644244 + 1.11586i 0.984475 + 0.175522i \(0.0561614\pi\)
−0.340231 + 0.940342i \(0.610505\pi\)
\(80\) 0 0
\(81\) 6.18292 6.53999i 0.686991 0.726666i
\(82\) 0 0
\(83\) −2.23855 + 3.87728i −0.245713 + 0.425587i −0.962332 0.271878i \(-0.912355\pi\)
0.716619 + 0.697465i \(0.245689\pi\)
\(84\) 0 0
\(85\) 12.1643 + 21.0693i 1.31941 + 2.28528i
\(86\) 0 0
\(87\) 4.12729 + 1.36881i 0.442491 + 0.146752i
\(88\) 0 0
\(89\) −4.43818 + 7.68715i −0.470446 + 0.814836i −0.999429 0.0337963i \(-0.989240\pi\)
0.528983 + 0.848633i \(0.322574\pi\)
\(90\) 0 0
\(91\) 3.34362 6.31159i 0.350507 0.661634i
\(92\) 0 0
\(93\) 11.1971 + 3.71351i 1.16108 + 0.385073i
\(94\) 0 0
\(95\) 1.64400 2.84748i 0.168670 0.292146i
\(96\) 0 0
\(97\) −6.58836 + 11.4114i −0.668947 + 1.15865i 0.309252 + 0.950980i \(0.399921\pi\)
−0.978199 + 0.207670i \(0.933412\pi\)
\(98\) 0 0
\(99\) −4.06979 + 1.75305i −0.409030 + 0.176188i
\(100\) 0 0
\(101\) 5.25457 0.522849 0.261425 0.965224i \(-0.415808\pi\)
0.261425 + 0.965224i \(0.415808\pi\)
\(102\) 0 0
\(103\) −1.66621 −0.164176 −0.0820882 0.996625i \(-0.526159\pi\)
−0.0820882 + 0.996625i \(0.526159\pi\)
\(104\) 0 0
\(105\) −12.2491 + 11.7215i −1.19539 + 1.14390i
\(106\) 0 0
\(107\) 5.38255 9.32284i 0.520350 0.901273i −0.479370 0.877613i \(-0.659135\pi\)
0.999720 0.0236602i \(-0.00753198\pi\)
\(108\) 0 0
\(109\) −0.0945538 0.163772i −0.00905662 0.0156865i 0.861462 0.507823i \(-0.169550\pi\)
−0.870518 + 0.492136i \(0.836216\pi\)
\(110\) 0 0
\(111\) −4.56615 1.51436i −0.433400 0.143737i
\(112\) 0 0
\(113\) −6.78180 11.7464i −0.637978 1.10501i −0.985876 0.167478i \(-0.946438\pi\)
0.347897 0.937533i \(-0.386896\pi\)
\(114\) 0 0
\(115\) −23.2632 −2.16931
\(116\) 0 0
\(117\) 6.49381 + 4.83967i 0.600353 + 0.447427i
\(118\) 0 0
\(119\) −8.14468 + 15.3743i −0.746622 + 1.40936i
\(120\) 0 0
\(121\) −8.81818 −0.801652
\(122\) 0 0
\(123\) 5.32072 4.73259i 0.479754 0.426723i
\(124\) 0 0
\(125\) 13.6414 1.22013
\(126\) 0 0
\(127\) 2.85669 0.253490 0.126745 0.991935i \(-0.459547\pi\)
0.126745 + 0.991935i \(0.459547\pi\)
\(128\) 0 0
\(129\) −0.0203522 0.00674980i −0.00179191 0.000594287i
\(130\) 0 0
\(131\) −0.155687 −0.0136024 −0.00680122 0.999977i \(-0.502165\pi\)
−0.00680122 + 0.999977i \(0.502165\pi\)
\(132\) 0 0
\(133\) 2.34981 0.0856364i 0.203755 0.00742562i
\(134\) 0 0
\(135\) −11.0142 15.7558i −0.947948 1.35604i
\(136\) 0 0
\(137\) −3.41164 −0.291476 −0.145738 0.989323i \(-0.546556\pi\)
−0.145738 + 0.989323i \(0.546556\pi\)
\(138\) 0 0
\(139\) 6.75526 + 11.7005i 0.572974 + 0.992420i 0.996259 + 0.0864229i \(0.0275436\pi\)
−0.423285 + 0.905997i \(0.639123\pi\)
\(140\) 0 0
\(141\) 9.04325 8.04364i 0.761579 0.677396i
\(142\) 0 0
\(143\) −1.99381 3.45338i −0.166731 0.288786i
\(144\) 0 0
\(145\) 4.64400 8.04364i 0.385663 0.667988i
\(146\) 0 0
\(147\) −11.7553 2.96881i −0.969558 0.244864i
\(148\) 0 0
\(149\) 0.333792 0.0273453 0.0136727 0.999907i \(-0.495648\pi\)
0.0136727 + 0.999907i \(0.495648\pi\)
\(150\) 0 0
\(151\) 19.9098 1.62023 0.810117 0.586268i \(-0.199403\pi\)
0.810117 + 0.586268i \(0.199403\pi\)
\(152\) 0 0
\(153\) −15.8182 11.7889i −1.27882 0.953074i
\(154\) 0 0
\(155\) 12.5989 21.8219i 1.01197 1.75278i
\(156\) 0 0
\(157\) 3.48143 6.03001i 0.277848 0.481248i −0.693001 0.720936i \(-0.743712\pi\)
0.970850 + 0.239689i \(0.0770454\pi\)
\(158\) 0 0
\(159\) 4.15452 3.69529i 0.329475 0.293055i
\(160\) 0 0
\(161\) −8.83743 14.0951i −0.696487 1.11085i
\(162\) 0 0
\(163\) −4.03706 + 6.99240i −0.316207 + 0.547687i −0.979693 0.200502i \(-0.935743\pi\)
0.663486 + 0.748189i \(0.269076\pi\)
\(164\) 0 0
\(165\) 1.91164 + 9.27012i 0.148821 + 0.721678i
\(166\) 0 0
\(167\) −9.74288 16.8752i −0.753927 1.30584i −0.945906 0.324440i \(-0.894824\pi\)
0.191979 0.981399i \(-0.438509\pi\)
\(168\) 0 0
\(169\) 2.85600 4.94674i 0.219693 0.380519i
\(170\) 0 0
\(171\) −0.310892 + 2.64802i −0.0237745 + 0.202499i
\(172\) 0 0
\(173\) −11.2818 19.5407i −0.857740 1.48565i −0.874080 0.485782i \(-0.838535\pi\)
0.0163405 0.999866i \(-0.494798\pi\)
\(174\) 0 0
\(175\) 12.2095 + 19.4732i 0.922948 + 1.47204i
\(176\) 0 0
\(177\) 11.3596 + 3.76742i 0.853843 + 0.283177i
\(178\) 0 0
\(179\) −0.166896 0.289073i −0.0124744 0.0216063i 0.859721 0.510764i \(-0.170637\pi\)
−0.872195 + 0.489158i \(0.837304\pi\)
\(180\) 0 0
\(181\) 23.2422 1.72758 0.863789 0.503853i \(-0.168085\pi\)
0.863789 + 0.503853i \(0.168085\pi\)
\(182\) 0 0
\(183\) −7.41961 + 6.59947i −0.548473 + 0.487847i
\(184\) 0 0
\(185\) −5.13781 + 8.89894i −0.377739 + 0.654263i
\(186\) 0 0
\(187\) 4.85669 + 8.41204i 0.355157 + 0.615149i
\(188\) 0 0
\(189\) 5.36219 12.6589i 0.390042 0.920797i
\(190\) 0 0
\(191\) −8.16071 14.1348i −0.590488 1.02276i −0.994167 0.107854i \(-0.965602\pi\)
0.403679 0.914901i \(-0.367731\pi\)
\(192\) 0 0
\(193\) 7.16071 12.4027i 0.515439 0.892766i −0.484400 0.874846i \(-0.660962\pi\)
0.999839 0.0179200i \(-0.00570443\pi\)
\(194\) 0 0
\(195\) 12.9258 11.4970i 0.925636 0.823319i
