Properties

Label 1008.2.t.b
Level $1008$
Weight $2$
Character orbit 1008.t
Analytic conductor $8.049$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $2$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 1008 = 2^{4} \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1008.t (of order \(3\), degree \(2\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(8.04892052375\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-3}) \)
Defining polynomial: \(x^{2} - x + 1\)
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 252)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{6}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( 1 - 2 \zeta_{6} ) q^{3} + 2 q^{5} + ( -3 + 2 \zeta_{6} ) q^{7} -3 q^{9} +O(q^{10})\) \( q + ( 1 - 2 \zeta_{6} ) q^{3} + 2 q^{5} + ( -3 + 2 \zeta_{6} ) q^{7} -3 q^{9} -4 q^{11} + ( -3 + 3 \zeta_{6} ) q^{13} + ( 2 - 4 \zeta_{6} ) q^{15} + ( -7 + 7 \zeta_{6} ) q^{17} + 5 \zeta_{6} q^{19} + ( 1 + 4 \zeta_{6} ) q^{21} -4 q^{23} - q^{25} + ( -3 + 6 \zeta_{6} ) q^{27} + \zeta_{6} q^{29} -3 \zeta_{6} q^{31} + ( -4 + 8 \zeta_{6} ) q^{33} + ( -6 + 4 \zeta_{6} ) q^{35} -11 \zeta_{6} q^{37} + ( 3 + 3 \zeta_{6} ) q^{39} + ( 9 - 9 \zeta_{6} ) q^{41} + 5 \zeta_{6} q^{43} -6 q^{45} + ( 3 - 3 \zeta_{6} ) q^{47} + ( 5 - 8 \zeta_{6} ) q^{49} + ( 7 + 7 \zeta_{6} ) q^{51} + ( -3 + 3 \zeta_{6} ) q^{53} -8 q^{55} + ( 10 - 5 \zeta_{6} ) q^{57} -7 \zeta_{6} q^{59} + ( -3 + 3 \zeta_{6} ) q^{61} + ( 9 - 6 \zeta_{6} ) q^{63} + ( -6 + 6 \zeta_{6} ) q^{65} + 13 \zeta_{6} q^{67} + ( -4 + 8 \zeta_{6} ) q^{69} + 8 q^{71} + ( -7 + 7 \zeta_{6} ) q^{73} + ( -1 + 2 \zeta_{6} ) q^{75} + ( 12 - 8 \zeta_{6} ) q^{77} + ( -9 + 9 \zeta_{6} ) q^{79} + 9 q^{81} + \zeta_{6} q^{83} + ( -14 + 14 \zeta_{6} ) q^{85} + ( 2 - \zeta_{6} ) q^{87} -15 \zeta_{6} q^{89} + ( 3 - 9 \zeta_{6} ) q^{91} + ( -6 + 3 \zeta_{6} ) q^{93} + 10 \zeta_{6} q^{95} + 17 \zeta_{6} q^{97} + 12 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2q + 4q^{5} - 4q^{7} - 6q^{9} + O(q^{10}) \) \( 2q + 4q^{5} - 4q^{7} - 6q^{9} - 8q^{11} - 3q^{13} - 7q^{17} + 5q^{19} + 6q^{21} - 8q^{23} - 2q^{25} + q^{29} - 3q^{31} - 8q^{35} - 11q^{37} + 9q^{39} + 9q^{41} + 5q^{43} - 12q^{45} + 3q^{47} + 2q^{49} + 21q^{51} - 3q^{53} - 16q^{55} + 15q^{57} - 7q^{59} - 3q^{61} + 12q^{63} - 6q^{65} + 13q^{67} + 16q^{71} - 7q^{73} + 16q^{77} - 9q^{79} + 18q^{81} + q^{83} - 14q^{85} + 3q^{87} - 15q^{89} - 3q^{91} - 9q^{93} + 10q^{95} + 17q^{97} + 24q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1008\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(577\) \(757\) \(785\)
