Properties

Label 1008.2.t.f.961.1
Level $1008$
Weight $2$
Character 1008.961
Analytic conductor $8.049$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1008,2,Mod(193,1008)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1008, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 2, 4])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1008.193"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1008 = 2^{4} \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1008.t (of order \(3\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,3,0,6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(8.04892052375\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 126)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 961.1
Root \(0.500000 - 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 1008.961
Dual form 1008.2.t.f.193.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.50000 + 0.866025i) q^{3} +3.00000 q^{5} +(-2.50000 - 0.866025i) q^{7} +(1.50000 + 2.59808i) q^{9} +3.00000 q^{11} +(0.500000 + 0.866025i) q^{13} +(4.50000 + 2.59808i) q^{15} +(-1.50000 - 2.59808i) q^{17} +(-3.50000 + 6.06218i) q^{19} +(-3.00000 - 3.46410i) q^{21} +9.00000 q^{23} +4.00000 q^{25} +5.19615i q^{27} +(-1.50000 + 2.59808i) q^{29} +(4.00000 - 6.92820i) q^{31} +(4.50000 + 2.59808i) q^{33} +(-7.50000 - 2.59808i) q^{35} +(0.500000 - 0.866025i) q^{37} +1.73205i q^{39} +(-1.50000 - 2.59808i) q^{41} +(-0.500000 + 0.866025i) q^{43} +(4.50000 + 7.79423i) q^{45} +(5.50000 + 4.33013i) q^{49} -5.19615i q^{51} +(-1.50000 - 2.59808i) q^{53} +9.00000 q^{55} +(-10.5000 + 6.06218i) q^{57} +(-1.00000 - 1.73205i) q^{61} +(-1.50000 - 7.79423i) q^{63} +(1.50000 + 2.59808i) q^{65} +(-2.00000 + 3.46410i) q^{67} +(13.5000 + 7.79423i) q^{69} -12.0000 q^{71} +(-5.50000 - 9.52628i) q^{73} +(6.00000 + 3.46410i) q^{75} +(-7.50000 - 2.59808i) q^{77} +(-8.00000 - 13.8564i) q^{79} +(-4.50000 + 7.79423i) q^{81} +(-4.50000 + 7.79423i) q^{83} +(-4.50000 - 7.79423i) q^{85} +(-4.50000 + 2.59808i) q^{87} +(-1.50000 + 2.59808i) q^{89} +(-0.500000 - 2.59808i) q^{91} +(12.0000 - 6.92820i) q^{93} +(-10.5000 + 18.1865i) q^{95} +(0.500000 - 0.866025i) q^{97} +(4.50000 + 7.79423i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 3 q^{3} + 6 q^{5} - 5 q^{7} + 3 q^{9} + 6 q^{11} + q^{13} + 9 q^{15} - 3 q^{17} - 7 q^{19} - 6 q^{21} + 18 q^{23} + 8 q^{25} - 3 q^{29} + 8 q^{31} + 9 q^{33} - 15 q^{35} + q^{37} - 3 q^{41} - q^{43}+ \cdots + 9 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1008\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(577\) \(757\) \(785\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{3}\right)\) \(1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.50000 + 0.866025i 0.866025 + 0.500000i
\(4\) 0 0
\(5\) 3.00000 1.34164 0.670820 0.741620i \(-0.265942\pi\)
0.670820 + 0.741620i \(0.265942\pi\)
\(6\) 0 0
\(7\) −2.50000 0.866025i −0.944911 0.327327i
\(8\) 0 0
\(9\) 1.50000 + 2.59808i 0.500000 + 0.866025i
\(10\) 0 0
\(11\) 3.00000 0.904534 0.452267 0.891883i \(-0.350615\pi\)
0.452267 + 0.891883i \(0.350615\pi\)
\(12\) 0 0
\(13\) 0.500000 + 0.866025i 0.138675 + 0.240192i 0.926995 0.375073i \(-0.122382\pi\)
−0.788320 + 0.615265i \(0.789049\pi\)
\(14\) 0 0
\(15\) 4.50000 + 2.59808i 1.16190 + 0.670820i
\(16\) 0 0
\(17\) −1.50000 2.59808i −0.363803 0.630126i 0.624780 0.780801i \(-0.285189\pi\)
−0.988583 + 0.150675i \(0.951855\pi\)
\(18\) 0 0
\(19\) −3.50000 + 6.06218i −0.802955 + 1.39076i 0.114708 + 0.993399i \(0.463407\pi\)
−0.917663 + 0.397360i \(0.869927\pi\)
\(20\) 0 0
\(21\) −3.00000 3.46410i −0.654654 0.755929i
\(22\) 0 0
\(23\) 9.00000 1.87663 0.938315 0.345782i \(-0.112386\pi\)
0.938315 + 0.345782i \(0.112386\pi\)
\(24\) 0 0
\(25\) 4.00000 0.800000
\(26\) 0 0
\(27\) 5.19615i 1.00000i
\(28\) 0 0
\(29\) −1.50000 + 2.59808i −0.278543 + 0.482451i −0.971023 0.238987i \(-0.923185\pi\)
0.692480 + 0.721437i \(0.256518\pi\)
\(30\) 0 0
\(31\) 4.00000 6.92820i 0.718421 1.24434i −0.243204 0.969975i \(-0.578198\pi\)
0.961625 0.274367i \(-0.0884683\pi\)
\(32\) 0 0
\(33\) 4.50000 + 2.59808i 0.783349 + 0.452267i
\(34\) 0 0
\(35\) −7.50000 2.59808i −1.26773 0.439155i
\(36\) 0 0
\(37\) 0.500000 0.866025i 0.0821995 0.142374i −0.821995 0.569495i \(-0.807139\pi\)
0.904194 + 0.427121i \(0.140472\pi\)
\(38\) 0 0
\(39\) 1.73205i 0.277350i
\(40\) 0 0
\(41\) −1.50000 2.59808i −0.234261 0.405751i 0.724797 0.688963i \(-0.241934\pi\)
−0.959058 + 0.283211i \(0.908600\pi\)
\(42\) 0 0
\(43\) −0.500000 + 0.866025i −0.0762493 + 0.132068i −0.901629 0.432511i \(-0.857628\pi\)
0.825380 + 0.564578i \(0.190961\pi\)
\(44\) 0 0
\(45\) 4.50000 + 7.79423i 0.670820 + 1.16190i
\(46\) 0 0
\(47\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(48\) 0 0
\(49\) 5.50000 + 4.33013i 0.785714 + 0.618590i
\(50\) 0 0
\(51\) 5.19615i 0.727607i
\(52\) 0 0
\(53\) −1.50000 2.59808i −0.206041 0.356873i 0.744423 0.667708i \(-0.232725\pi\)
−0.950464 + 0.310835i \(0.899391\pi\)
\(54\) 0 0
\(55\) 9.00000 1.21356
\(56\) 0 0
\(57\) −10.5000 + 6.06218i −1.39076 + 0.802955i
\(58\) 0 0
\(59\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(60\) 0 0
\(61\) −1.00000 1.73205i −0.128037 0.221766i 0.794879 0.606768i \(-0.207534\pi\)
−0.922916 + 0.385002i \(0.874201\pi\)
\(62\) 0 0
\(63\) −1.50000 7.79423i −0.188982 0.981981i
\(64\) 0 0
\(65\) 1.50000 + 2.59808i 0.186052 + 0.322252i
\(66\) 0 0
\(67\) −2.00000 + 3.46410i −0.244339 + 0.423207i −0.961946 0.273241i \(-0.911904\pi\)