\(196\) 0 0
\(197\) 2.42402 0.172704 0.0863520 0.996265i \(-0.472479\pi\)
0.0863520 + 0.996265i \(0.472479\pi\)
\(198\) 0 0
\(199\) 3.05563 + 5.29251i 0.216608 + 0.375176i 0.953769 0.300541i \(-0.0971673\pi\)
−0.737161 + 0.675717i \(0.763834\pi\)
\(200\) 0 0
\(201\) −15.5600 5.16046i −1.09752 0.363991i
\(202\) 0 0
\(203\) 6.63781 0.241908i 0.465883 0.0169786i
\(204\) 0 0
\(205\) −7.60507 13.1724i −0.531161 0.919999i
\(206\) 0 0
\(207\) 17.3251 7.46271i 1.20417 0.518694i
\(208\) 0 0
\(209\) 0.656376 1.13688i 0.0454025 0.0786394i
\(210\) 0 0
\(211\) −5.72253 9.91171i −0.393955 0.682350i 0.599012 0.800740i \(-0.295560\pi\)
−0.992967 + 0.118390i \(0.962227\pi\)
\(212\) 0 0
\(213\) 1.91164 + 9.27012i 0.130983 + 0.635178i
\(214\) 0 0
\(215\) −0.0229002 + 0.0396643i −0.00156178 + 0.00270508i
\(216\) 0 0
\(217\) 18.0080 0.656281i 1.22246 0.0445513i
\(218\) 0 0
\(219\) 15.6149 13.8889i 1.05516 0.938523i
\(220\) 0 0
\(221\) 8.87636 15.3743i 0.597088 1.03419i
\(222\) 0 0
\(223\) 3.61126 6.25489i 0.241828 0.418859i −0.719407 0.694589i \(-0.755586\pi\)
0.961235 + 0.275730i \(0.0889196\pi\)
\(224\) 0 0
\(225\) −23.9356 + 10.3102i −1.59571 + 0.687347i
\(226\) 0 0
\(227\) −13.6552 −0.906328 −0.453164 0.891427i \(-0.649705\pi\)
−0.453164 + 0.891427i \(0.649705\pi\)
\(228\) 0 0
\(229\) 17.3745 1.14814 0.574070 0.818807i \(-0.305364\pi\)
0.574070 + 0.818807i \(0.305364\pi\)
\(230\) 0 0
\(231\) −4.89052 + 4.67986i −0.321772 + 0.307912i
\(232\) 0 0
\(233\) 7.62110 13.2001i 0.499275 0.864769i −0.500725 0.865606i \(-0.666933\pi\)
1.00000 0.000837426i \(0.000266561\pi\)
\(234\) 0 0
\(235\) −12.9258 22.3881i −0.843186 1.46044i
\(236\) 0 0
\(237\) −14.8214 + 13.1831i −0.962754 + 0.856334i
\(238\) 0 0
\(239\) −9.47524 16.4116i −0.612902 1.06158i −0.990749 0.135710i \(-0.956669\pi\)
0.377846 0.925868i \(-0.376665\pi\)
\(240\) 0 0
\(241\) −24.5054 −1.57853 −0.789267 0.614051i \(-0.789539\pi\)
−0.789267 + 0.614051i \(0.789539\pi\)
\(242\) 0 0
\(243\) 13.2570 + 8.20066i 0.850440 + 0.526073i
\(244\) 0 0
\(245\) −11.2818 + 23.3109i −0.720768 + 1.48928i
\(246\) 0 0
\(247\) −2.39926 −0.152661
\(248\) 0 0
\(249\) −7.36033 2.44105i −0.466442 0.154696i
\(250\) 0 0
\(251\) 12.1236 0.765238 0.382619 0.923906i \(-0.375022\pi\)
0.382619 + 0.923906i \(0.375022\pi\)
\(252\) 0 0
\(253\) −9.28799 −0.583931
\(254\) 0 0
\(255\) −31.4858 + 28.0054i −1.97171 + 1.75377i
\(256\) 0 0
\(257\) −8.20877 −0.512049 −0.256025 0.966670i \(-0.582413\pi\)
−0.256025 + 0.966670i \(0.582413\pi\)
\(258\) 0 0
\(259\) −7.34362 + 0.267630i −0.456311 + 0.0166297i
\(260\) 0 0
\(261\) −0.878215 + 7.48018i −0.0543602 + 0.463012i
\(262\) 0 0
\(263\) 5.34617 0.329659 0.164830 0.986322i \(-0.447293\pi\)
0.164830 + 0.986322i \(0.447293\pi\)
\(264\) 0 0
\(265\) −5.93818 10.2852i −0.364779 0.631816i
\(266\) 0 0
\(267\) −14.5927 4.83967i −0.893058 0.296183i
\(268\) 0 0
\(269\) 9.24219 + 16.0079i 0.563506 + 0.976022i 0.997187 + 0.0749550i \(0.0238813\pi\)
−0.433681 + 0.901067i \(0.642785\pi\)
\(270\) 0 0
\(271\) 3.67742 6.36947i 0.223387 0.386918i −0.732447 0.680824i \(-0.761622\pi\)
0.955834 + 0.293906i \(0.0949552\pi\)
\(272\) 0 0
\(273\) 11.8764 + 3.46410i 0.718790 + 0.209657i
\(274\) 0 0
\(275\) 12.8319 0.773795
\(276\) 0 0
\(277\) −9.09888 −0.546699 −0.273349 0.961915i \(-0.588132\pi\)
−0.273349 + 0.961915i \(0.588132\pi\)
\(278\) 0 0
\(279\) −2.38255 + 20.2933i −0.142639 + 1.21493i
\(280\) 0 0
\(281\) 6.00433 10.3998i 0.358188 0.620400i −0.629470 0.777025i \(-0.716728\pi\)
0.987658 + 0.156624i \(0.0500612\pi\)
\(282\) 0 0
\(283\) 4.92147 8.52423i 0.292551 0.506713i −0.681861 0.731481i \(-0.738829\pi\)
0.974412 + 0.224768i \(0.0721626\pi\)
\(284\) 0 0
\(285\) 5.40545 + 1.79272i 0.320191 + 0.106191i
\(286\) 0 0
\(287\) 5.09201 9.61192i 0.300572 0.567373i
\(288\) 0 0
\(289\) −13.1218 + 22.7276i −0.771870 + 1.33692i
\(290\) 0 0
\(291\) −21.6625 7.18436i −1.26988 0.421155i
\(292\) 0 0
\(293\) 10.7101 + 18.5505i 0.625694 + 1.08373i 0.988406 + 0.151832i \(0.0485173\pi\)
−0.362713 + 0.931901i \(0.618149\pi\)
\(294\) 0 0
\(295\) 12.7818 22.1387i 0.744185 1.28897i
\(296\) 0 0
\(297\) −4.39747 6.29059i −0.255167 0.365017i
\(298\) 0 0
\(299\) 8.48762 + 14.7010i 0.490852 + 0.850180i
\(300\) 0 0
\(301\) −0.0327319 + 0.00119288i −0.00188664 + 6.87564e-5i
\(302\) 0 0
\(303\) 1.83812 + 8.91363i 0.105597 + 0.512075i
\(304\) 0 0
\(305\) 10.6051 + 18.3685i 0.607245 + 1.05178i
\(306\) 0 0
\(307\) 5.68725 0.324588 0.162294 0.986742i \(-0.448111\pi\)
0.162294 + 0.986742i \(0.448111\pi\)
\(308\) 0 0
\(309\) −0.582863 2.82648i −0.0331579 0.160793i
\(310\) 0 0
\(311\) −5.86033 + 10.1504i −0.332309 + 0.575576i −0.982964 0.183797i \(-0.941161\pi\)
0.650655 + 0.759373i \(0.274494\pi\)
\(312\) 0 0
\(313\) 13.3869 + 23.1868i 0.756671 + 1.31059i 0.944539 + 0.328398i \(0.106509\pi\)
−0.187868 + 0.982194i \(0.560158\pi\)
\(314\) 0 0
\(315\) −24.1687 16.6785i −1.36175 0.939726i
