Properties

Label 1008.2.s.p.289.1
Level $1008$
Weight $2$
Character 1008.289
Analytic conductor $8.049$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 1008 = 2^{4} \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1008.s (of order \(3\), degree \(2\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(8.04892052375\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
Defining polynomial: \(x^{2} - x + 1\)
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 28)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 289.1
Root \(0.500000 - 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 1008.289
Dual form 1008.2.s.p.865.1

$q$-expansion

\(f(q)\) \(=\) \(q+(1.50000 - 2.59808i) q^{5} +(2.00000 + 1.73205i) q^{7} +O(q^{10})\) \(q+(1.50000 - 2.59808i) q^{5} +(2.00000 + 1.73205i) q^{7} +(1.50000 + 2.59808i) q^{11} +2.00000 q^{13} +(1.50000 + 2.59808i) q^{17} +(-0.500000 + 0.866025i) q^{19} +(-1.50000 + 2.59808i) q^{23} +(-2.00000 - 3.46410i) q^{25} +6.00000 q^{29} +(-3.50000 - 6.06218i) q^{31} +(7.50000 - 2.59808i) q^{35} +(0.500000 - 0.866025i) q^{37} -6.00000 q^{41} +4.00000 q^{43} +(4.50000 - 7.79423i) q^{47} +(1.00000 + 6.92820i) q^{49} +(1.50000 + 2.59808i) q^{53} +9.00000 q^{55} +(-4.50000 - 7.79423i) q^{59} +(0.500000 - 0.866025i) q^{61} +(3.00000 - 5.19615i) q^{65} +(-3.50000 - 6.06218i) q^{67} +(0.500000 + 0.866025i) q^{73} +(-1.50000 + 7.79423i) q^{77} +(-6.50000 + 11.2583i) q^{79} +12.0000 q^{83} +9.00000 q^{85} +(7.50000 - 12.9904i) q^{89} +(4.00000 + 3.46410i) q^{91} +(1.50000 + 2.59808i) q^{95} -10.0000 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2q + 3q^{5} + 4q^{7} + O(q^{10}) \) \( 2q + 3q^{5} + 4q^{7} + 3q^{11} + 4q^{13} + 3q^{17} - q^{19} - 3q^{23} - 4q^{25} + 12q^{29} - 7q^{31} + 15q^{35} + q^{37} - 12q^{41} + 8q^{43} + 9q^{47} + 2q^{49} + 3q^{53} + 18q^{55} - 9q^{59} + q^{61} + 6q^{65} - 7q^{67} + q^{73} - 3q^{77} - 13q^{79} + 24q^{83} + 18q^{85} + 15q^{89} + 8q^{91} + 3q^{95} - 20q^{97} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1008\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(577\) \(757\) \(785\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{3}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 1.50000 2.59808i 0.670820 1.16190i −0.306851 0.951757i \(-0.599275\pi\)
0.977672 0.210138i \(-0.0673912\pi\)
\(6\) 0 0
\(7\) 2.00000 + 1.73205i 0.755929 + 0.654654i
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 1.50000 + 2.59808i 0.452267 + 0.783349i 0.998526 0.0542666i \(-0.0172821\pi\)
−0.546259 + 0.837616i \(0.683949\pi\)
\(12\) 0 0
\(13\) 2.00000 0.554700 0.277350 0.960769i \(-0.410544\pi\)
0.277350 + 0.960769i \(0.410544\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 1.50000 + 2.59808i 0.363803 + 0.630126i 0.988583 0.150675i \(-0.0481447\pi\)
−0.624780 + 0.780801i \(0.714811\pi\)
\(18\) 0 0
\(19\) −0.500000 + 0.866025i −0.114708 + 0.198680i −0.917663 0.397360i \(-0.869927\pi\)
0.802955 + 0.596040i \(0.203260\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −1.50000 + 2.59808i −0.312772 + 0.541736i −0.978961 0.204046i \(-0.934591\pi\)
0.666190 + 0.745782i \(0.267924\pi\)
\(24\) 0 0
\(25\) −2.00000 3.46410i −0.400000 0.692820i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 6.00000 1.11417 0.557086 0.830455i \(-0.311919\pi\)
0.557086 + 0.830455i \(0.311919\pi\)
\(30\) 0 0
\(31\) −3.50000 6.06218i −0.628619 1.08880i −0.987829 0.155543i \(-0.950287\pi\)
0.359211 0.933257i \(-0.383046\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 7.50000 2.59808i 1.26773 0.439155i
\(36\) 0 0
\(37\) 0.500000 0.866025i 0.0821995 0.142374i −0.821995 0.569495i \(-0.807139\pi\)