0.717607 + 0.696449i \(0.245238\pi\)
\(68\) 0 0
\(69\) 13.5000 + 7.79423i 1.62521 + 0.938315i
\(70\) 0 0
\(71\) −12.0000 −1.42414 −0.712069 0.702109i \(-0.752242\pi\)
−0.712069 + 0.702109i \(0.752242\pi\)
\(72\) 0 0
\(73\) −5.50000 9.52628i −0.643726 1.11497i −0.984594 0.174855i \(-0.944054\pi\)
0.340868 0.940111i \(-0.389279\pi\)
\(74\) 0 0
\(75\) 6.00000 + 3.46410i 0.692820 + 0.400000i
\(76\) 0 0
\(77\) −7.50000 2.59808i −0.854704 0.296078i
\(78\) 0 0
\(79\) −8.00000 13.8564i −0.900070 1.55897i −0.827401 0.561611i \(-0.810182\pi\)
−0.0726692 0.997356i \(-0.523152\pi\)
\(80\) 0 0
\(81\) −4.50000 + 7.79423i −0.500000 + 0.866025i
\(82\) 0 0
\(83\) −4.50000 + 7.79423i −0.493939 + 0.855528i −0.999976 0.00698436i \(-0.997777\pi\)
0.506036 + 0.862512i \(0.331110\pi\)
\(84\) 0 0
\(85\) −4.50000 7.79423i −0.488094 0.845403i
\(86\) 0 0
\(87\) −4.50000 + 2.59808i −0.482451 + 0.278543i
\(88\) 0 0
\(89\) −1.50000 + 2.59808i −0.159000 + 0.275396i −0.934508 0.355942i \(-0.884160\pi\)
0.775509 + 0.631337i \(0.217494\pi\)
\(90\) 0 0
\(91\) −0.500000 2.59808i −0.0524142 0.272352i
\(92\) 0 0
\(93\) 12.0000 6.92820i 1.24434 0.718421i
\(94\) 0 0
\(95\) −10.5000 + 18.1865i −1.07728 + 1.86590i
\(96\) 0 0
\(97\) 0.500000 0.866025i 0.0507673 0.0879316i −0.839525 0.543321i \(-0.817167\pi\)
0.890292 + 0.455389i \(0.150500\pi\)
\(98\) 0 0
\(99\) 4.50000 + 7.79423i 0.452267 + 0.783349i
\(100\) 0 0
\(101\) 3.00000 0.298511 0.149256 0.988799i \(-0.452312\pi\)
0.149256 + 0.988799i \(0.452312\pi\)
\(102\) 0 0
\(103\) 13.0000 1.28093 0.640464 0.767988i \(-0.278742\pi\)
0.640464 + 0.767988i \(0.278742\pi\)
\(104\) 0 0
\(105\) −9.00000 10.3923i −0.878310 1.01419i
\(106\) 0 0
\(107\) 4.50000 7.79423i 0.435031 0.753497i −0.562267 0.826956i \(-0.690071\pi\)
0.997298 + 0.0734594i \(0.0234039\pi\)
\(108\) 0 0
\(109\) 6.50000 + 11.2583i 0.622587 + 1.07835i 0.989002 + 0.147901i \(0.0472517\pi\)
−0.366415 + 0.930451i \(0.619415\pi\)
\(110\) 0 0
\(111\) 1.50000 0.866025i 0.142374 0.0821995i
\(112\) 0 0
\(113\) 4.50000 + 7.79423i 0.423324 + 0.733219i 0.996262 0.0863794i \(-0.0275297\pi\)
−0.572938 + 0.819599i \(0.694196\pi\)
\(114\) 0 0
\(115\) 27.0000 2.51776
\(116\) 0 0
\(117\) −1.50000 + 2.59808i −0.138675 + 0.240192i
\(118\) 0 0
\(119\) 1.50000 + 7.79423i 0.137505 + 0.714496i
\(120\) 0 0
\(121\) −2.00000 −0.181818
\(122\) 0 0
\(123\) 5.19615i 0.468521i
\(124\) 0 0
\(125\) −3.00000 −0.268328
\(126\) 0 0
\(127\) 4.00000 0.354943 0.177471 0.984126i \(-0.443208\pi\)
0.177471 + 0.984126i \(0.443208\pi\)
\(128\) 0 0
\(129\) −1.50000 + 0.866025i −0.132068 + 0.0762493i
\(130\) 0 0
\(131\) −15.0000 −1.31056 −0.655278 0.755388i \(-0.727449\pi\)
−0.655278 + 0.755388i \(0.727449\pi\)
\(132\) 0 0
\(133\) 14.0000 12.1244i 1.21395 1.05131i
\(134\) 0 0
\(135\) 15.5885i 1.34164i
\(136\) 0 0
\(137\) −9.00000 −0.768922 −0.384461 0.923141i \(-0.625613\pi\)
−0.384461 + 0.923141i \(0.625613\pi\)
\(138\) 0 0
\(139\) −3.50000 6.06218i −0.296866 0.514187i 0.678551 0.734553i \(-0.262608\pi\)
−0.975417 + 0.220366i \(0.929275\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 1.50000 + 2.59808i 0.125436 + 0.217262i
\(144\) 0 0
\(145\) −4.50000 + 7.79423i −0.373705 + 0.647275i
\(146\) 0 0
\(147\) 4.50000 + 11.2583i 0.371154 + 0.928571i
\(148\) 0 0
\(149\) −9.00000 −0.737309 −0.368654 0.929567i \(-0.620181\pi\)
−0.368654 + 0.929567i \(0.620181\pi\)
\(150\) 0 0
\(151\) 7.00000 0.569652 0.284826 0.958579i \(-0.408064\pi\)
0.284826 + 0.958579i \(0.408064\pi\)
\(152\) 0 0
\(153\) 4.50000 7.79423i 0.363803 0.630126i
\(154\) 0 0
\(155\) 12.0000 20.7846i 0.963863 1.66946i
\(156\) 0 0
\(157\) 11.0000 19.0526i 0.877896 1.52056i 0.0242497 0.999706i \(-0.492280\pi\)
0.853646 0.520854i \(-0.174386\pi\)
\(158\) 0 0
\(159\) 5.19615i 0.412082i
\(160\) 0 0
\(161\) −22.5000 7.79423i −1.77325 0.614271i
\(162\) 0 0
\(163\) −9.50000 + 16.4545i −0.744097 + 1.28881i 0.206518 + 0.978443i \(0.433787\pi\)
−0.950615 + 0.310372i \(0.899546\pi\)
\(164\) 0 0
\(165\) 13.5000 + 7.79423i 1.05097 + 0.606780i
\(166\) 0 0
\(167\) −7.50000 12.9904i −0.580367 1.00523i −0.995436 0.0954356i \(-0.969576\pi\)
0.415068 0.909790i \(-0.363758\pi\)
\(168\) 0 0
\(169\) 6.00000 10.3923i 0.461538 0.799408i
\(170\) 0 0
\(171\) −21.0000 −1.60591
\(172\) 0 0
\(173\) 3.00000 + 5.19615i 0.228086 + 0.395056i 0.957241 0.289292i \(-0.0934200\pi\)
−0.729155 + 0.684349i \(0.760087\pi\)
\(174\) 0 0
\(175\) −10.0000 3.46410i −0.755929 0.261861i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −10.5000 18.1865i −0.784807 1.35933i −0.929114 0.369792i \(-0.879429\pi\)
0.144308 0.989533i \(-0.453905\pi\)
\(180\) 0 0
\(181\) 2.00000 0.148659 0.0743294 0.997234i \(-0.476318\pi\)
0.0743294 + 0.997234i \(0.476318\pi\)
\(182\) 0 0
\(183\) 3.46410i 0.256074i
\(184\) 0 0
\(185\) 1.50000 2.59808i 0.110282 0.191014i
\(186\) 0 0
\(187\) −4.50000 7.79423i −0.329073 0.569970i
\(188\) 0 0
\(189\) 4.50000 12.9904i 0.327327 0.944911i
\(190\) 0 0
\(191\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(192\) 0 0
\(193\) −7.00000 + 12.1244i −0.503871 + 0.872730i 0.496119 + 0.868255i \(0.334758\pi\)
−0.999990 + 0.00447566i \(0.998575\pi\)
\(194\) 0 0
\(195\) 5.19615i 0.372104i
\(196\) 0 0
\(197\) 18.0000 1.28245 0.641223 0.767354i \(-0.278427\pi\)
0.641223 + 0.767354i \(0.278427\pi\)
\(198\) 0 0
\(199\) −12.5000 21.6506i −0.886102 1.53477i −0.844446 0.535641i \(-0.820070\pi\)
−0.0416556 0.999132i \(-0.513263\pi\)
\(200\) 0 0
\(201\) −6.00000 + 3.46410i −0.423207 + 0.244339i