\(316\) 0 0
\(317\) −0.951246 1.64761i −0.0534273 0.0925388i 0.838075 0.545555i \(-0.183681\pi\)
−0.891502 + 0.453016i \(0.850348\pi\)
\(318\) 0 0
\(319\) 1.85414 3.21147i 0.103812 0.179808i
\(320\) 0 0
\(321\) 17.6978 + 5.86946i 0.987793 + 0.327601i
\(322\) 0 0
\(323\) 5.84431 0.325186
\(324\) 0 0
\(325\) −11.7262 20.3103i −0.650451 1.12661i
\(326\) 0 0
\(327\) 0.244740 0.217687i 0.0135341 0.0120381i
\(328\) 0 0
\(329\) 8.65452 16.3367i 0.477139 0.900670i
\(330\) 0 0
\(331\) 2.78366 + 4.82144i 0.153004 + 0.265010i 0.932330 0.361608i \(-0.117772\pi\)
−0.779327 + 0.626618i \(0.784439\pi\)
\(332\) 0 0
\(333\) 0.971599 8.27557i 0.0532433 0.453499i
\(334\) 0 0
\(335\) −17.5080 + 30.3247i −0.956563 + 1.65682i
\(336\) 0 0
\(337\) −16.8869 29.2489i −0.919887 1.59329i −0.799585 0.600553i \(-0.794947\pi\)
−0.120302 0.992737i \(-0.538386\pi\)
\(338\) 0 0
\(339\) 17.5538 15.6134i 0.953390 0.848005i
\(340\) 0 0
\(341\) 5.03018 8.71253i 0.272400 0.471810i
\(342\) 0 0
\(343\) −18.4098 + 2.01993i −0.994035 + 0.109066i
\(344\) 0 0
\(345\) −8.13781 39.4628i −0.438125 2.12460i
\(346\) 0 0
\(347\) −15.2033 + 26.3328i −0.816154 + 1.41362i 0.0923418 + 0.995727i \(0.470565\pi\)
−0.908496 + 0.417893i \(0.862769\pi\)
\(348\) 0 0
\(349\) −6.29782 + 10.9082i −0.337115 + 0.583900i −0.983889 0.178782i \(-0.942784\pi\)
0.646774 + 0.762682i \(0.276118\pi\)
\(350\) 0 0
\(351\) −5.93818 + 12.7088i −0.316956 + 0.678346i
\(352\) 0 0
\(353\) −7.53156 −0.400865 −0.200432 0.979708i \(-0.564235\pi\)
−0.200432 + 0.979708i \(0.564235\pi\)
\(354\) 0 0
\(355\) 20.2174 1.07303
\(356\) 0 0
\(357\) −28.9294 8.43815i −1.53111 0.446594i
\(358\) 0 0
\(359\) 3.44801 5.97213i 0.181979 0.315197i −0.760575 0.649250i \(-0.775083\pi\)
0.942554 + 0.334053i \(0.108416\pi\)
\(360\) 0 0
\(361\) 9.10507 + 15.7705i 0.479214 + 0.830024i
\(362\) 0 0
\(363\) −3.08472 14.9588i −0.161906 0.785132i
\(364\) 0 0
\(365\) −22.3189 38.6574i −1.16822 2.02342i
\(366\) 0 0
\(367\) −23.1236 −1.20704 −0.603522 0.797346i \(-0.706237\pi\)
−0.603522 + 0.797346i \(0.706237\pi\)
\(368\) 0 0
\(369\) 9.88942 + 7.37033i 0.514823 + 0.383684i
\(370\) 0 0
\(371\) 3.97593 7.50516i 0.206420 0.389648i
\(372\) 0 0
\(373\) 29.1643 1.51007 0.755036 0.655683i \(-0.227619\pi\)
0.755036 + 0.655683i \(0.227619\pi\)
\(374\) 0 0
\(375\) 4.77197 + 23.1408i 0.246423 + 1.19498i
\(376\) 0 0
\(377\) −6.77747 −0.349058
\(378\) 0 0
\(379\) 13.5622 0.696645 0.348322 0.937375i \(-0.386751\pi\)
0.348322 + 0.937375i \(0.386751\pi\)
\(380\) 0 0
\(381\) 0.999311 + 4.84597i 0.0511963 + 0.248267i
\(382\) 0 0
\(383\) 2.83565 0.144895 0.0724475 0.997372i \(-0.476919\pi\)
0.0724475 + 0.997372i \(0.476919\pi\)
\(384\) 0 0
\(385\) 7.68037 + 12.2497i 0.391428 + 0.624300i
\(386\) 0 0
\(387\) 0.00433060 0.0368858i 0.000220137 0.00187501i
\(388\) 0 0
\(389\) −18.6080 −0.943464 −0.471732 0.881742i \(-0.656371\pi\)
−0.471732 + 0.881742i \(0.656371\pi\)
\(390\) 0 0
\(391\) −20.6749 35.8099i −1.04557 1.81099i
\(392\) 0 0
\(393\) −0.0544615 0.264101i −0.00274722 0.0133221i
\(394\) 0 0
\(395\) 21.1847 + 36.6930i 1.06592 + 1.84622i
\(396\) 0 0
\(397\) −10.2880 + 17.8193i −0.516340 + 0.894326i 0.483481 + 0.875355i \(0.339372\pi\)
−0.999820 + 0.0189712i \(0.993961\pi\)
\(398\) 0 0
\(399\) 0.967268 + 3.95617i 0.0484240 + 0.198056i
\(400\) 0 0
\(401\) −6.75409 −0.337283 −0.168642 0.985677i \(-0.553938\pi\)
−0.168642 + 0.985677i \(0.553938\pi\)
\(402\) 0 0
\(403\) −18.3869 −0.915916
\(404\) 0 0
\(405\) 22.8745 24.1955i 1.13664 1.20229i
\(406\) 0 0
\(407\) −2.05130 + 3.55296i −0.101679 + 0.176114i
\(408\) 0 0
\(409\) −7.66071 + 13.2687i −0.378798 + 0.656097i −0.990888 0.134691i \(-0.956996\pi\)
0.612090 + 0.790788i \(0.290329\pi\)
\(410\) 0 0
\(411\) −1.19344 5.78736i −0.0588680 0.285469i
\(412\) 0 0
\(413\) 18.2694 0.665809i 0.898980 0.0327623i
\(414\) 0 0
\(415\) −8.28180 + 14.3445i −0.406538 + 0.704144i
\(416\) 0 0
\(417\) −17.4851 + 15.5523i −0.856248 + 0.761601i
\(418\) 0 0
\(419\) 4.32141 + 7.48491i 0.211115 + 0.365662i 0.952064 0.305900i \(-0.0989573\pi\)
−0.740949 + 0.671561i \(0.765624\pi\)
\(420\) 0 0
\(421\) 18.5636 32.1531i 0.904735 1.56705i 0.0834618 0.996511i \(-0.473402\pi\)
0.821273 0.570536i \(-0.193264\pi\)
\(422\) 0 0
\(423\) 16.8083 + 12.5268i 0.817250 + 0.609075i
\(424\) 0 0
\(425\) 28.5636 + 49.4736i 1.38554 + 2.39982i
\(426\) 0 0
\(427\) −7.10067 + 13.4036i −0.343625 + 0.648644i
\(428\) 0 0
\(429\) 5.16071 4.59026i 0.249161 0.221620i
\(430\) 0 0
\(431\) 4.71015 + 8.15822i 0.226880 + 0.392967i 0.956882 0.290478i \(-0.0938142\pi\)
−0.730002 + 0.683445i \(0.760481\pi\)
\(432\) 0 0
\(433\) −0.208771 −0.0100329 −0.00501645 0.999987i \(-0.501597\pi\)
−0.00501645 + 0.999987i \(0.501597\pi\)
\(434\) 0 0
\(435\) 15.2694 + 5.06410i 0.732113 + 0.242805i
\(436\) 0 0
\(437\) −2.79418 + 4.83967i −0.133664 + 0.231513i
\(438\) 0 0
\(439\) −4.98398 8.63250i −0.237872 0.412007i 0.722231 0.691652i \(-0.243117\pi\)