0.904194 + 0.427121i \(0.140472\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −6.00000 −0.937043 −0.468521 0.883452i \(-0.655213\pi\)
−0.468521 + 0.883452i \(0.655213\pi\)
\(42\) 0 0
\(43\) 4.00000 0.609994 0.304997 0.952353i \(-0.401344\pi\)
0.304997 + 0.952353i \(0.401344\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 4.50000 7.79423i 0.656392 1.13691i −0.325150 0.945662i \(-0.605415\pi\)
0.981543 0.191243i \(-0.0612518\pi\)
\(48\) 0 0
\(49\) 1.00000 + 6.92820i 0.142857 + 0.989743i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 1.50000 + 2.59808i 0.206041 + 0.356873i 0.950464 0.310835i \(-0.100609\pi\)
−0.744423 + 0.667708i \(0.767275\pi\)
\(54\) 0 0
\(55\) 9.00000 1.21356
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −4.50000 7.79423i −0.585850 1.01472i −0.994769 0.102151i \(-0.967427\pi\)
0.408919 0.912571i \(-0.365906\pi\)
\(60\) 0 0
\(61\) 0.500000 0.866025i 0.0640184 0.110883i −0.832240 0.554416i \(-0.812942\pi\)
0.896258 + 0.443533i \(0.146275\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 3.00000 5.19615i 0.372104 0.644503i
\(66\) 0 0
\(67\) −3.50000 6.06218i −0.427593 0.740613i 0.569066 0.822292i \(-0.307305\pi\)
−0.996659 + 0.0816792i \(0.973972\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(72\) 0 0
\(73\) 0.500000 + 0.866025i 0.0585206 + 0.101361i 0.893801 0.448463i \(-0.148028\pi\)
−0.835281 + 0.549823i \(0.814695\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −1.50000 + 7.79423i −0.170941 + 0.888235i
\(78\) 0 0
\(79\) −6.50000 + 11.2583i −0.731307 + 1.26666i 0.225018 + 0.974355i \(0.427756\pi\)
−0.956325 + 0.292306i \(0.905577\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 12.0000 1.31717 0.658586 0.752506i \(-0.271155\pi\)
0.658586 + 0.752506i \(0.271155\pi\)
\(84\) 0 0
\(85\) 9.00000 0.976187
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 7.50000 12.9904i 0.794998 1.37698i −0.127842 0.991795i \(-0.540805\pi\)
0.922840 0.385183i \(-0.125862\pi\)
\(90\) 0 0
\(91\) 4.00000 + 3.46410i 0.419314 + 0.363137i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 1.50000 + 2.59808i 0.153897 + 0.266557i
\(96\) 0 0
\(97\) −10.0000 −1.01535 −0.507673 0.861550i \(-0.669494\pi\)
−0.507673 + 0.861550i \(0.669494\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 7.50000 + 12.9904i 0.746278 + 1.29259i 0.949595 + 0.313478i \(0.101494\pi\)
−0.203317 + 0.979113i \(0.565172\pi\)
\(102\) 0 0
\(103\) 5.50000 9.52628i 0.541931 0.938652i −0.456862 0.889538i \(-0.651027\pi\)
0.998793 0.0491146i \(-0.0156400\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −7.50000 + 12.9904i −0.725052 + 1.25583i 0.233900 + 0.972261i \(0.424851\pi\)
−0.958952 + 0.283567i \(0.908482\pi\)
\(108\) 0 0
\(109\) 0.500000 + 0.866025i 0.0478913 + 0.0829502i 0.888977 0.457951i \(-0.151417\pi\)
−0.841086 + 0.540901i \(0.818083\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −6.00000 −0.564433 −0.282216 0.959351i \(-0.591070\pi\)
−0.282216 + 0.959351i \(0.591070\pi\)
\(114\) 0 0
\(115\) 4.50000 + 7.79423i 0.419627 + 0.726816i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −1.50000 + 7.79423i −0.137505 + 0.714496i
\(120\) 0 0
\(121\) 1.00000 1.73205i 0.0909091 0.157459i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 3.00000 0.268328
\(126\) 0 0
\(127\) −8.00000 −0.709885 −0.354943 0.934888i \(-0.615500\pi\)
−0.354943 + 0.934888i \(0.615500\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −1.50000 + 2.59808i −0.131056 + 0.226995i −0.924084 0.382190i \(-0.875170\pi\)
0.793028 + 0.609185i \(0.208503\pi\)
\(132\) 0 0
\(133\) −2.50000 + 0.866025i −0.216777 + 0.0750939i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −10.5000 18.1865i −0.897076 1.55378i −0.831215 0.555952i \(-0.812354\pi\)