\(202\) 0 0
\(203\) 6.00000 5.19615i 0.421117 0.364698i
\(204\) 0 0
\(205\) −4.50000 7.79423i −0.314294 0.544373i
\(206\) 0 0
\(207\) 13.5000 + 23.3827i 0.938315 + 1.62521i
\(208\) 0 0
\(209\) −10.5000 + 18.1865i −0.726300 + 1.25799i
\(210\) 0 0
\(211\) 2.50000 + 4.33013i 0.172107 + 0.298098i 0.939156 0.343490i \(-0.111609\pi\)
−0.767049 + 0.641588i \(0.778276\pi\)
\(212\) 0 0
\(213\) −18.0000 10.3923i −1.23334 0.712069i
\(214\) 0 0
\(215\) −1.50000 + 2.59808i −0.102299 + 0.177187i
\(216\) 0 0
\(217\) −16.0000 + 13.8564i −1.08615 + 0.940634i
\(218\) 0 0
\(219\) 19.0526i 1.28745i
\(220\) 0 0
\(221\) 1.50000 2.59808i 0.100901 0.174766i
\(222\) 0 0
\(223\) −0.500000 + 0.866025i −0.0334825 + 0.0579934i −0.882281 0.470723i \(-0.843993\pi\)
0.848799 + 0.528716i \(0.177326\pi\)
\(224\) 0 0
\(225\) 6.00000 + 10.3923i 0.400000 + 0.692820i
\(226\) 0 0
\(227\) 3.00000 0.199117 0.0995585 0.995032i \(-0.468257\pi\)
0.0995585 + 0.995032i \(0.468257\pi\)
\(228\) 0 0
\(229\) −13.0000 −0.859064 −0.429532 0.903052i \(-0.641321\pi\)
−0.429532 + 0.903052i \(0.641321\pi\)
\(230\) 0 0
\(231\) −9.00000 10.3923i −0.592157 0.683763i
\(232\) 0 0
\(233\) −1.50000 + 2.59808i −0.0982683 + 0.170206i −0.910968 0.412477i \(-0.864664\pi\)
0.812700 + 0.582683i \(0.197997\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 27.7128i 1.80014i
\(238\) 0 0
\(239\) −1.50000 2.59808i −0.0970269 0.168056i 0.813426 0.581669i \(-0.197600\pi\)
−0.910453 + 0.413613i \(0.864267\pi\)
\(240\) 0 0
\(241\) −13.0000 −0.837404 −0.418702 0.908124i \(-0.637515\pi\)
−0.418702 + 0.908124i \(0.637515\pi\)
\(242\) 0 0
\(243\) −13.5000 + 7.79423i −0.866025 + 0.500000i
\(244\) 0 0
\(245\) 16.5000 + 12.9904i 1.05415 + 0.829925i
\(246\) 0 0
\(247\) −7.00000 −0.445399
\(248\) 0 0
\(249\) −13.5000 + 7.79423i −0.855528 + 0.493939i
\(250\) 0 0
\(251\) −12.0000 −0.757433 −0.378717 0.925513i \(-0.623635\pi\)
−0.378717 + 0.925513i \(0.623635\pi\)
\(252\) 0 0
\(253\) 27.0000 1.69748
\(254\) 0 0
\(255\) 15.5885i 0.976187i
\(256\) 0 0
\(257\) −21.0000 −1.30994 −0.654972 0.755653i \(-0.727320\pi\)
−0.654972 + 0.755653i \(0.727320\pi\)
\(258\) 0 0
\(259\) −2.00000 + 1.73205i −0.124274 + 0.107624i
\(260\) 0 0
\(261\) −9.00000 −0.557086
\(262\) 0 0
\(263\) −9.00000 −0.554964 −0.277482 0.960731i \(-0.589500\pi\)
−0.277482 + 0.960731i \(0.589500\pi\)
\(264\) 0 0
\(265\) −4.50000 7.79423i −0.276433 0.478796i
\(266\) 0 0
\(267\) −4.50000 + 2.59808i −0.275396 + 0.159000i
\(268\) 0 0
\(269\) −7.50000 12.9904i −0.457283 0.792038i 0.541533 0.840679i \(-0.317844\pi\)
−0.998816 + 0.0486418i \(0.984511\pi\)
\(270\) 0 0
\(271\) 2.50000 4.33013i 0.151864 0.263036i −0.780049 0.625719i \(-0.784806\pi\)
0.931913 + 0.362682i \(0.118139\pi\)
\(272\) 0 0
\(273\) 1.50000 4.33013i 0.0907841 0.262071i
\(274\) 0 0
\(275\) 12.0000 0.723627
\(276\) 0 0
\(277\) −1.00000 −0.0600842 −0.0300421 0.999549i \(-0.509564\pi\)
−0.0300421 + 0.999549i \(0.509564\pi\)
\(278\) 0 0
\(279\) 24.0000 1.43684
\(280\) 0 0
\(281\) 10.5000 18.1865i 0.626377 1.08492i −0.361895 0.932219i \(-0.617870\pi\)
0.988273 0.152699i \(-0.0487965\pi\)
\(282\) 0 0
\(283\) −2.00000 + 3.46410i −0.118888 + 0.205919i −0.919327 0.393494i \(-0.871266\pi\)
0.800439 + 0.599414i \(0.204600\pi\)
\(284\) 0 0
\(285\) −31.5000 + 18.1865i −1.86590 + 1.07728i
\(286\) 0 0
\(287\) 1.50000 + 7.79423i 0.0885422 + 0.460079i
\(288\) 0 0
\(289\) 4.00000 6.92820i 0.235294 0.407541i
\(290\) 0 0
\(291\) 1.50000 0.866025i 0.0879316 0.0507673i
\(292\) 0 0
\(293\) 4.50000 + 7.79423i 0.262893 + 0.455344i 0.967009 0.254741i \(-0.0819901\pi\)
−0.704117 + 0.710084i \(0.748657\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 15.5885i 0.904534i
\(298\) 0 0
\(299\) 4.50000 + 7.79423i 0.260242 + 0.450752i
\(300\) 0 0
\(301\) 2.00000 1.73205i 0.115278 0.0998337i
\(302\) 0 0
\(303\) 4.50000 + 2.59808i 0.258518 + 0.149256i
\(304\) 0 0
\(305\) −3.00000 5.19615i −0.171780 0.297531i
\(306\) 0 0
\(307\) 28.0000 1.59804 0.799022 0.601302i \(-0.205351\pi\)
0.799022 + 0.601302i \(0.205351\pi\)
\(308\) 0 0
\(309\) 19.5000 + 11.2583i 1.10932 + 0.640464i
\(310\) 0 0
\(311\) −12.0000 + 20.7846i −0.680458 + 1.17859i 0.294384 + 0.955687i \(0.404886\pi\)
−0.974841 + 0.222900i \(0.928448\pi\)
\(312\) 0 0
\(313\) 5.00000 + 8.66025i 0.282617 + 0.489506i 0.972028 0.234863i \(-0.0754642\pi\)
−0.689412 + 0.724370i \(0.742131\pi\)
\(314\) 0 0
\(315\) −4.50000 23.3827i −0.253546 1.31747i
\(316\) 0 0
\(317\) −9.00000 15.5885i −0.505490 0.875535i −0.999980 0.00635137i \(-0.997978\pi\)
0.494489 0.869184i \(-0.335355\pi\)
\(318\) 0 0
\(319\) −4.50000 + 7.79423i −0.251952 + 0.436393i
\(320\) 0 0
\(321\) 13.5000 7.79423i 0.753497 0.435031i
\(322\) 0 0
\(323\) 21.0000 1.16847
\(324\) 0 0
\(325\) 2.00000 + 3.46410i 0.110940 + 0.192154i
\(326\) 0 0
\(327\) 22.5167i 1.24517i
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 4.00000 + 6.92820i 0.219860 + 0.380808i 0.954765 0.297361i \(-0.0961066\pi\)
−0.734905 + 0.678170i \(0.762773\pi\)
\(332\) 0 0
\(333\) 3.00000 0.164399
\(334\) 0 0
\(335\) −6.00000 + 10.3923i −0.327815 + 0.567792i
\(336\) 0 0
\(337\) 6.50000 + 11.2583i 0.354078 + 0.613280i 0.986960 0.160968i \(-0.0514616\pi\)
−0.632882 + 0.774248i \(0.718128\pi\)
\(338\) 0 0
\(339\) 15.5885i 0.846649i
\(340\) 0 0
\(341\) 12.0000 20.7846i 0.649836 1.12555i
\(342\) 0 0
\(343\) −10.0000 15.5885i −0.539949 0.841698i
\(344\) 0 0
\(345\) 40.5000 + 23.3827i 2.18045 + 1.25888i
\(346\) 0 0
