Properties

Label 1008.2.t.f
Level 1008
Weight 2
Character orbit 1008.t
Analytic conductor 8.049
Analytic rank 0
Dimension 2
CM no
Inner twists 2

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 1008 = 2^{4} \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1008.t (of order \(3\), degree \(2\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(8.04892052375\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-3}) \)
Defining polynomial: \(x^{2} - x + 1\)
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 126)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{6}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( 2 - \zeta_{6} ) q^{3} + 3 q^{5} + ( -3 + \zeta_{6} ) q^{7} + ( 3 - 3 \zeta_{6} ) q^{9} +O(q^{10})\) \( q + ( 2 - \zeta_{6} ) q^{3} + 3 q^{5} + ( -3 + \zeta_{6} ) q^{7} + ( 3 - 3 \zeta_{6} ) q^{9} + 3 q^{11} + ( 1 - \zeta_{6} ) q^{13} + ( 6 - 3 \zeta_{6} ) q^{15} + ( -3 + 3 \zeta_{6} ) q^{17} -7 \zeta_{6} q^{19} + ( -5 + 4 \zeta_{6} ) q^{21} + 9 q^{23} + 4 q^{25} + ( 3 - 6 \zeta_{6} ) q^{27} -3 \zeta_{6} q^{29} + 8 \zeta_{6} q^{31} + ( 6 - 3 \zeta_{6} ) q^{33} + ( -9 + 3 \zeta_{6} ) q^{35} + \zeta_{6} q^{37} + ( 1 - 2 \zeta_{6} ) q^{39} + ( -3 + 3 \zeta_{6} ) q^{41} -\zeta_{6} q^{43} + ( 9 - 9 \zeta_{6} ) q^{45} + ( 8 - 5 \zeta_{6} ) q^{49} + ( -3 + 6 \zeta_{6} ) q^{51} + ( -3 + 3 \zeta_{6} ) q^{53} + 9 q^{55} + ( -7 - 7 \zeta_{6} ) q^{57} + ( -2 + 2 \zeta_{6} ) q^{61} + ( -6 + 9 \zeta_{6} ) q^{63} + ( 3 - 3 \zeta_{6} ) q^{65} -4 \zeta_{6} q^{67} + ( 18 - 9 \zeta_{6} ) q^{69} -12 q^{71} + ( -11 + 11 \zeta_{6} ) q^{73} + ( 8 - 4 \zeta_{6} ) q^{75} + ( -9 + 3 \zeta_{6} ) q^{77} + ( -16 + 16 \zeta_{6} ) q^{79} -9 \zeta_{6} q^{81} -9 \zeta_{6} q^{83} + ( -9 + 9 \zeta_{6} ) q^{85} + ( -3 - 3 \zeta_{6} ) q^{87} -3 \zeta_{6} q^{89} + ( -2 + 3 \zeta_{6} ) q^{91} + ( 8 + 8 \zeta_{6} ) q^{93} -21 \zeta_{6} q^{95} + \zeta_{6} q^{97} + ( 9 - 9 \zeta_{6} ) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2q + 3q^{3} + 6q^{5} - 5q^{7} + 3q^{9} + O(q^{10}) \) \( 2q + 3q^{3} + 6q^{5} - 5q^{7} + 3q^{9} + 6q^{11} + q^{13} + 9q^{15} - 3q^{17} - 7q^{19} - 6q^{21} + 18q^{23} + 8q^{25} - 3q^{29} + 8q^{31} + 9q^{33} - 15q^{35} + q^{37} - 3q^{41} - q^{43} + 9q^{45} + 11q^{49} - 3q^{53} + 18q^{55} - 21q^{57} - 2q^{61} - 3q^{63} + 3q^{65} - 4q^{67} + 27q^{69} - 24q^{71} - 11q^{73} + 12q^{75} - 15q^{77} - 16q^{79} - 9q^{81} - 9q^{83} - 9q^{85} - 9q^{87} - 3q^{89} - q^{91} + 24q^{93} - 21q^{95} + q^{97} + 9q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1008\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(577\) \(757\) \(785\)
\(\chi(n)\) \(1\) \(-\zeta_{6}\) \(1\) \(-1 + \zeta_{6}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
193.1
0.500000 + 0.866025i
0.500000 0.866025i
0 1.50000 0.866025i 0 3.00000 0 −2.50000 + 0.866025i 0 1.50000 2.59808i 0
961.1 0 1.50000 + 0.866025i 0 3.00000 0 −2.50000 0.866025i 0 1.50000 + 2.59808i 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
63.g even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1008.2.t.f 2
3.b odd 2 1 3024.2.t.a 2
4.b odd 2 1 126.2.h.b yes 2
7.c even 3 1 1008.2.q.a 2
9.c even 3 1 1008.2.q.a 2
9.d odd 6 1 3024.2.q.f 2
12.b even 2 1 378.2.h.a 2
21.h odd 6 1 3024.2.q.f 2
28.d even 2 1 882.2.h.i 2
28.f even 6 1 882.2.e.c 2
28.f even 6 1 882.2.f.g 2
28.g odd 6 1 126.2.e.a 2
28.g odd 6 1 882.2.f.i 2
36.f odd 6 1 126.2.e.a 2
36.f odd 6 1 1134.2.g.e 2
36.h even 6 1 378.2.e.b 2
36.h even 6 1 1134.2.g.c 2
63.g even 3 1 inner 1008.2.t.f 2
63.n odd 6 1 3024.2.t.a 2
84.h odd 2 1 2646.2.h.d 2
84.j odd 6 1 2646.2.e.g 2
84.j odd 6 1 2646.2.f.a 2
84.n even 6 1 378.2.e.b 2
84.n even 6 1 2646.2.f.d 2
252.n even 6 1 882.2.h.i 2
252.n even 6 1 7938.2.a.b 1
252.o even 6 1 378.2.h.a 2
252.o even 6 1 7938.2.a.t 1
252.r odd 6 1 2646.2.f.a 2
252.s odd 6 1 2646.2.e.g 2
252.u odd 6 1 882.2.f.i 2
252.u odd 6 1 1134.2.g.e 2
252.bb even 6 1 1134.2.g.c 2
252.bb even 6 1 2646.2.f.d 2
252.bi even 6 1 882.2.e.c 2
252.bj even 6 1 882.2.f.g 2
252.bl odd 6 1 126.2.h.b yes 2
252.bl odd 6 1 7938.2.a.m 1
252.bn odd 6 1 2646.2.h.d 2
252.bn odd 6 1 7938.2.a.be 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
126.2.e.a 2 28.g odd 6 1
126.2.e.a 2 36.f odd 6 1
126.2.h.b yes 2 4.b odd 2 1
126.2.h.b yes 2 252.bl odd 6 1
378.2.e.b 2 36.h even 6 1
378.2.e.b 2 84.n even 6 1
378.2.h.a 2 12.b even 2 1
378.2.h.a 2 252.o even 6 1
882.2.e.c 2 28.f even 6 1
882.2.e.c 2 252.bi even 6 1
882.2.f.g 2 28.f even 6 1
882.2.f.g 2 252.bj even 6 1
882.2.f.i 2 28.g odd 6 1
882.2.f.i 2 252.u odd 6 1
882.2.h.i 2 28.d even 2 1
882.2.h.i 2 252.n even 6 1
1008.2.q.a 2 7.c even 3 1
1008.2.q.a 2 9.c even 3 1
1008.2.t.f 2 1.a even 1 1 trivial
1008.2.t.f 2 63.g even 3 1 inner
1134.2.g.c 2 36.h even 6 1
1134.2.g.c 2 252.bb even 6 1
1134.2.g.e 2 36.f odd 6 1
1134.2.g.e 2 252.u odd 6 1
2646.2.e.g 2 84.j odd 6 1
2646.2.e.g 2 252.s odd 6 1
2646.2.f.a 2 84.j odd 6 1
2646.2.f.a 2 252.r odd 6 1
2646.2.f.d 2 84.n even 6 1
2646.2.f.d 2 252.bb even 6 1
2646.2.h.d 2 84.h odd 2 1
2646.2.h.d 2 252.bn odd 6 1
3024.2.q.f 2 9.d odd 6 1
3024.2.q.f 2 21.h odd 6 1
3024.2.t.a 2 3.b odd 2 1
3024.2.t.a 2 63.n odd 6 1
7938.2.a.b 1 252.n even 6 1
7938.2.a.m 1 252.bl odd 6 1
7938.2.a.t 1 252.o even 6 1
7938.2.a.be 1 252.bn odd 6 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(1008, [\chi])\):