−0.960104 + 0.279645i \(0.909783\pi\)
\(440\) 0 0
\(441\) 0.924016 20.9797i 0.0440007 0.999031i
\(442\) 0 0
\(443\) −7.84981 13.5963i −0.372956 0.645979i 0.617063 0.786914i \(-0.288322\pi\)
−0.990019 + 0.140935i \(0.954989\pi\)
\(444\) 0 0
\(445\) −16.4196 + 28.4396i −0.778364 + 1.34817i
\(446\) 0 0
\(447\) 0.116765 + 0.566231i 0.00552281 + 0.0267818i
\(448\) 0 0
\(449\) 33.6253 1.58688 0.793439 0.608650i \(-0.208288\pi\)
0.793439 + 0.608650i \(0.208288\pi\)
\(450\) 0 0
\(451\) −3.03637 5.25915i −0.142977 0.247644i
\(452\) 0 0
\(453\) 6.96472 + 33.7741i 0.327231 + 1.58685i
\(454\) 0 0
\(455\) 12.3702 23.3505i 0.579922 1.09469i
\(456\) 0 0
\(457\) −16.3541 28.3262i −0.765015 1.32504i −0.940239 0.340516i \(-0.889398\pi\)
0.175224 0.984529i \(-0.443935\pi\)
\(458\) 0 0
\(459\) 14.4647 30.9572i 0.675155 1.44496i
\(460\) 0 0
\(461\) −2.07165 + 3.58821i −0.0964865 + 0.167120i −0.910228 0.414107i \(-0.864094\pi\)
0.813742 + 0.581227i \(0.197427\pi\)
\(462\) 0 0
\(463\) 8.34176 + 14.4484i 0.387675 + 0.671472i 0.992136 0.125162i \(-0.0399451\pi\)
−0.604462 + 0.796634i \(0.706612\pi\)
\(464\) 0 0
\(465\) 41.4250 + 13.7386i 1.92104 + 0.637113i
\(466\) 0 0
\(467\) −14.9585 + 25.9089i −0.692198 + 1.19892i 0.278918 + 0.960315i \(0.410024\pi\)
−0.971116 + 0.238608i \(0.923309\pi\)
\(468\) 0 0
\(469\) −25.0247 + 0.911998i −1.15553 + 0.0421121i
\(470\) 0 0
\(471\) 11.4469 + 3.79637i 0.527446 + 0.174927i
\(472\) 0 0
\(473\) −0.00914304 + 0.0158362i −0.000420397 + 0.000728149i
\(474\) 0 0
\(475\) 3.86033 6.68630i 0.177124 0.306788i
\(476\) 0 0
\(477\) 7.72184 + 5.75488i 0.353559 + 0.263498i
\(478\) 0 0
\(479\) 2.95930 0.135214 0.0676068 0.997712i \(-0.478464\pi\)
0.0676068 + 0.997712i \(0.478464\pi\)
\(480\) 0 0
\(481\) 7.49814 0.341886
\(482\) 0 0
\(483\) 20.8189 19.9221i 0.947291 0.906488i
\(484\) 0 0
\(485\) −24.3745 + 42.2179i −1.10679 + 1.91701i
\(486\) 0 0
\(487\) 14.0309 + 24.3022i 0.635800 + 1.10124i 0.986345 + 0.164691i \(0.0526628\pi\)
−0.350546 + 0.936546i \(0.614004\pi\)
\(488\) 0 0
\(489\) −13.2738 4.40226i −0.600263 0.199077i
\(490\) 0 0
\(491\) −17.0734 29.5721i −0.770513 1.33457i −0.937282 0.348572i \(-0.886667\pi\)
0.166769 0.985996i \(-0.446667\pi\)
\(492\) 0 0
\(493\) 16.5091 0.743534
\(494\) 0 0
\(495\) −15.0567 + 6.48564i −0.676750 + 0.291508i
\(496\) 0 0
\(497\) 7.68037 + 12.2497i 0.344512 + 0.549472i
\(498\) 0 0
\(499\) 2.28071 0.102099 0.0510493 0.998696i \(-0.483743\pi\)
0.0510493 + 0.998696i \(0.483743\pi\)
\(500\) 0 0
\(501\) 25.2181 22.4306i 1.12666 1.00212i
\(502\) 0 0
\(503\) −13.9890 −0.623739 −0.311869 0.950125i \(-0.600955\pi\)
−0.311869 + 0.950125i \(0.600955\pi\)
\(504\) 0 0
\(505\) 19.4400 0.865067
\(506\) 0 0
\(507\) 9.39052 + 3.11436i 0.417048 + 0.138314i
\(508\) 0 0
\(509\) 25.6181 1.13550 0.567750 0.823201i \(-0.307814\pi\)
0.567750 + 0.823201i \(0.307814\pi\)
\(510\) 0 0
\(511\) 14.9437 28.2084i 0.661069 1.24787i
\(512\) 0 0
\(513\) −4.60074 + 0.398930i −0.203128 + 0.0176132i
\(514\) 0 0
\(515\) −6.16435 −0.271634
\(516\) 0 0
\(517\) −5.16071 8.93861i −0.226968 0.393119i
\(518\) 0 0
\(519\) 29.2014 25.9736i 1.28180 1.14011i
\(520\) 0 0
\(521\) −20.9127 36.2219i −0.916203 1.58691i −0.805130 0.593099i \(-0.797904\pi\)
−0.111073 0.993812i \(-0.535429\pi\)
\(522\) 0 0
\(523\) −7.88323 + 13.6542i −0.344710 + 0.597055i −0.985301 0.170827i \(-0.945356\pi\)
0.640591 + 0.767882i \(0.278689\pi\)
\(524\) 0 0
\(525\) −28.7625 + 27.5236i −1.25530 + 1.20123i
\(526\) 0 0
\(527\) 44.7883 1.95101
\(528\) 0 0
\(529\) 16.5388 0.719080
\(530\) 0 0
\(531\) −2.41714 + 20.5879i −0.104895 + 0.893440i
\(532\) 0 0
\(533\) −5.54944 + 9.61192i −0.240373 + 0.416338i
\(534\) 0 0
\(535\) 19.9134 34.4911i 0.860932 1.49118i
\(536\) 0 0
\(537\) 0.431988 0.384237i 0.0186417 0.0165811i
\(538\) 0 0
\(539\) −4.50433 + 9.30701i −0.194015 + 0.400881i
\(540\) 0 0
\(541\) −21.0963 + 36.5399i −0.907002 + 1.57097i −0.0887957 + 0.996050i \(0.528302\pi\)
−0.818207 + 0.574924i \(0.805031\pi\)
\(542\) 0 0
\(543\) 8.13045 + 39.4271i 0.348911 + 1.69198i
\(544\) 0 0
\(545\) −0.349814 0.605896i −0.0149844 0.0259537i
\(546\) 0 0
\(547\) −20.3356 + 35.2222i −0.869486 + 1.50599i −0.00696400 + 0.999976i \(0.502217\pi\)
−0.862522 + 0.506019i \(0.831117\pi\)
\(548\) 0 0
\(549\) −13.7905 10.2777i −0.588566 0.438643i
\(550\) 0 0
\(551\) −1.11559 1.93227i −0.0475259 0.0823173i
\(552\) 0 0
\(553\) −14.1843 + 26.7750i −0.603178 + 1.13859i
\(554\) 0 0
\(555\) −16.8931 5.60258i −0.717071 0.237816i
\(556\) 0 0
\(557\) 6.68794 + 11.5838i 0.283377 + 0.490823i 0.972214 0.234093i \(-0.0752119\pi\)
−0.688837 + 0.724916i \(0.741879\pi\)
\(558\) 0 0
\(559\) 0.0334206 0.00141354
\(560\) 0 0
\(561\) −12.5709 + 11.1813i −0.530743 + 0.472076i
\(562\) 0 0
\(563\) −16.3807 + 28.3722i −0.690364 + 1.19574i 0.281355 + 0.959604i \(0.409216\pi\)
−0.971719 + 0.236141i \(0.924117\pi\)
\(564\) 0 0
\(565\) −25.0901 43.4574i −1.05555 1.82827i
\(566\) 0 0