\(347\) 6.00000 10.3923i 0.322097 0.557888i −0.658824 0.752297i \(-0.728946\pi\)
0.980921 + 0.194409i \(0.0622790\pi\)
\(348\) 0 0
\(349\) −11.5000 + 19.9186i −0.615581 + 1.06622i 0.374701 + 0.927146i \(0.377745\pi\)
−0.990282 + 0.139072i \(0.955588\pi\)
\(350\) 0 0
\(351\) −4.50000 + 2.59808i −0.240192 + 0.138675i
\(352\) 0 0
\(353\) 3.00000 0.159674 0.0798369 0.996808i \(-0.474560\pi\)
0.0798369 + 0.996808i \(0.474560\pi\)
\(354\) 0 0
\(355\) −36.0000 −1.91068
\(356\) 0 0
\(357\) −4.50000 + 12.9904i −0.238165 + 0.687524i
\(358\) 0 0
\(359\) 4.50000 7.79423i 0.237501 0.411364i −0.722496 0.691375i \(-0.757005\pi\)
0.959997 + 0.280012i \(0.0903384\pi\)
\(360\) 0 0
\(361\) −15.0000 25.9808i −0.789474 1.36741i
\(362\) 0 0
\(363\) −3.00000 1.73205i −0.157459 0.0909091i
\(364\) 0 0
\(365\) −16.5000 28.5788i −0.863649 1.49588i
\(366\) 0 0
\(367\) −17.0000 −0.887393 −0.443696 0.896177i \(-0.646333\pi\)
−0.443696 + 0.896177i \(0.646333\pi\)
\(368\) 0 0
\(369\) 4.50000 7.79423i 0.234261 0.405751i
\(370\) 0 0
\(371\) 1.50000 + 7.79423i 0.0778761 + 0.404656i
\(372\) 0 0
\(373\) −13.0000 −0.673114 −0.336557 0.941663i \(-0.609263\pi\)
−0.336557 + 0.941663i \(0.609263\pi\)
\(374\) 0 0
\(375\) −4.50000 2.59808i −0.232379 0.134164i
\(376\) 0 0
\(377\) −3.00000 −0.154508
\(378\) 0 0
\(379\) 28.0000 1.43826 0.719132 0.694874i \(-0.244540\pi\)
0.719132 + 0.694874i \(0.244540\pi\)
\(380\) 0 0
\(381\) 6.00000 + 3.46410i 0.307389 + 0.177471i
\(382\) 0 0
\(383\) −15.0000 −0.766464 −0.383232 0.923652i \(-0.625189\pi\)
−0.383232 + 0.923652i \(0.625189\pi\)
\(384\) 0 0
\(385\) −22.5000 7.79423i −1.14671 0.397231i
\(386\) 0 0
\(387\) −3.00000 −0.152499
\(388\) 0 0
\(389\) 27.0000 1.36895 0.684477 0.729034i \(-0.260031\pi\)
0.684477 + 0.729034i \(0.260031\pi\)
\(390\) 0 0
\(391\) −13.5000 23.3827i −0.682724 1.18251i
\(392\) 0 0
\(393\) −22.5000 12.9904i −1.13497 0.655278i
\(394\) 0 0
\(395\) −24.0000 41.5692i −1.20757 2.09157i
\(396\) 0 0
\(397\) 6.50000 11.2583i 0.326226 0.565039i −0.655534 0.755166i \(-0.727556\pi\)
0.981760 + 0.190126i \(0.0608897\pi\)
\(398\) 0 0
\(399\) 31.5000 6.06218i 1.57697 0.303488i
\(400\) 0 0
\(401\) 27.0000 1.34832 0.674158 0.738587i \(-0.264507\pi\)
0.674158 + 0.738587i \(0.264507\pi\)
\(402\) 0 0
\(403\) 8.00000 0.398508
\(404\) 0 0
\(405\) −13.5000 + 23.3827i −0.670820 + 1.16190i
\(406\) 0 0
\(407\) 1.50000 2.59808i 0.0743522 0.128782i
\(408\) 0 0
\(409\) 17.0000 29.4449i 0.840596 1.45595i −0.0487958 0.998809i \(-0.515538\pi\)
0.889392 0.457146i \(-0.151128\pi\)
\(410\) 0 0
\(411\) −13.5000 7.79423i −0.665906 0.384461i
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) −13.5000 + 23.3827i −0.662689 + 1.14781i
\(416\) 0 0
\(417\) 12.1244i 0.593732i
\(418\) 0 0
\(419\) 4.50000 + 7.79423i 0.219839 + 0.380773i 0.954759 0.297382i \(-0.0961133\pi\)
−0.734919 + 0.678155i \(0.762780\pi\)
\(420\) 0 0
\(421\) −17.5000 + 30.3109i −0.852898 + 1.47726i 0.0256838 + 0.999670i \(0.491824\pi\)
−0.878582 + 0.477592i \(0.841510\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −6.00000 10.3923i −0.291043 0.504101i
\(426\) 0 0
\(427\) 1.00000 + 5.19615i 0.0483934 + 0.251459i
\(428\) 0 0
\(429\) 5.19615i 0.250873i
\(430\) 0 0
\(431\) 13.5000 + 23.3827i 0.650272 + 1.12630i 0.983057 + 0.183301i \(0.0586785\pi\)
−0.332785 + 0.943003i \(0.607988\pi\)
\(432\) 0 0
\(433\) 2.00000 0.0961139 0.0480569 0.998845i \(-0.484697\pi\)
0.0480569 + 0.998845i \(0.484697\pi\)
\(434\) 0 0
\(435\) −13.5000 + 7.79423i −0.647275 + 0.373705i
\(436\) 0 0
\(437\) −31.5000 + 54.5596i −1.50685 + 2.60994i
\(438\) 0 0
\(439\) 4.00000 + 6.92820i 0.190910 + 0.330665i 0.945552 0.325471i \(-0.105523\pi\)
−0.754642 + 0.656136i \(0.772190\pi\)
\(440\) 0 0
\(441\) −3.00000 + 20.7846i −0.142857 + 0.989743i
\(442\) 0 0
\(443\) 18.0000 + 31.1769i 0.855206 + 1.48126i 0.876454 + 0.481486i \(0.159903\pi\)
−0.0212481 + 0.999774i \(0.506764\pi\)
\(444\) 0 0
\(445\) −4.50000 + 7.79423i −0.213320 + 0.369482i
\(446\) 0 0
\(447\) −13.5000 7.79423i −0.638528 0.368654i
\(448\) 0 0
\(449\) 6.00000 0.283158 0.141579 0.989927i \(-0.454782\pi\)
0.141579 + 0.989927i \(0.454782\pi\)
\(450\) 0 0
\(451\) −4.50000 7.79423i −0.211897 0.367016i
\(452\) 0 0
\(453\) 10.5000 + 6.06218i 0.493333 + 0.284826i
\(454\) 0 0
\(455\) −1.50000 7.79423i −0.0703211 0.365399i
\(456\) 0 0
\(457\) 5.00000 + 8.66025i 0.233890 + 0.405110i 0.958950 0.283577i \(-0.0915211\pi\)
−0.725059 + 0.688686i \(0.758188\pi\)
\(458\) 0 0
\(459\) 13.5000 7.79423i 0.630126 0.363803i
\(460\) 0 0
\(461\) 4.50000 7.79423i 0.209586 0.363013i −0.741998 0.670402i \(-0.766122\pi\)
0.951584 + 0.307388i \(0.0994551\pi\)
\(462\) 0 0
\(463\) 20.5000 + 35.5070i 0.952716 + 1.65015i 0.739511 + 0.673145i \(0.235057\pi\)
0.213205 + 0.977007i \(0.431610\pi\)
\(464\) 0 0
\(465\) 36.0000 20.7846i 1.66946 0.963863i
\(466\) 0 0
\(467\) −1.50000 + 2.59808i −0.0694117 + 0.120225i −0.898642 0.438682i \(-0.855446\pi\)
0.829231 + 0.558906i \(0.188779\pi\)
\(468\) 0 0
\(469\) 8.00000 6.92820i 0.369406 0.319915i
\(470\) 0 0
\(471\) 33.0000 19.0526i 1.52056 0.877896i
\(472\) 0 0
\(473\) −1.50000 + 2.59808i −0.0689701 + 0.119460i
\(474\) 0 0
\(475\) −14.0000 + 24.2487i −0.642364 + 1.11261i
\(476\) 0 0
\(477\) 4.50000 7.79423i 0.206041 0.356873i
\(478\) 0 0
\(479\) 3.00000 0.137073 0.0685367 0.997649i \(-0.478167\pi\)
0.0685367 + 0.997649i \(0.478167\pi\)
\(480\) 0 0
\(481\) 1.00000 0.0455961
\(482\) 0 0
\(483\) −27.0000 31.1769i −1.22854 1.41860i