−0.0658609 0.997829i \(-0.520979\pi\)
\(138\) 0 0
\(139\) −20.0000 −1.69638 −0.848189 0.529694i \(-0.822307\pi\)
−0.848189 + 0.529694i \(0.822307\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 3.00000 + 5.19615i 0.250873 + 0.434524i
\(144\) 0 0
\(145\) 9.00000 15.5885i 0.747409 1.29455i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 1.50000 2.59808i 0.122885 0.212843i −0.798019 0.602632i \(-0.794119\pi\)
0.920904 + 0.389789i \(0.127452\pi\)
\(150\) 0 0
\(151\) 8.50000 + 14.7224i 0.691720 + 1.19809i 0.971274 + 0.237964i \(0.0764802\pi\)
−0.279554 + 0.960130i \(0.590186\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −21.0000 −1.68676
\(156\) 0 0
\(157\) 6.50000 + 11.2583i 0.518756 + 0.898513i 0.999762 + 0.0217953i \(0.00693820\pi\)
−0.481006 + 0.876717i \(0.659728\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −7.50000 + 2.59808i −0.591083 + 0.204757i
\(162\) 0 0
\(163\) 5.50000 9.52628i 0.430793 0.746156i −0.566149 0.824303i \(-0.691567\pi\)
0.996942 + 0.0781474i \(0.0249005\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −12.0000 −0.928588 −0.464294 0.885681i \(-0.653692\pi\)
−0.464294 + 0.885681i \(0.653692\pi\)
\(168\) 0 0
\(169\) −9.00000 −0.692308
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −4.50000 + 7.79423i −0.342129 + 0.592584i −0.984828 0.173534i \(-0.944481\pi\)
0.642699 + 0.766119i \(0.277815\pi\)
\(174\) 0 0
\(175\) 2.00000 10.3923i 0.151186 0.785584i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −10.5000 18.1865i −0.784807 1.35933i −0.929114 0.369792i \(-0.879429\pi\)
0.144308 0.989533i \(-0.453905\pi\)
\(180\) 0 0
\(181\) −10.0000 −0.743294 −0.371647 0.928374i \(-0.621207\pi\)
−0.371647 + 0.928374i \(0.621207\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −1.50000 2.59808i −0.110282 0.191014i
\(186\) 0 0
\(187\) −4.50000 + 7.79423i −0.329073 + 0.569970i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 4.50000 7.79423i 0.325609 0.563971i −0.656027 0.754738i \(-0.727764\pi\)
0.981635 + 0.190767i \(0.0610975\pi\)
\(192\) 0 0
\(193\) −5.50000 9.52628i −0.395899 0.685717i 0.597317 0.802005i \(-0.296234\pi\)
−0.993215 + 0.116289i \(0.962900\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −18.0000 −1.28245 −0.641223 0.767354i \(-0.721573\pi\)
−0.641223 + 0.767354i \(0.721573\pi\)
\(198\) 0 0
\(199\) −3.50000 6.06218i −0.248108 0.429736i 0.714893 0.699234i \(-0.246476\pi\)
−0.963001 + 0.269498i \(0.913142\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 12.0000 + 10.3923i 0.842235 + 0.729397i
\(204\) 0 0
\(205\) −9.00000 + 15.5885i −0.628587 + 1.08875i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −3.00000 −0.207514
\(210\) 0 0
\(211\) 4.00000 0.275371 0.137686 0.990476i \(-0.456034\pi\)
0.137686 + 0.990476i \(0.456034\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 6.00000 10.3923i 0.409197 0.708749i
\(216\) 0 0
\(217\) 3.50000 18.1865i 0.237595 1.23458i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 3.00000 + 5.19615i 0.201802 + 0.349531i
\(222\) 0 0
\(223\) −8.00000 −0.535720 −0.267860 0.963458i \(-0.586316\pi\)
−0.267860 + 0.963458i \(0.586316\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 1.50000 + 2.59808i 0.0995585 + 0.172440i 0.911502 0.411296i \(-0.134924\pi\)
−0.811943 + 0.583736i \(0.801590\pi\)
\(228\) 0 0
\(229\) −5.50000 + 9.52628i −0.363450 + 0.629514i −0.988526 0.151050i \(-0.951735\pi\)
0.625076 + 0.780564i \(0.285068\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −10.5000 + 18.1865i −0.687878 + 1.19144i 0.284645 + 0.958633i \(0.408124\pi\)
−0.972523 + 0.232806i \(0.925209\pi\)