\(\chi(n)\) \(1\) \(-\zeta_{6}\) \(1\) \(-1 + \zeta_{6}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
193.1
0.500000 + 0.866025i
0.500000 0.866025i
0 1.73205i 0 2.00000 0 −2.00000 + 1.73205i 0 −3.00000 0
961.1 0 1.73205i 0 2.00000 0 −2.00000 1.73205i 0 −3.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
63.g even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1008.2.t.b 2
3.b odd 2 1 3024.2.t.b 2
4.b odd 2 1 252.2.l.a yes 2
7.c even 3 1 1008.2.q.f 2
9.c even 3 1 1008.2.q.f 2
9.d odd 6 1 3024.2.q.e 2
12.b even 2 1 756.2.l.a 2
21.h odd 6 1 3024.2.q.e 2
28.d even 2 1 1764.2.l.b 2
28.f even 6 1 1764.2.i.b 2
28.f even 6 1 1764.2.j.a 2
28.g odd 6 1 252.2.i.a 2
28.g odd 6 1 1764.2.j.c 2
36.f odd 6 1 252.2.i.a 2
36.f odd 6 1 2268.2.k.a 2
36.h even 6 1 756.2.i.a 2
36.h even 6 1 2268.2.k.b 2
63.g even 3 1 inner 1008.2.t.b 2
63.n odd 6 1 3024.2.t.b 2
84.h odd 2 1 5292.2.l.b 2
84.j odd 6 1 5292.2.i.b 2
84.j odd 6 1 5292.2.j.b 2
84.n even 6 1 756.2.i.a 2
84.n even 6 1 5292.2.j.c 2
252.n even 6 1 1764.2.l.b 2
252.o even 6 1 756.2.l.a 2
252.r odd 6 1 5292.2.j.b 2
252.s odd 6 1 5292.2.i.b 2
252.u odd 6 1 1764.2.j.c 2
252.u odd 6 1 2268.2.k.a 2
252.bb even 6 1 2268.2.k.b 2
252.bb even 6 1 5292.2.j.c 2
252.bi even 6 1 1764.2.i.b 2
252.bj even 6 1 1764.2.j.a 2
252.bl odd 6 1 252.2.l.a yes 2
252.bn odd 6 1 5292.2.l.b 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
252.2.i.a 2 28.g odd 6 1
252.2.i.a 2 36.f odd 6 1
252.2.l.a yes 2 4.b odd 2 1
252.2.l.a yes 2 252.bl odd 6 1
756.2.i.a 2 36.h even 6 1
756.2.i.a 2 84.n even 6 1
756.2.l.a 2 12.b even 2 1
756.2.l.a 2 252.o even 6 1
1008.2.q.f 2 7.c even 3 1
1008.2.q.f 2 9.c even 3 1
1008.2.t.b 2 1.a even 1 1 trivial
1008.2.t.b 2 63.g even 3 1 inner
1764.2.i.b 2 28.f even 6 1
1764.2.i.b 2 252.bi even 6 1
1764.2.j.a 2 28.f even 6 1
1764.2.j.a 2 252.bj even 6 1
1764.2.j.c 2 28.g odd 6 1
1764.2.j.c 2 252.u odd 6 1
1764.2.l.b 2 28.d even 2 1
1764.2.l.b 2 252.n even 6 1
2268.2.k.a 2 36.f odd 6 1
2268.2.k.a 2 252.u odd 6 1
2268.2.k.b 2 36.h even 6 1
2268.2.k.b 2 252.bb even 6 1
3024.2.q.e 2 9.d odd 6 1
3024.2.q.e 2 21.h odd 6 1
3024.2.t.b 2 3.b odd 2 1
3024.2.t.b 2 63.n odd 6 1
5292.2.i.b 2 84.j odd 6 1
5292.2.i.b 2 252.s odd 6 1
5292.2.j.b 2 84.j odd 6 1
5292.2.j.b 2 252.r odd 6 1
5292.2.j.c 2 84.n even 6 1
5292.2.j.c 2 252.bb even 6 1
5292.2.l.b 2 84.h odd 2 1
5292.2.l.b 2 252.bn odd 6 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(1008, [\chi])\):

\( T_{5} - 2 \)
\( T_{11} + 4 \)