\(484\) 0 0
\(485\) 1.50000 2.59808i 0.0681115 0.117973i
\(486\) 0 0
\(487\) −12.5000 21.6506i −0.566429 0.981084i −0.996915 0.0784867i \(-0.974991\pi\)
0.430486 0.902597i \(-0.358342\pi\)
\(488\) 0 0
\(489\) −28.5000 + 16.4545i −1.28881 + 0.744097i
\(490\) 0 0
\(491\) 10.5000 + 18.1865i 0.473858 + 0.820747i 0.999552 0.0299272i \(-0.00952753\pi\)
−0.525694 + 0.850674i \(0.676194\pi\)
\(492\) 0 0
\(493\) 9.00000 0.405340
\(494\) 0 0
\(495\) 13.5000 + 23.3827i 0.606780 + 1.05097i
\(496\) 0 0
\(497\) 30.0000 + 10.3923i 1.34568 + 0.466159i
\(498\) 0 0
\(499\) 25.0000 1.11915 0.559577 0.828778i \(-0.310964\pi\)
0.559577 + 0.828778i \(0.310964\pi\)
\(500\) 0 0
\(501\) 25.9808i 1.16073i
\(502\) 0 0
\(503\) 24.0000 1.07011 0.535054 0.844818i \(-0.320291\pi\)
0.535054 + 0.844818i \(0.320291\pi\)
\(504\) 0 0
\(505\) 9.00000 0.400495
\(506\) 0 0
\(507\) 18.0000 10.3923i 0.799408 0.461538i
\(508\) 0 0
\(509\) −9.00000 −0.398918 −0.199459 0.979906i \(-0.563918\pi\)
−0.199459 + 0.979906i \(0.563918\pi\)
\(510\) 0 0
\(511\) 5.50000 + 28.5788i 0.243306 + 1.26425i
\(512\) 0 0
\(513\) −31.5000 18.1865i −1.39076 0.802955i
\(514\) 0 0
\(515\) 39.0000 1.71855
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 10.3923i 0.456172i
\(520\) 0 0
\(521\) −1.50000 2.59808i −0.0657162 0.113824i 0.831295 0.555831i \(-0.187600\pi\)
−0.897011 + 0.442007i \(0.854267\pi\)
\(522\) 0 0
\(523\) −3.50000 + 6.06218i −0.153044 + 0.265081i −0.932345 0.361569i \(-0.882241\pi\)
0.779301 + 0.626650i \(0.215574\pi\)
\(524\) 0 0
\(525\) −12.0000 13.8564i −0.523723 0.604743i
\(526\) 0 0
\(527\) −24.0000 −1.04546
\(528\) 0 0
\(529\) 58.0000 2.52174
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 1.50000 2.59808i 0.0649722 0.112535i
\(534\) 0 0
\(535\) 13.5000 23.3827i 0.583656 1.01092i
\(536\) 0 0
\(537\) 36.3731i 1.56961i
\(538\) 0 0
\(539\) 16.5000 + 12.9904i 0.710705 + 0.559535i
\(540\) 0 0
\(541\) −5.50000 + 9.52628i −0.236463 + 0.409567i −0.959697 0.281037i \(-0.909322\pi\)
0.723234 + 0.690604i \(0.242655\pi\)
\(542\) 0 0
\(543\) 3.00000 + 1.73205i 0.128742 + 0.0743294i
\(544\) 0 0
\(545\) 19.5000 + 33.7750i 0.835288 + 1.44676i
\(546\) 0 0
\(547\) 5.50000 9.52628i 0.235163 0.407314i −0.724157 0.689635i \(-0.757771\pi\)
0.959320 + 0.282321i \(0.0911043\pi\)
\(548\) 0 0
\(549\) 3.00000 5.19615i 0.128037 0.221766i
\(550\) 0 0
\(551\) −10.5000 18.1865i −0.447315 0.774772i
\(552\) 0 0
\(553\) 8.00000 + 41.5692i 0.340195 + 1.76770i
\(554\) 0 0
\(555\) 4.50000 2.59808i 0.191014 0.110282i
\(556\) 0 0
\(557\) 4.50000 + 7.79423i 0.190671 + 0.330252i 0.945473 0.325701i \(-0.105600\pi\)
−0.754802 + 0.655953i \(0.772267\pi\)
\(558\) 0 0
\(559\) −1.00000 −0.0422955
\(560\) 0 0
\(561\) 15.5885i 0.658145i
\(562\) 0 0
\(563\) 6.00000 10.3923i 0.252870 0.437983i −0.711445 0.702742i \(-0.751959\pi\)
0.964315 + 0.264758i \(0.0852922\pi\)
\(564\) 0 0
\(565\) 13.5000 + 23.3827i 0.567949 + 0.983717i
\(566\) 0 0
\(567\) 18.0000 15.5885i 0.755929 0.654654i
\(568\) 0 0
\(569\) 9.00000 + 15.5885i 0.377300 + 0.653502i 0.990668 0.136295i \(-0.0435194\pi\)
−0.613369 + 0.789797i \(0.710186\pi\)
\(570\) 0 0
\(571\) 16.0000 27.7128i 0.669579 1.15975i −0.308443 0.951243i \(-0.599808\pi\)
0.978022 0.208502i \(-0.0668588\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 36.0000 1.50130
\(576\) 0 0
\(577\) 12.5000 + 21.6506i 0.520382 + 0.901328i 0.999719 + 0.0236970i \(0.00754370\pi\)
−0.479337 + 0.877631i \(0.659123\pi\)
\(578\) 0 0
\(579\) −21.0000 + 12.1244i −0.872730 + 0.503871i
\(580\) 0 0
\(581\) 18.0000 15.5885i 0.746766 0.646718i
\(582\) 0 0
\(583\) −4.50000 7.79423i −0.186371 0.322804i
\(584\) 0 0
\(585\) −4.50000 + 7.79423i −0.186052 + 0.322252i
\(586\) 0 0
\(587\) 1.50000 2.59808i 0.0619116 0.107234i −0.833408 0.552658i \(-0.813614\pi\)
0.895320 + 0.445424i \(0.146947\pi\)
\(588\) 0 0
\(589\) 28.0000 + 48.4974i 1.15372 + 1.99830i
\(590\) 0 0
\(591\) 27.0000 + 15.5885i 1.11063 + 0.641223i
\(592\) 0 0
\(593\) −19.5000 + 33.7750i −0.800769 + 1.38697i 0.118342 + 0.992973i \(0.462242\pi\)
−0.919111 + 0.394000i \(0.871091\pi\)
\(594\) 0 0
\(595\) 4.50000 + 23.3827i 0.184482 + 0.958597i
\(596\) 0 0
\(597\) 43.3013i 1.77220i
\(598\) 0 0
\(599\) −12.0000 + 20.7846i −0.490307 + 0.849236i −0.999938 0.0111569i \(-0.996449\pi\)
0.509631 + 0.860393i \(0.329782\pi\)
\(600\) 0 0
\(601\) 12.5000 21.6506i 0.509886 0.883148i −0.490049 0.871695i \(-0.663021\pi\)
0.999934 0.0114528i \(-0.00364562\pi\)
\(602\) 0 0
\(603\) −12.0000 −0.488678
\(604\) 0 0
\(605\) −6.00000 −0.243935
\(606\) 0 0
\(607\) 13.0000 0.527654 0.263827 0.964570i \(-0.415015\pi\)
0.263827 + 0.964570i \(0.415015\pi\)
\(608\) 0 0
\(609\) 13.5000 2.59808i 0.547048 0.105279i
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) −11.5000 19.9186i −0.464481 0.804504i 0.534697 0.845044i \(-0.320426\pi\)
−0.999178 + 0.0405396i \(0.987092\pi\)
\(614\) 0 0
\(615\) 15.5885i 0.628587i
\(616\) 0 0
\(617\) 22.5000 + 38.9711i 0.905816 + 1.56892i 0.819818 + 0.572624i \(0.194074\pi\)
0.0859976 + 0.996295i \(0.472592\pi\)
\(618\) 0 0
\(619\) −17.0000 −0.683288 −0.341644 0.939829i \(-0.610984\pi\)
−0.341644 + 0.939829i \(0.610984\pi\)
\(620\) 0 0
\(621\) 46.7654i 1.87663i
\(622\) 0 0
\(623\) 6.00000 5.19615i 0.240385 0.208179i
\(624\) 0 0
\(625\) −29.0000 −1.16000
\(626\) 0 0
\(627\) −31.5000 + 18.1865i −1.25799 + 0.726300i
\(628\) 0 0
\(629\) −3.00000 −0.119618
\(630\) 0 0
\(631\) −8.00000 −0.318475 −0.159237 0.987240i \(-0.550904\pi\)