\( T_{5} - 3 \)
\( T_{11} - 3 \)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ 1
$3$ \( 1 - 3 T + 3 T^{2} \)
$5$ \( ( 1 - 3 T + 5 T^{2} )^{2} \)
$7$ \( 1 + 5 T + 7 T^{2} \)
$11$ \( ( 1 - 3 T + 11 T^{2} )^{2} \)
$13$ \( 1 - T - 12 T^{2} - 13 T^{3} + 169 T^{4} \)
$17$ \( 1 + 3 T - 8 T^{2} + 51 T^{3} + 289 T^{4} \)
$19$ \( ( 1 - T + 19 T^{2} )( 1 + 8 T + 19 T^{2} ) \)
$23$ \( ( 1 - 9 T + 23 T^{2} )^{2} \)
$29$ \( 1 + 3 T - 20 T^{2} + 87 T^{3} + 841 T^{4} \)
$31$ \( 1 - 8 T + 33 T^{2} - 248 T^{3} + 961 T^{4} \)
$37$ \( ( 1 - 11 T + 37 T^{2} )( 1 + 10 T + 37 T^{2} ) \)
$41$ \( 1 + 3 T - 32 T^{2} + 123 T^{3} + 1681 T^{4} \)
$43$ \( 1 + T - 42 T^{2} + 43 T^{3} + 1849 T^{4} \)
$47$ \( 1 - 47 T^{2} + 2209 T^{4} \)
$53$ \( 1 + 3 T - 44 T^{2} + 159 T^{3} + 2809 T^{4} \)
$59$ \( 1 - 59 T^{2} + 3481 T^{4} \)
$61$ \( 1 + 2 T - 57 T^{2} + 122 T^{3} + 3721 T^{4} \)
$67$ \( 1 + 4 T - 51 T^{2} + 268 T^{3} + 4489 T^{4} \)
$71$ \( ( 1 + 12 T + 71 T^{2} )^{2} \)
$73$ \( 1 + 11 T + 48 T^{2} + 803 T^{3} + 5329 T^{4} \)
$79$ \( 1 + 16 T + 177 T^{2} + 1264 T^{3} + 6241 T^{4} \)
$83$ \( 1 + 9 T - 2 T^{2} + 747 T^{3} + 6889 T^{4} \)
$89$ \( 1 + 3 T - 80 T^{2} + 267 T^{3} + 7921 T^{4} \)
$97$ \( 1 - T - 96 T^{2} - 97 T^{3} + 9409 T^{4} \)
show more
show less