\(567\) 23.3497 + 4.66795i 0.980597 + 0.196035i
\(568\) 0 0
\(569\) 8.36398 + 14.4868i 0.350636 + 0.607320i 0.986361 0.164596i \(-0.0526321\pi\)
−0.635725 + 0.771916i \(0.719299\pi\)
\(570\) 0 0
\(571\) −13.7367 + 23.7926i −0.574863 + 0.995691i 0.421194 + 0.906971i \(0.361611\pi\)
−0.996057 + 0.0887207i \(0.971722\pi\)
\(572\) 0 0
\(573\) 21.1229 18.7880i 0.882421 0.784881i
\(574\) 0 0
\(575\) −54.6253 −2.27803
\(576\) 0 0
\(577\) 1.41714 + 2.45455i 0.0589962 + 0.102184i 0.894015 0.448037i \(-0.147877\pi\)
−0.835019 + 0.550221i \(0.814543\pi\)
\(578\) 0 0
\(579\) 23.5443 + 7.80848i 0.978470 + 0.324509i
\(580\) 0 0
\(581\) −11.8374 + 0.431403i −0.491100 + 0.0178976i
\(582\) 0 0
\(583\) −2.37085 4.10644i −0.0981908 0.170071i
\(584\) 0 0
\(585\) 24.0247 + 17.9050i 0.993298 + 0.740279i
\(586\) 0 0
\(587\) 2.34795 4.06678i 0.0969105 0.167854i −0.813494 0.581573i \(-0.802437\pi\)
0.910404 + 0.413720i \(0.135771\pi\)
\(588\) 0 0
\(589\) −3.02654 5.24212i −0.124706 0.215998i
\(590\) 0 0
\(591\) 0.847955 + 4.11200i 0.0348802 + 0.169145i
\(592\) 0 0
\(593\) 0.636024 1.10163i 0.0261184 0.0452383i −0.852671 0.522449i \(-0.825019\pi\)
0.878789 + 0.477210i \(0.158352\pi\)
\(594\) 0 0
\(595\) −30.1323 + 56.8792i −1.23530 + 2.33182i
\(596\) 0 0
\(597\) −7.90909 + 7.03484i −0.323697 + 0.287917i
\(598\) 0 0
\(599\) 21.9258 37.9766i 0.895864 1.55168i 0.0631320 0.998005i \(-0.479891\pi\)
0.832732 0.553676i \(-0.186776\pi\)
\(600\) 0 0
\(601\) −6.71634 + 11.6330i −0.273965 + 0.474522i −0.969874 0.243609i \(-0.921669\pi\)
0.695908 + 0.718131i \(0.255002\pi\)
\(602\) 0 0
\(603\) 3.31089 28.2005i 0.134830 1.14841i
\(604\) 0 0
\(605\) −32.6240 −1.32635
\(606\) 0 0
\(607\) 4.58465 0.186085 0.0930425 0.995662i \(-0.470341\pi\)
0.0930425 + 0.995662i \(0.470341\pi\)
\(608\) 0 0
\(609\) 2.73236 + 11.1755i 0.110721 + 0.452853i
\(610\) 0 0
\(611\) −9.43199 + 16.3367i −0.381577 + 0.660911i
\(612\) 0 0
\(613\) −11.0538 19.1457i −0.446458 0.773287i 0.551695 0.834046i \(-0.313981\pi\)
−0.998152 + 0.0607587i \(0.980648\pi\)
\(614\) 0 0
\(615\) 19.6847 17.5088i 0.793764 0.706023i
\(616\) 0 0
\(617\) 6.00433 + 10.3998i 0.241725 + 0.418680i 0.961206 0.275832i \(-0.0889534\pi\)
−0.719481 + 0.694513i \(0.755620\pi\)
\(618\) 0 0
\(619\) 17.5636 0.705941 0.352970 0.935634i \(-0.385172\pi\)
0.352970 + 0.935634i \(0.385172\pi\)
\(620\) 0 0
\(621\) 18.7200 + 26.7789i 0.751207 + 1.07460i
\(622\) 0 0
\(623\) −23.4691 + 0.855304i −0.940268 + 0.0342670i
\(624\) 0 0
\(625\) 7.03204 0.281282
\(626\) 0 0
\(627\) 2.15816 + 0.715753i 0.0861885 + 0.0285844i
\(628\) 0 0
\(629\) −18.2646 −0.728258
\(630\) 0 0
\(631\) 44.9381 1.78896 0.894479 0.447110i \(-0.147547\pi\)
0.894479 + 0.447110i \(0.147547\pi\)
\(632\) 0 0
\(633\) 14.8120 13.1747i 0.588724 0.523648i
\(634\) 0 0
\(635\) 10.5687 0.419406
\(636\) 0 0
\(637\) 18.8473 1.37556i 0.746756 0.0545018i
\(638\) 0 0
\(639\) −15.0567 + 6.48564i −0.595635 + 0.256568i
\(640\) 0 0
\(641\) −28.9839 −1.14480 −0.572398 0.819976i \(-0.693987\pi\)
−0.572398 + 0.819976i \(0.693987\pi\)
\(642\) 0 0
\(643\) −6.03087 10.4458i −0.237834 0.411941i 0.722258 0.691623i \(-0.243104\pi\)
−0.960093 + 0.279682i \(0.909771\pi\)
\(644\) 0 0
\(645\) −0.0752956 0.0249718i −0.00296476 0.000983262i
\(646\) 0 0
\(647\) −18.8825 32.7055i −0.742349 1.28579i −0.951423 0.307887i \(-0.900378\pi\)
0.209073 0.977900i \(-0.432955\pi\)
\(648\) 0 0
\(649\) 5.10322 8.83903i 0.200319 0.346962i
\(650\) 0 0
\(651\) 7.41273 + 30.3184i 0.290528 + 1.18827i
\(652\) 0 0
\(653\) 37.4079 1.46388 0.731942 0.681366i \(-0.238614\pi\)
0.731942 + 0.681366i \(0.238614\pi\)
\(654\) 0 0
\(655\) −0.575984 −0.0225056
\(656\) 0 0
\(657\) 29.0228 + 21.6299i 1.13229 + 0.843864i
\(658\) 0 0
\(659\) −14.9356 + 25.8693i −0.581810 + 1.00772i 0.413455 + 0.910524i \(0.364322\pi\)
−0.995265 + 0.0971993i \(0.969012\pi\)
\(660\) 0 0
\(661\) −2.80401 + 4.85669i −0.109063 + 0.188904i −0.915391 0.402566i \(-0.868119\pi\)
0.806328 + 0.591469i \(0.201452\pi\)
\(662\) 0 0
\(663\) 29.1854 + 9.67933i 1.13347 + 0.375914i
\(664\) 0 0
\(665\) 8.69344 0.316823i 0.337117 0.0122859i
\(666\) 0 0
\(667\) −7.89307 + 13.6712i −0.305621 + 0.529351i
\(668\) 0 0
\(669\) 11.8738 + 3.93795i 0.459068 + 0.152250i
\(670\) 0 0
\(671\) 4.23414 + 7.33375i 0.163457 + 0.283116i
\(672\) 0 0
\(673\) −4.72253 + 8.17966i −0.182040 + 0.315303i −0.942575 0.333994i \(-0.891603\pi\)
0.760535 + 0.649297i \(0.224937\pi\)
\(674\) 0 0
\(675\) −25.8628 36.9967i −0.995460 1.42401i
\(676\) 0 0
\(677\) −5.53087 9.57975i −0.212569 0.368180i 0.739949 0.672663i \(-0.234850\pi\)
−0.952518 + 0.304483i \(0.901516\pi\)
\(678\) 0 0
\(679\) −34.8392 + 1.26968i −1.33701 + 0.0487258i
\(680\) 0 0
\(681\) −4.77678 23.1641i −0.183047 0.887651i
\(682\) 0 0
\(683\) 4.41961 + 7.65499i 0.169112 + 0.292910i 0.938108 0.346343i \(-0.112577\pi\)
−0.768996 + 0.639253i \(0.779243\pi\)
\(684\) 0 0
\(685\) −12.6218 −0.482254
\(686\) 0 0