−0.159237 + 0.987240i \(0.550904\pi\)
\(632\) 0 0
\(633\) 8.66025i 0.344214i
\(634\) 0 0
\(635\) 12.0000 0.476205
\(636\) 0 0
\(637\) −1.00000 + 6.92820i −0.0396214 + 0.274505i
\(638\) 0 0
\(639\) −18.0000 31.1769i −0.712069 1.23334i
\(640\) 0 0
\(641\) −33.0000 −1.30342 −0.651711 0.758468i \(-0.725948\pi\)
−0.651711 + 0.758468i \(0.725948\pi\)
\(642\) 0 0
\(643\) 14.5000 + 25.1147i 0.571824 + 0.990429i 0.996379 + 0.0850262i \(0.0270974\pi\)
−0.424555 + 0.905402i \(0.639569\pi\)
\(644\) 0 0
\(645\) −4.50000 + 2.59808i −0.177187 + 0.102299i
\(646\) 0 0
\(647\) −10.5000 18.1865i −0.412798 0.714986i 0.582397 0.812905i \(-0.302115\pi\)
−0.995194 + 0.0979182i \(0.968782\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) −36.0000 + 6.92820i −1.41095 + 0.271538i
\(652\) 0 0
\(653\) 15.0000 0.586995 0.293498 0.955960i \(-0.405181\pi\)
0.293498 + 0.955960i \(0.405181\pi\)
\(654\) 0 0
\(655\) −45.0000 −1.75830
\(656\) 0 0
\(657\) 16.5000 28.5788i 0.643726 1.11497i
\(658\) 0 0
\(659\) 1.50000 2.59808i 0.0584317 0.101207i −0.835330 0.549749i \(-0.814723\pi\)
0.893762 + 0.448542i \(0.148057\pi\)
\(660\) 0 0
\(661\) 11.0000 19.0526i 0.427850 0.741059i −0.568831 0.822454i \(-0.692604\pi\)
0.996682 + 0.0813955i \(0.0259377\pi\)
\(662\) 0 0
\(663\) 4.50000 2.59808i 0.174766 0.100901i
\(664\) 0 0
\(665\) 42.0000 36.3731i 1.62869 1.41049i
\(666\) 0 0
\(667\) −13.5000 + 23.3827i −0.522722 + 0.905381i
\(668\) 0 0
\(669\) −1.50000 + 0.866025i −0.0579934 + 0.0334825i
\(670\) 0 0
\(671\) −3.00000 5.19615i −0.115814 0.200595i
\(672\) 0 0
\(673\) −17.5000 + 30.3109i −0.674575 + 1.16840i 0.302017 + 0.953302i \(0.402340\pi\)
−0.976593 + 0.215096i \(0.930993\pi\)
\(674\) 0 0
\(675\) 20.7846i 0.800000i
\(676\) 0 0
\(677\) 15.0000 + 25.9808i 0.576497 + 0.998522i 0.995877 + 0.0907112i \(0.0289140\pi\)
−0.419380 + 0.907811i \(0.637753\pi\)
\(678\) 0 0
\(679\) −2.00000 + 1.73205i −0.0767530 + 0.0664700i
\(680\) 0 0
\(681\) 4.50000 + 2.59808i 0.172440 + 0.0995585i
\(682\) 0 0
\(683\) −4.50000 7.79423i −0.172188 0.298238i 0.766997 0.641651i \(-0.221750\pi\)
−0.939184 + 0.343413i \(0.888417\pi\)
\(684\) 0 0
\(685\) −27.0000 −1.03162
\(686\) 0 0
\(687\) −19.5000 11.2583i −0.743971 0.429532i
\(688\) 0 0
\(689\) 1.50000 2.59808i 0.0571454 0.0989788i
\(690\) 0 0
\(691\) 22.0000 + 38.1051i 0.836919 + 1.44959i 0.892458 + 0.451130i \(0.148979\pi\)
−0.0555386 + 0.998457i \(0.517688\pi\)
\(692\) 0 0
\(693\) −4.50000 23.3827i −0.170941 0.888235i
\(694\) 0 0
\(695\) −10.5000 18.1865i −0.398288 0.689855i
\(696\) 0 0
\(697\) −4.50000 + 7.79423i −0.170450 + 0.295227i
\(698\) 0 0
\(699\) −4.50000 + 2.59808i −0.170206 + 0.0982683i
\(700\) 0 0
\(701\) −18.0000 −0.679851 −0.339925 0.940452i \(-0.610402\pi\)
−0.339925 + 0.940452i \(0.610402\pi\)
\(702\) 0 0
\(703\) 3.50000 + 6.06218i 0.132005 + 0.228639i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −7.50000 2.59808i −0.282067 0.0977107i
\(708\) 0 0
\(709\) −13.0000 22.5167i −0.488225 0.845631i 0.511683 0.859174i \(-0.329022\pi\)
−0.999908 + 0.0135434i \(0.995689\pi\)
\(710\) 0 0
\(711\) 24.0000 41.5692i 0.900070 1.55897i
\(712\) 0 0
\(713\) 36.0000 62.3538i 1.34821 2.33517i
\(714\) 0 0
\(715\) 4.50000 + 7.79423i 0.168290 + 0.291488i
\(716\) 0 0
\(717\) 5.19615i 0.194054i
\(718\) 0 0
\(719\) −7.50000 + 12.9904i −0.279703 + 0.484459i −0.971311 0.237814i \(-0.923569\pi\)
0.691608 + 0.722273i \(0.256903\pi\)
\(720\) 0 0
\(721\) −32.5000 11.2583i −1.21036 0.419282i
\(722\) 0 0
\(723\) −19.5000 11.2583i −0.725213 0.418702i
\(724\) 0 0
\(725\) −6.00000 + 10.3923i −0.222834 + 0.385961i
\(726\) 0 0
\(727\) −6.50000 + 11.2583i −0.241072 + 0.417548i −0.961020 0.276479i \(-0.910832\pi\)
0.719948 + 0.694028i \(0.244166\pi\)
\(728\) 0 0
\(729\) −27.0000 −1.00000
\(730\) 0 0
\(731\) 3.00000 0.110959
\(732\) 0 0
\(733\) −1.00000 −0.0369358 −0.0184679 0.999829i \(-0.505879\pi\)
−0.0184679 + 0.999829i \(0.505879\pi\)
\(734\) 0 0
\(735\) 13.5000 + 33.7750i 0.497955 + 1.24581i
\(736\) 0 0
\(737\) −6.00000 + 10.3923i −0.221013 + 0.382805i
\(738\) 0 0
\(739\) 11.5000 + 19.9186i 0.423034 + 0.732717i 0.996235 0.0866983i \(-0.0276316\pi\)
−0.573200 + 0.819415i \(0.694298\pi\)
\(740\) 0 0
\(741\) −10.5000 6.06218i −0.385727 0.222700i
\(742\) 0 0
\(743\) 10.5000 + 18.1865i 0.385208 + 0.667199i 0.991798 0.127815i \(-0.0407965\pi\)
−0.606590 + 0.795015i \(0.707463\pi\)
\(744\) 0 0
\(745\) −27.0000 −0.989203
\(746\) 0 0
\(747\) −27.0000 −0.987878
\(748\) 0 0
\(749\) −18.0000 + 15.5885i −0.657706 + 0.569590i
\(750\) 0 0
\(751\) 13.0000 0.474377 0.237188 0.971464i \(-0.423774\pi\)
0.237188 + 0.971464i \(0.423774\pi\)
\(752\) 0 0
\(753\) −18.0000 10.3923i −0.655956 0.378717i
\(754\) 0 0
\(755\) 21.0000 0.764268
\(756\) 0 0
\(757\) −22.0000 −0.799604 −0.399802 0.916602i \(-0.630921\pi\)
−0.399802 + 0.916602i \(0.630921\pi\)
\(758\) 0 0
\(759\) 40.5000 + 23.3827i 1.47006 + 0.848738i
\(760\) 0 0
\(761\) −45.0000 −1.63125 −0.815624 0.578582i \(-0.803606\pi\)
−0.815624 + 0.578582i \(0.803606\pi\)
\(762\) 0 0
\(763\) −6.50000 33.7750i −0.235316 1.22274i
\(764\) 0 0
\(765\) 13.5000 23.3827i 0.488094 0.845403i
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) −11.5000 19.9186i −0.414701 0.718283i 0.580696 0.814120i \(-0.302780\pi\)
−0.995397 + 0.0958377i \(0.969447\pi\)
\(770\) 0 0
\(771\) −31.5000 18.1865i −1.13444 0.654972i
\(772\) 0 0
\(773\) −13.5000 23.3827i −0.485561 0.841017i 0.514301 0.857610i \(-0.328051\pi\)