\(687\) 6.07784 + 29.4734i 0.231884 + 1.12448i
\(688\) 0 0
\(689\) −4.33310 + 7.50516i −0.165078 + 0.285924i
\(690\) 0 0
\(691\) 12.5309 + 21.7041i 0.476697 + 0.825663i 0.999643 0.0267023i \(-0.00850061\pi\)
−0.522947 + 0.852365i \(0.675167\pi\)
\(692\) 0 0
\(693\) −9.64950 6.65899i −0.366554 0.252954i
\(694\) 0 0
\(695\) 24.9920 + 43.2873i 0.947999 + 1.64198i
\(696\) 0 0
\(697\) 13.5178 23.4135i 0.512023 0.886850i
\(698\) 0 0
\(699\) 25.0581 + 8.31052i 0.947785 + 0.314333i
\(700\) 0 0
\(701\) −43.4858 −1.64243 −0.821217 0.570616i \(-0.806705\pi\)
−0.821217 + 0.570616i \(0.806705\pi\)
\(702\) 0 0
\(703\) 1.23422 + 2.13773i 0.0465495 + 0.0806260i
\(704\) 0 0
\(705\) 33.4567 29.7585i 1.26005 1.12077i
\(706\) 0 0
\(707\) 7.38502 + 11.7786i 0.277742 + 0.442979i
\(708\) 0 0
\(709\) 11.3702 + 19.6937i 0.427016 + 0.739613i 0.996606 0.0823158i \(-0.0262316\pi\)
−0.569591 + 0.821928i \(0.692898\pi\)
\(710\) 0 0
\(711\) −27.5480 20.5308i −1.03313 0.769965i
\(712\) 0 0
\(713\) −21.4134 + 37.0891i −0.801939 + 1.38900i
\(714\) 0 0
\(715\) −7.37636 12.7762i −0.275860 0.477804i
\(716\) 0 0
\(717\) 24.5254 21.8144i 0.915917 0.814674i
\(718\) 0 0
\(719\) −6.06182 + 10.4994i −0.226068 + 0.391561i −0.956639 0.291275i \(-0.905920\pi\)
0.730571 + 0.682836i \(0.239254\pi\)
\(720\) 0 0
\(721\) −2.34176 3.73495i −0.0872119 0.139097i
\(722\) 0 0
\(723\) −8.57234 41.5700i −0.318809 1.54600i
\(724\) 0 0
\(725\) 10.9048 18.8876i 0.404993 0.701468i
\(726\) 0 0
\(727\) −23.0908 + 39.9945i −0.856392 + 1.48331i 0.0189562 + 0.999820i \(0.493966\pi\)
−0.875348 + 0.483494i \(0.839368\pi\)
\(728\) 0 0
\(729\) −9.27375 + 25.3574i −0.343472 + 0.939163i
\(730\) 0 0
\(731\) −0.0814088 −0.00301101
\(732\) 0 0
\(733\) −36.0297 −1.33079 −0.665394 0.746493i \(-0.731736\pi\)
−0.665394 + 0.746493i \(0.731736\pi\)
\(734\) 0 0
\(735\) −43.4901 10.9835i −1.60416 0.405133i
\(736\) 0 0
\(737\) −6.99017 + 12.1073i −0.257486 + 0.445979i
\(738\) 0 0
\(739\) −23.2119 40.2042i −0.853865 1.47894i −0.877694 0.479221i \(-0.840919\pi\)
0.0238296 0.999716i \(-0.492414\pi\)
\(740\) 0 0
\(741\) −0.839294 4.07000i −0.0308322 0.149515i
\(742\) 0 0
\(743\) −0.598884 1.03730i −0.0219709 0.0380548i 0.854831 0.518907i \(-0.173661\pi\)
−0.876802 + 0.480852i \(0.840327\pi\)
\(744\) 0 0
\(745\) 1.23491 0.0452435
\(746\) 0 0
\(747\) 1.56615 13.3397i 0.0573025 0.488073i
\(748\) 0 0
\(749\) 28.4629 1.03730i 1.04001 0.0379021i
\(750\) 0 0
\(751\) −48.1199 −1.75592 −0.877961 0.478733i \(-0.841096\pi\)
−0.877961 + 0.478733i \(0.841096\pi\)
\(752\) 0 0
\(753\) 4.24102 + 20.5660i 0.154551 + 0.749468i
\(754\) 0 0
\(755\) 73.6588 2.68072
\(756\) 0 0
\(757\) 49.6006 1.80276 0.901382 0.433025i \(-0.142554\pi\)
0.901382 + 0.433025i \(0.142554\pi\)
\(758\) 0 0
\(759\) −3.24907 15.7558i −0.117934 0.571898i
\(760\) 0 0
\(761\) −37.5402 −1.36083 −0.680416 0.732826i \(-0.738201\pi\)
−0.680416 + 0.732826i \(0.738201\pi\)
\(762\) 0 0
\(763\) 0.234219 0.442124i 0.00847931 0.0160060i
\(764\) 0 0
\(765\) −58.5214 43.6144i −2.11584 1.57688i
\(766\) 0 0
\(767\) −18.6538 −0.673551
\(768\) 0 0
\(769\) −13.4592 23.3121i −0.485352 0.840654i 0.514506 0.857486i \(-0.327975\pi\)
−0.999858 + 0.0168324i \(0.994642\pi\)
\(770\) 0 0
\(771\) −2.87154 13.9250i −0.103416 0.501497i
\(772\) 0 0
\(773\) 25.1130 + 43.4971i 0.903254 + 1.56448i 0.823245 + 0.567687i \(0.192162\pi\)
0.0800089 + 0.996794i \(0.474505\pi\)
\(774\) 0 0
\(775\) 29.5840 51.2409i 1.06269 1.84063i
\(776\) 0 0
\(777\) −3.02290 12.3638i −0.108446 0.443549i
\(778\) 0 0
\(779\) −3.65383 −0.130912
\(780\) 0 0
\(781\) 8.07194 0.288837
\(782\) 0 0
\(783\) −12.9963 + 1.12691i −0.464449 + 0.0402723i
\(784\) 0 0
\(785\) 12.8800 22.3088i 0.459707 0.796236i
\(786\) 0 0
\(787\) −0.829462 + 1.43667i −0.0295671 + 0.0512118i −0.880430 0.474176i \(-0.842746\pi\)
0.850863 + 0.525387i \(0.176080\pi\)
\(788\) 0 0
\(789\) 1.87017 + 9.06902i 0.0665797 + 0.322866i
\(790\) 0 0
\(791\) 16.7992 31.7110i 0.597311 1.12751i
\(792\) 0 0
\(793\) 7.73855 13.4036i 0.274804 0.475974i
\(794\) 0 0
\(795\) 15.3702 13.6712i 0.545124 0.484867i
\(796\) 0 0
\(797\) −15.3702 26.6219i −0.544439 0.942996i −0.998642 0.0520981i \(-0.983409\pi\)
0.454203 0.890898i \(-0.349924\pi\)
\(798\) 0 0
\(799\) 22.9752 39.7943i 0.812806 1.40782i
\(800\) 0 0
\(801\) 3.10507 26.4474i 0.109712 0.934473i
\(802\) 0 0
\(803\) −8.91095 15.4342i −0.314461 0.544662i
\(804\) 0 0
\(805\) −32.6952 52.1466i −1.15236 1.83793i
\(806\) 0 0
\(807\) −23.9222 + 21.2779i −0.842100 + 0.749016i
\(808\) 0 0
\(809\) −1.44251 2.49850i −0.0507159 0.0878425i 0.839553 0.543278i \(-0.182817\pi\)
−0.890269 + 0.455435i \(0.849484\pi\)
\(810\) 0 0
\(811\) −28.5461 −1.00239 −0.501195 0.865334i \(-0.667106\pi\)
−0.501195 + 0.865334i \(0.667106\pi\)
\(812\) 0 0
\(813\) 12.0913 + 4.01008i 0.424061 + 0.140640i
\(814\) 0 0
\(815\) −14.9356 + 25.8693i −0.523172 + 0.906161i
\(816\) 0 0
\(817\) 0.00550115 + 0.00952827i 0.000192461 + 0.000333352i