−0.999862 + 0.0165929i \(0.994718\pi\)
\(774\) 0 0
\(775\) 16.0000 27.7128i 0.574737 0.995474i
\(776\) 0 0
\(777\) −4.50000 + 0.866025i −0.161437 + 0.0310685i
\(778\) 0 0
\(779\) 21.0000 0.752403
\(780\) 0 0
\(781\) −36.0000 −1.28818
\(782\) 0 0
\(783\) −13.5000 7.79423i −0.482451 0.278543i
\(784\) 0 0
\(785\) 33.0000 57.1577i 1.17782 2.04004i
\(786\) 0 0
\(787\) −14.0000 + 24.2487i −0.499046 + 0.864373i −0.999999 0.00110111i \(-0.999650\pi\)
0.500953 + 0.865474i \(0.332983\pi\)
\(788\) 0 0
\(789\) −13.5000 7.79423i −0.480613 0.277482i
\(790\) 0 0
\(791\) −4.50000 23.3827i −0.160002 0.831393i
\(792\) 0 0
\(793\) 1.00000 1.73205i 0.0355110 0.0615069i
\(794\) 0 0
\(795\) 15.5885i 0.552866i
\(796\) 0 0
\(797\) 10.5000 + 18.1865i 0.371929 + 0.644200i 0.989862 0.142031i \(-0.0453631\pi\)
−0.617933 + 0.786231i \(0.712030\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0
\(801\) −9.00000 −0.317999
\(802\) 0 0
\(803\) −16.5000 28.5788i −0.582272 1.00853i
\(804\) 0 0
\(805\) −67.5000 23.3827i −2.37906 0.824131i
\(806\) 0 0
\(807\) 25.9808i 0.914566i
\(808\) 0 0
\(809\) 16.5000 + 28.5788i 0.580109 + 1.00478i 0.995466 + 0.0951198i \(0.0303234\pi\)
−0.415357 + 0.909659i \(0.636343\pi\)
\(810\) 0 0
\(811\) −20.0000 −0.702295 −0.351147 0.936320i \(-0.614208\pi\)
−0.351147 + 0.936320i \(0.614208\pi\)
\(812\) 0 0
\(813\) 7.50000 4.33013i 0.263036 0.151864i
\(814\) 0 0
\(815\) −28.5000 + 49.3634i −0.998311 + 1.72913i
\(816\) 0 0
\(817\) −3.50000 6.06218i −0.122449 0.212089i
\(818\) 0 0
\(819\) 6.00000 5.19615i 0.209657 0.181568i
\(820\) 0 0
\(821\) 21.0000 + 36.3731i 0.732905 + 1.26943i 0.955636 + 0.294549i \(0.0951694\pi\)
−0.222731 + 0.974880i \(0.571497\pi\)
\(822\) 0 0
\(823\) −20.0000 + 34.6410i −0.697156 + 1.20751i 0.272292 + 0.962215i \(0.412218\pi\)
−0.969448 + 0.245295i \(0.921115\pi\)
\(824\) 0 0
\(825\) 18.0000 + 10.3923i 0.626680 + 0.361814i
\(826\) 0 0
\(827\) −36.0000 −1.25184 −0.625921 0.779886i \(-0.715277\pi\)
−0.625921 + 0.779886i \(0.715277\pi\)
\(828\) 0 0
\(829\) −5.50000 9.52628i −0.191023 0.330861i 0.754567 0.656223i \(-0.227847\pi\)
−0.945589 + 0.325362i \(0.894514\pi\)
\(830\) 0 0
\(831\) −1.50000 0.866025i −0.0520344 0.0300421i
\(832\) 0 0
\(833\) 3.00000 20.7846i 0.103944 0.720144i
\(834\) 0 0
\(835\) −22.5000 38.9711i −0.778645 1.34865i
\(836\) 0 0
\(837\) 36.0000 + 20.7846i 1.24434 + 0.718421i
\(838\) 0 0
\(839\) 7.50000 12.9904i 0.258929 0.448478i −0.707026 0.707187i \(-0.749964\pi\)
0.965955 + 0.258709i \(0.0832972\pi\)
\(840\) 0 0
\(841\) 10.0000 + 17.3205i 0.344828 + 0.597259i
\(842\) 0 0
\(843\) 31.5000 18.1865i 1.08492 0.626377i
\(844\) 0 0
\(845\) 18.0000 31.1769i 0.619219 1.07252i
\(846\) 0 0
\(847\) 5.00000 + 1.73205i 0.171802 + 0.0595140i
\(848\) 0 0
\(849\) −6.00000 + 3.46410i −0.205919 + 0.118888i
\(850\) 0 0
\(851\) 4.50000 7.79423i 0.154258 0.267183i
\(852\) 0 0
\(853\) 0.500000 0.866025i 0.0171197 0.0296521i −0.857339 0.514753i \(-0.827884\pi\)
0.874458 + 0.485101i \(0.161217\pi\)
\(854\) 0 0
\(855\) −63.0000 −2.15455
\(856\) 0 0
\(857\) 3.00000 0.102478 0.0512390 0.998686i \(-0.483683\pi\)
0.0512390 + 0.998686i \(0.483683\pi\)
\(858\) 0 0
\(859\) 25.0000 0.852989 0.426494 0.904490i \(-0.359748\pi\)
0.426494 + 0.904490i \(0.359748\pi\)
\(860\) 0 0
\(861\) −4.50000 + 12.9904i −0.153360 + 0.442711i
\(862\) 0 0
\(863\) −25.5000 + 44.1673i −0.868030 + 1.50347i −0.00402340 + 0.999992i \(0.501281\pi\)
−0.864007 + 0.503480i \(0.832053\pi\)
\(864\) 0 0
\(865\) 9.00000 + 15.5885i 0.306009 + 0.530023i
\(866\) 0 0
\(867\) 12.0000 6.92820i 0.407541 0.235294i
\(868\) 0 0
\(869\) −24.0000 41.5692i −0.814144 1.41014i
\(870\) 0 0
\(871\) −4.00000 −0.135535
\(872\) 0 0
\(873\) 3.00000 0.101535
\(874\) 0 0
\(875\) 7.50000 + 2.59808i 0.253546 + 0.0878310i
\(876\) 0 0
\(877\) 47.0000 1.58708 0.793539 0.608520i \(-0.208236\pi\)
0.793539 + 0.608520i \(0.208236\pi\)
\(878\) 0 0
\(879\) 15.5885i 0.525786i
\(880\) 0 0
\(881\) −18.0000 −0.606435 −0.303218 0.952921i \(-0.598061\pi\)
−0.303218 + 0.952921i \(0.598061\pi\)
\(882\) 0 0
\(883\) −20.0000 −0.673054 −0.336527 0.941674i \(-0.609252\pi\)
−0.336527 + 0.941674i \(0.609252\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 33.0000 1.10803 0.554016 0.832506i \(-0.313095\pi\)
0.554016 + 0.832506i \(0.313095\pi\)
\(888\) 0 0
\(889\) −10.0000 3.46410i −0.335389 0.116182i
\(890\) 0 0
\(891\) −13.5000 + 23.3827i −0.452267 + 0.783349i
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) −31.5000 54.5596i −1.05293 1.82373i
\(896\) 0 0
\(897\) 15.5885i 0.520483i
\(898\) 0 0
\(899\) 12.0000 + 20.7846i 0.400222 + 0.693206i
\(900\) 0 0
\(901\) −4.50000 + 7.79423i −0.149917 + 0.259663i
\(902\) 0 0
\(903\) 4.50000 0.866025i 0.149751 0.0288195i
\(904\) 0 0
\(905\) 6.00000 0.199447
\(906\) 0 0
\(907\) 43.0000 1.42779 0.713896 0.700252i \(-0.246929\pi\)
0.713896 + 0.700252i \(0.246929\pi\)
\(908\) 0 0
\(909\) 4.50000 + 7.79423i 0.149256 + 0.258518i
\(910\) 0 0
\(911\) 19.5000 33.7750i 0.646064 1.11902i −0.337991 0.941149i \(-0.609747\pi\)
0.984055 0.177866i \(-0.0569194\pi\)
\(912\) 0 0
\(913\) −13.5000 + 23.3827i −0.446785 + 0.773854i
\(914\) 0 0
\(915\) 10.3923i 0.343559i
\(916\) 0 0
\(917\) 37.5000 + 12.9904i 1.23836 + 0.428980i
\(918\) 0 0
\(919\) 26.5000 45.8993i 0.874154 1.51408i 0.0164935 0.999864i \(-0.494750\pi\)
0.857661 0.514216i \(-0.171917\pi\)
\(920\) 0 0
\(921\) 42.0000 + 24.2487i 1.38395 + 0.799022i
\(922\) 0 0
\(923\) −6.00000 10.3923i −0.197492 0.342067i
\(924\) 0 0