\(818\) 0 0
\(819\) −1.72184 + 21.3583i −0.0601659 + 0.746321i
\(820\) 0 0
\(821\) −3.98329 6.89926i −0.139018 0.240786i 0.788107 0.615538i \(-0.211061\pi\)
−0.927125 + 0.374752i \(0.877728\pi\)
\(822\) 0 0
\(823\) 20.2731 35.1140i 0.706675 1.22400i −0.259409 0.965768i \(-0.583528\pi\)
0.966084 0.258229i \(-0.0831388\pi\)
\(824\) 0 0
\(825\) 4.48879 + 21.7676i 0.156280 + 0.757849i
\(826\) 0 0
\(827\) −1.22115 −0.0424636 −0.0212318 0.999775i \(-0.506759\pi\)
−0.0212318 + 0.999775i \(0.506759\pi\)
\(828\) 0 0
\(829\) −7.07530 12.2548i −0.245735 0.425626i 0.716603 0.697481i \(-0.245696\pi\)
−0.962338 + 0.271856i \(0.912363\pi\)
\(830\) 0 0
\(831\) −3.18292 15.4350i −0.110414 0.535433i
\(832\) 0 0
\(833\) −45.9098 + 3.35071i −1.59068 + 0.116095i
\(834\) 0 0
\(835\) −36.0450 62.4318i −1.24739 2.16054i
\(836\) 0 0
\(837\) −35.2581 + 3.05723i −1.21870 + 0.105673i
\(838\) 0 0
\(839\) −1.19599 + 2.07151i −0.0412900 + 0.0715164i −0.885932 0.463815i \(-0.846480\pi\)
0.844642 + 0.535332i \(0.179813\pi\)
\(840\) 0 0
\(841\) 11.3486 + 19.6564i 0.391333 + 0.677808i
\(842\) 0 0
\(843\) 19.7422 + 6.54750i 0.679957 + 0.225508i
\(844\) 0 0
\(845\) 10.5662 18.3011i 0.363487 0.629577i
\(846\) 0 0
\(847\) −12.3935 19.7667i −0.425845 0.679193i
\(848\) 0 0
\(849\) 16.1817 + 5.36667i 0.555356 + 0.184184i
\(850\) 0 0
\(851\) 8.73236 15.1249i 0.299341 0.518475i
\(852\) 0 0
\(853\) −8.33998 + 14.4453i −0.285556 + 0.494597i −0.972744 0.231883i \(-0.925511\pi\)
0.687188 + 0.726479i \(0.258845\pi\)
\(854\) 0 0
\(855\) −1.15019 + 9.79669i −0.0393355 + 0.335040i
\(856\) 0 0
\(857\) −13.8516 −0.473162 −0.236581 0.971612i \(-0.576027\pi\)
−0.236581 + 0.971612i \(0.576027\pi\)
\(858\) 0 0
\(859\) −48.4944 −1.65461 −0.827304 0.561754i \(-0.810127\pi\)
−0.827304 + 0.561754i \(0.810127\pi\)
\(860\) 0 0
\(861\) 18.0865 + 5.27548i 0.616386 + 0.179788i
\(862\) 0 0
\(863\) −2.96541 + 5.13624i −0.100944 + 0.174840i −0.912074 0.410026i \(-0.865520\pi\)
0.811130 + 0.584866i \(0.198853\pi\)
\(864\) 0 0
\(865\) −41.7385 72.2932i −1.41915 2.45804i
\(866\) 0 0
\(867\) −43.1443 14.3088i −1.46526 0.485953i
\(868\) 0 0
\(869\) 8.45813 + 14.6499i 0.286922 + 0.496964i
\(870\) 0 0
\(871\) 25.5512 0.865770
\(872\) 0 0
\(873\) 4.60940 39.2605i 0.156005 1.32877i
\(874\) 0 0
\(875\) 19.1723 + 30.5785i 0.648143 + 1.03374i
\(876\) 0 0
\(877\) 3.92944 0.132688 0.0663439 0.997797i \(-0.478867\pi\)
0.0663439 + 0.997797i \(0.478867\pi\)
\(878\) 0 0
\(879\) −27.7218 + 24.6575i −0.935032 + 0.831676i
\(880\) 0 0
\(881\) 37.6552 1.26864 0.634318 0.773072i \(-0.281281\pi\)
0.634318 + 0.773072i \(0.281281\pi\)
\(882\) 0 0
\(883\) 53.2334 1.79145 0.895723 0.444613i \(-0.146659\pi\)
0.895723 + 0.444613i \(0.146659\pi\)
\(884\) 0 0
\(885\) 42.0265 + 13.9381i 1.41270 + 0.468523i
\(886\) 0 0
\(887\) 36.9876 1.24192 0.620961 0.783841i \(-0.286742\pi\)
0.620961 + 0.783841i \(0.286742\pi\)
\(888\) 0 0
\(889\) 4.01493 + 6.40353i 0.134656 + 0.214768i
\(890\) 0 0
\(891\) 9.13279 9.66022i 0.305960 0.323630i
\(892\) 0 0
\(893\) −6.21015 −0.207815
\(894\) 0 0
\(895\) −0.617454 1.06946i −0.0206392 0.0357482i
\(896\) 0 0
\(897\) −21.9691 + 19.5407i −0.733525 + 0.652443i
\(898\) 0 0
\(899\) −8.54944 14.8081i −0.285140 0.493877i
\(900\) 0 0
\(901\) 10.5549 18.2817i 0.351636 0.609052i
\(902\) 0 0
\(903\) −0.0134736 0.0551078i −0.000448374 0.00183387i
\(904\) 0 0
\(905\) 85.9875 2.85832
\(906\) 0 0
\(907\) 39.0159 1.29550 0.647752 0.761852i \(-0.275709\pi\)
0.647752 + 0.761852i \(0.275709\pi\)
\(908\) 0 0
\(909\) −14.4777 + 6.23623i −0.480195 + 0.206843i
\(910\) 0 0
\(911\) 12.8090 22.1859i 0.424382 0.735052i −0.571980 0.820267i \(-0.693825\pi\)
0.996363 + 0.0852158i \(0.0271580\pi\)
\(912\) 0 0
\(913\) −3.30656 + 5.72713i −0.109431 + 0.189540i
\(914\) 0 0
\(915\) −27.4498 + 24.4156i −0.907462 + 0.807154i
\(916\) 0 0
\(917\) −0.218810 0.348986i −0.00722574 0.0115245i
\(918\) 0 0
\(919\) −10.3367 + 17.9038i −0.340978 + 0.590591i −0.984615 0.174740i \(-0.944091\pi\)
0.643637 + 0.765331i \(0.277425\pi\)
\(920\) 0 0
\(921\) 1.98948 + 9.64761i 0.0655556 + 0.317900i
\(922\) 0 0
\(923\) −7.37636 12.7762i −0.242796 0.420535i
\(924\) 0 0
\(925\) −12.0643 + 20.8960i −0.396672 + 0.687055i
\(926\) 0 0
\(927\) 4.59084 1.97749i 0.150783 0.0649492i
\(928\) 0 0
\(929\) 1.87017 + 3.23922i 0.0613582 + 0.106275i 0.895073 0.445920i \(-0.147123\pi\)
−0.833715 + 0.552196i \(0.813790\pi\)
\(930\) 0 0
\(931\) 3.49450 + 5.14696i 0.114528 + 0.168685i
\(932\) 0 0
\(933\) −19.2687 6.39047i −0.630830 0.209215i
\(934\) 0 0
\(935\) 17.9680 + 31.1214i 0.587615 + 1.01778i
\(936\) 0 0
\(937\) −27.1345 −0.886445 −0.443223 0.896412i \(-0.646165\pi\)
−0.443223 + 0.896412i \(0.646165\pi\)
\(938\) 0 0
\(939\) −34.6501 + 30.8200i −1.13076 + 1.00577i
\(940\) 0 0
\(941\) −3.16435 + 5.48081i −0.103155 + 0.178669i −0.912983 0.407998i \(-0.866227\pi\)
0.809828 + 0.586667i \(0.199560\pi\)
\(942\) 0 0
\(943\) 12.9258 + 22.3881i 0.420922 + 0.729058i
\(944\) 0 0
\(945\) 19.8381 46.8331i 0.645334 1.52348i
\(946\) 0 0
\(947\) 15.6396 + 27.0886i 0.508218 + 0.880260i 0.999955 + 0.00951587i \(0.00302904\pi\)
−0.491736 + 0.870744i \(0.663638\pi\)
\(948\) 0 0
\(949\) −16.2861 + 28.2084i −0.528670 + 0.915684i
\(950\) 0 0
\(951\) 2.46217 2.19001i 0.0798414 0.0710160i
\(952\) 0 0
\(953\) 4.28937 0.138946 0.0694732 0.997584i \(-0.477868\pi\)
0.0694732 + 0.997584i \(0.477868\pi\)
\(954\) 0 0
\(955\) −30.1916 52.2933i −0.976977 1.69217i
\(956\) 0 0
\(957\) 6.09641 + 2.02187i 0.197069 + 0.0653579i
\(958\) 0 0
\(959\) −4.79487 7.64749i −0.154834 0.246950i
\(960\) 0 0
\(961\) −7.69413 13.3266i −0.248198 0.429891i
\(962\) 0 0
\(963\) −3.76578 + 32.0750i −0.121351 + 1.03360i
\(964\) 0 0
\(965\) 26.4920 45.8854i 0.852806 1.47710i
\(966\) 0 0
\(967\) 7.59201 + 13.1497i 0.244142 + 0.422867i 0.961890 0.273436i \(-0.0881602\pi\)
−0.717748 + 0.696303i \(0.754827\pi\)
\(968\) 0 0
\(969\) 2.04442 + 9.91405i 0.0656763 + 0.318485i
\(970\) 0 0
\(971\) −1.62364 + 2.81223i −0.0521052 + 0.0902489i −0.890902 0.454196i \(-0.849926\pi\)
0.838796 + 0.544445i \(0.183260\pi\)
\(972\) 0 0
\(973\) −16.7335 + 31.5869i −0.536450 + 1.01263i
\(974\) 0 0
\(975\) 30.3516 26.9966i 0.972029 0.864584i
\(976\) 0 0
\(977\) −7.77197 + 13.4614i −0.248647 + 0.430670i −0.963151 0.268962i \(-0.913319\pi\)
0.714503 + 0.699632i \(0.246653\pi\)
\(978\) 0 0
\(979\) −6.55563 + 11.3547i −0.209519 + 0.362897i
\(980\) 0 0
\(981\) 0.454888 + 0.339016i 0.0145235 + 0.0108240i
\(982\) 0 0
\(983\) −12.3832 −0.394961 −0.197481 0.980307i \(-0.563276\pi\)
−0.197481 + 0.980307i \(0.563276\pi\)
\(984\) 0 0
\(985\) 8.96796 0.285743
\(986\) 0 0
\(987\) 30.7403 + 8.96636i 0.978476 + 0.285402i
\(988\) 0 0
\(989\) 0.0389218 0.0674145i 0.00123764 0.00214366i
\(990\) 0 0
\(991\) 3.32760 + 5.76358i 0.105705 + 0.183086i 0.914026 0.405656i \(-0.132957\pi\)
−0.808321 + 0.588742i \(0.799623\pi\)
\(992\) 0 0
\(993\) −7.20513 + 6.40869i −0.228648 + 0.203374i
\(994\) 0 0
\(995\) 11.3047 + 19.5803i 0.358383 + 0.620738i
\(996\) 0 0
\(997\) 4.80208 0.152083 0.0760417 0.997105i \(-0.475772\pi\)
0.0760417 + 0.997105i \(0.475772\pi\)
\(998\) 0 0
\(999\) 14.3782 1.24673i 0.454907 0.0394449i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1008.2.t.g.961.3 6
3.2 odd 2 3024.2.t.g.289.1 6
4.3 odd 2 126.2.h.c.79.1 yes 6
7.4 even 3 1008.2.q.h.529.3 6
9.4 even 3 1008.2.q.h.625.3 6
9.5 odd 6 3024.2.q.h.2305.3 6
12.11 even 2 378.2.h.d.289.1 6
21.11 odd 6 3024.2.q.h.2881.3 6
28.3 even 6 882.2.e.p.655.3 6
28.11 odd 6 126.2.e.d.25.1 6
28.19 even 6 882.2.f.m.295.1 6
28.23 odd 6 882.2.f.l.295.3 6
28.27 even 2 882.2.h.o.79.3 6
36.7 odd 6 1134.2.g.k.163.1 6
36.11 even 6 1134.2.g.n.163.3 6
36.23 even 6 378.2.e.c.37.3 6
36.31 odd 6 126.2.e.d.121.1 yes 6
63.4 even 3 inner 1008.2.t.g.193.3 6
63.32 odd 6 3024.2.t.g.1873.1 6
84.11 even 6 378.2.e.c.235.3 6
84.23 even 6 2646.2.f.o.883.3 6
84.47 odd 6 2646.2.f.n.883.1 6
84.59 odd 6 2646.2.e.o.2125.1 6
84.83 odd 2 2646.2.h.p.667.3 6
252.11 even 6 1134.2.g.n.487.3 6
252.23 even 6 2646.2.f.o.1765.3 6
252.31 even 6 882.2.h.o.67.3 6
252.47 odd 6 7938.2.a.bx.1.3 3
252.59 odd 6 2646.2.h.p.361.3 6
252.67 odd 6 126.2.h.c.67.1 yes 6
252.79 odd 6 7938.2.a.cb.1.3 3
252.95 even 6 378.2.h.d.361.1 6
252.103 even 6 882.2.f.m.589.1 6
252.131 odd 6 2646.2.f.n.1765.1 6
252.139 even 6 882.2.e.p.373.3 6
252.151 odd 6 1134.2.g.k.487.1 6
252.167 odd 6 2646.2.e.o.1549.1 6
252.187 even 6 7938.2.a.by.1.1 3
252.191 even 6 7938.2.a.bu.1.1 3
252.247 odd 6 882.2.f.l.589.3 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
126.2.e.d.25.1 6 28.11 odd 6
126.2.e.d.121.1 yes 6 36.31 odd 6
126.2.h.c.67.1 yes 6 252.67 odd 6
126.2.h.c.79.1 yes 6 4.3 odd 2
378.2.e.c.37.3 6 36.23 even 6
378.2.e.c.235.3 6 84.11 even 6
378.2.h.d.289.1 6 12.11 even 2
378.2.h.d.361.1 6 252.95 even 6
882.2.e.p.373.3 6 252.139 even 6
882.2.e.p.655.3 6 28.3 even 6
882.2.f.l.295.3 6 28.23 odd 6
882.2.f.l.589.3 6 252.247 odd 6
882.2.f.m.295.1 6 28.19 even 6
882.2.f.m.589.1 6 252.103 even 6
882.2.h.o.67.3 6 252.31 even 6
882.2.h.o.79.3 6 28.27 even 2
1008.2.q.h.529.3 6 7.4 even 3
1008.2.q.h.625.3 6 9.4 even 3
1008.2.t.g.193.3 6 63.4 even 3 inner
1008.2.t.g.961.3 6 1.1 even 1 trivial
1134.2.g.k.163.1 6 36.7 odd 6
1134.2.g.k.487.1 6 252.151 odd 6
1134.2.g.n.163.3 6 36.11 even 6
1134.2.g.n.487.3 6 252.11 even 6
2646.2.e.o.1549.1 6 252.167 odd 6
2646.2.e.o.2125.1 6 84.59 odd 6
2646.2.f.n.883.1 6 84.47 odd 6
2646.2.f.n.1765.1 6 252.131 odd 6
2646.2.f.o.883.3 6 84.23 even 6
2646.2.f.o.1765.3 6 252.23 even 6
2646.2.h.p.361.3 6 252.59 odd 6
2646.2.h.p.667.3 6 84.83 odd 2
3024.2.q.h.2305.3 6 9.5 odd 6
3024.2.q.h.2881.3 6 21.11 odd 6
3024.2.t.g.289.1 6 3.2 odd 2
3024.2.t.g.1873.1 6 63.32 odd 6
7938.2.a.bu.1.1 3 252.191 even 6
7938.2.a.bx.1.3 3 252.47 odd 6
7938.2.a.by.1.1 3 252.187 even 6
7938.2.a.cb.1.3 3 252.79 odd 6