\(925\) 2.00000 3.46410i 0.0657596 0.113899i
\(926\) 0 0
\(927\) 19.5000 + 33.7750i 0.640464 + 1.10932i
\(928\) 0 0
\(929\) −9.00000 15.5885i −0.295280 0.511441i 0.679770 0.733426i \(-0.262080\pi\)
−0.975050 + 0.221985i \(0.928746\pi\)
\(930\) 0 0
\(931\) −45.5000 + 18.1865i −1.49120 + 0.596040i
\(932\) 0 0
\(933\) −36.0000 + 20.7846i −1.17859 + 0.680458i
\(934\) 0 0
\(935\) −13.5000 23.3827i −0.441497 0.764696i
\(936\) 0 0
\(937\) 26.0000 0.849383 0.424691 0.905338i \(-0.360383\pi\)
0.424691 + 0.905338i \(0.360383\pi\)
\(938\) 0 0
\(939\) 17.3205i 0.565233i
\(940\) 0 0
\(941\) 3.00000 5.19615i 0.0977972 0.169390i −0.812975 0.582298i \(-0.802154\pi\)
0.910773 + 0.412908i \(0.135487\pi\)
\(942\) 0 0
\(943\) −13.5000 23.3827i −0.439620 0.761445i
\(944\) 0 0
\(945\) 13.5000 38.9711i 0.439155 1.26773i
\(946\) 0 0
\(947\) 6.00000 + 10.3923i 0.194974 + 0.337705i 0.946892 0.321552i \(-0.104204\pi\)
−0.751918 + 0.659256i \(0.770871\pi\)
\(948\) 0 0
\(949\) 5.50000 9.52628i 0.178538 0.309236i
\(950\) 0 0
\(951\) 31.1769i 1.01098i
\(952\) 0 0
\(953\) 6.00000 0.194359 0.0971795 0.995267i \(-0.469018\pi\)
0.0971795 + 0.995267i \(0.469018\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) −13.5000 + 7.79423i −0.436393 + 0.251952i
\(958\) 0 0
\(959\) 22.5000 + 7.79423i 0.726563 + 0.251689i
\(960\) 0 0
\(961\) −16.5000 28.5788i −0.532258 0.921898i
\(962\) 0 0
\(963\) 27.0000 0.870063
\(964\) 0 0
\(965\) −21.0000 + 36.3731i −0.676014 + 1.17089i
\(966\) 0 0
\(967\) 20.5000 + 35.5070i 0.659236 + 1.14183i 0.980814 + 0.194946i \(0.0624533\pi\)
−0.321578 + 0.946883i \(0.604213\pi\)
\(968\) 0 0
\(969\) 31.5000 + 18.1865i 1.01193 + 0.584236i
\(970\) 0 0
\(971\) 16.5000 28.5788i 0.529510 0.917139i −0.469897 0.882721i \(-0.655709\pi\)
0.999408 0.0344175i \(-0.0109576\pi\)
\(972\) 0 0
\(973\) 3.50000 + 18.1865i 0.112205 + 0.583033i
\(974\) 0 0
\(975\) 6.92820i 0.221880i
\(976\) 0 0
\(977\) 15.0000 25.9808i 0.479893 0.831198i −0.519841 0.854263i \(-0.674009\pi\)
0.999734 + 0.0230645i \(0.00734232\pi\)
\(978\) 0 0
\(979\) −4.50000 + 7.79423i −0.143821 + 0.249105i
\(980\) 0 0
\(981\) −19.5000 + 33.7750i −0.622587 + 1.07835i
\(982\) 0 0
\(983\) 15.0000 0.478426 0.239213 0.970967i \(-0.423111\pi\)
0.239213 + 0.970967i \(0.423111\pi\)
\(984\) 0 0
\(985\) 54.0000 1.72058
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −4.50000 + 7.79423i −0.143092 + 0.247842i
\(990\) 0 0
\(991\) −12.5000 21.6506i −0.397076 0.687755i 0.596288 0.802771i \(-0.296642\pi\)
−0.993364 + 0.115015i \(0.963308\pi\)
\(992\) 0 0
\(993\) 13.8564i 0.439720i
\(994\) 0 0
\(995\) −37.5000 64.9519i −1.18883 2.05911i
\(996\) 0 0
\(997\) −13.0000 −0.411714 −0.205857 0.978582i \(-0.565998\pi\)
−0.205857 + 0.978582i \(0.565998\pi\)
\(998\) 0 0
\(999\) 4.50000 + 2.59808i 0.142374 + 0.0821995i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1008.2.t.f.961.1 2
3.2 odd 2 3024.2.t.a.289.1 2
4.3 odd 2 126.2.h.b.79.1 yes 2
7.4 even 3 1008.2.q.a.529.1 2
9.4 even 3 1008.2.q.a.625.1 2
9.5 odd 6 3024.2.q.f.2305.1 2
12.11 even 2 378.2.h.a.289.1 2
21.11 odd 6 3024.2.q.f.2881.1 2
28.3 even 6 882.2.e.c.655.1 2
28.11 odd 6 126.2.e.a.25.1 2
28.19 even 6 882.2.f.g.295.1 2
28.23 odd 6 882.2.f.i.295.1 2
28.27 even 2 882.2.h.i.79.1 2
36.7 odd 6 1134.2.g.e.163.1 2
36.11 even 6 1134.2.g.c.163.1 2
36.23 even 6 378.2.e.b.37.1 2
36.31 odd 6 126.2.e.a.121.1 yes 2
63.4 even 3 inner 1008.2.t.f.193.1 2
63.32 odd 6 3024.2.t.a.1873.1 2
84.11 even 6 378.2.e.b.235.1 2
84.23 even 6 2646.2.f.d.883.1 2
84.47 odd 6 2646.2.f.a.883.1 2
84.59 odd 6 2646.2.e.g.2125.1 2
84.83 odd 2 2646.2.h.d.667.1 2
252.11 even 6 1134.2.g.c.487.1 2
252.23 even 6 2646.2.f.d.1765.1 2
252.31 even 6 882.2.h.i.67.1 2
252.47 odd 6 7938.2.a.be.1.1 1
252.59 odd 6 2646.2.h.d.361.1 2
252.67 odd 6 126.2.h.b.67.1 yes 2
252.79 odd 6 7938.2.a.m.1.1 1
252.95 even 6 378.2.h.a.361.1 2
252.103 even 6 882.2.f.g.589.1 2
252.131 odd 6 2646.2.f.a.1765.1 2
252.139 even 6 882.2.e.c.373.1 2
252.151 odd 6 1134.2.g.e.487.1 2
252.167 odd 6 2646.2.e.g.1549.1 2
252.187 even 6 7938.2.a.b.1.1 1
252.191 even 6 7938.2.a.t.1.1 1
252.247 odd 6 882.2.f.i.589.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
126.2.e.a.25.1 2 28.11 odd 6
126.2.e.a.121.1 yes 2 36.31 odd 6
126.2.h.b.67.1 yes 2 252.67 odd 6
126.2.h.b.79.1 yes 2 4.3 odd 2
378.2.e.b.37.1 2 36.23 even 6
378.2.e.b.235.1 2 84.11 even 6
378.2.h.a.289.1 2 12.11 even 2
378.2.h.a.361.1 2 252.95 even 6
882.2.e.c.373.1 2 252.139 even 6
882.2.e.c.655.1 2 28.3 even 6
882.2.f.g.295.1 2 28.19 even 6
882.2.f.g.589.1 2 252.103 even 6
882.2.f.i.295.1 2 28.23 odd 6
882.2.f.i.589.1 2 252.247 odd 6
882.2.h.i.67.1 2 252.31 even 6
882.2.h.i.79.1 2 28.27 even 2
1008.2.q.a.529.1 2 7.4 even 3
1008.2.q.a.625.1 2 9.4 even 3
1008.2.t.f.193.1 2 63.4 even 3 inner
1008.2.t.f.961.1 2 1.1 even 1 trivial
1134.2.g.c.163.1 2 36.11 even 6
1134.2.g.c.487.1 2 252.11 even 6
1134.2.g.e.163.1 2 36.7 odd 6
1134.2.g.e.487.1 2 252.151 odd 6
2646.2.e.g.1549.1 2 252.167 odd 6
2646.2.e.g.2125.1 2 84.59 odd 6
2646.2.f.a.883.1 2 84.47 odd 6
2646.2.f.a.1765.1 2 252.131 odd 6
2646.2.f.d.883.1 2 84.23 even 6
2646.2.f.d.1765.1 2 252.23 even 6
2646.2.h.d.361.1 2 252.59 odd 6
2646.2.h.d.667.1 2 84.83 odd 2
3024.2.q.f.2305.1 2 9.5 odd 6
3024.2.q.f.2881.1 2 21.11 odd 6
3024.2.t.a.289.1 2 3.2 odd 2
3024.2.t.a.1873.1 2 63.32 odd 6
7938.2.a.b.1.1 1 252.187 even 6
7938.2.a.m.1.1 1 252.79 odd 6
7938.2.a.t.1.1 1 252.191 even 6
7938.2.a.be.1.1 1 252.47 odd 6