\(234\) 0 0
\(235\) −13.5000 23.3827i −0.880643 1.52532i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −12.0000 −0.776215 −0.388108 0.921614i \(-0.626871\pi\)
−0.388108 + 0.921614i \(0.626871\pi\)
\(240\) 0 0
\(241\) 0.500000 + 0.866025i 0.0322078 + 0.0557856i 0.881680 0.471848i \(-0.156413\pi\)
−0.849472 + 0.527633i \(0.823079\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 19.5000 + 7.79423i 1.24581 + 0.497955i
\(246\) 0 0
\(247\) −1.00000 + 1.73205i −0.0636285 + 0.110208i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(252\) 0 0
\(253\) −9.00000 −0.565825
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 1.50000 2.59808i 0.0935674 0.162064i −0.815442 0.578838i \(-0.803506\pi\)
0.909010 + 0.416775i \(0.136840\pi\)
\(258\) 0 0
\(259\) 2.50000 0.866025i 0.155342 0.0538122i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 1.50000 + 2.59808i 0.0924940 + 0.160204i 0.908560 0.417755i \(-0.137183\pi\)
−0.816066 + 0.577959i \(0.803849\pi\)
\(264\) 0 0
\(265\) 9.00000 0.552866
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 1.50000 + 2.59808i 0.0914566 + 0.158408i 0.908124 0.418701i \(-0.137514\pi\)
−0.816668 + 0.577108i \(0.804181\pi\)
\(270\) 0 0
\(271\) 5.50000 9.52628i 0.334101 0.578680i −0.649211 0.760609i \(-0.724901\pi\)
0.983312 + 0.181928i \(0.0582339\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 6.00000 10.3923i 0.361814 0.626680i
\(276\) 0 0
\(277\) 6.50000 + 11.2583i 0.390547 + 0.676448i 0.992522 0.122068i \(-0.0389525\pi\)
−0.601975 + 0.798515i \(0.705619\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −30.0000 −1.78965 −0.894825 0.446417i \(-0.852700\pi\)
−0.894825 + 0.446417i \(0.852700\pi\)
\(282\) 0 0
\(283\) 14.5000 + 25.1147i 0.861936 + 1.49292i 0.870058 + 0.492949i \(0.164081\pi\)
−0.00812260 + 0.999967i \(0.502586\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −12.0000 10.3923i −0.708338 0.613438i
\(288\) 0 0
\(289\) 4.00000 6.92820i 0.235294 0.407541i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −6.00000 −0.350524 −0.175262 0.984522i \(-0.556077\pi\)
−0.175262 + 0.984522i \(0.556077\pi\)
\(294\) 0 0
\(295\) −27.0000 −1.57200
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −3.00000 + 5.19615i −0.173494 + 0.300501i
\(300\) 0 0
\(301\) 8.00000 + 6.92820i 0.461112 + 0.399335i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −1.50000 2.59808i −0.0858898 0.148765i
\(306\) 0 0
\(307\) 28.0000 1.59804 0.799022 0.601302i \(-0.205351\pi\)
0.799022 + 0.601302i \(0.205351\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 13.5000 + 23.3827i 0.765515 + 1.32591i 0.939974 + 0.341246i \(0.110849\pi\)
−0.174459 + 0.984664i \(0.555818\pi\)
\(312\) 0 0
\(313\) −11.5000 + 19.9186i −0.650018 + 1.12586i 0.333099 + 0.942892i \(0.391906\pi\)
−0.983118 + 0.182973i \(0.941428\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −4.50000 + 7.79423i −0.252745 + 0.437767i −0.964281 0.264883i \(-0.914667\pi\)
0.711535 + 0.702650i \(0.248000\pi\)
\(318\) 0 0
\(319\) 9.00000 + 15.5885i 0.503903 + 0.872786i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −3.00000 −0.166924
\(324\) 0 0
\(325\) −4.00000 6.92820i −0.221880 0.384308i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 22.5000 7.79423i 1.24047 0.429710i
\(330\) 0 0
\(331\) −6.50000 + 11.2583i −0.357272 + 0.618814i −0.987504 0.157593i \(-0.949627\pi\)
0.630232 + 0.776407i \(0.282960\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −21.0000 −1.14735
\(336\) 0 0
\(337\) −34.0000 −1.85210 −0.926049 0.377403i \(-0.876817\pi\)
−0.926049 + 0.377403i \(0.876817\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 10.5000 18.1865i 0.568607 0.984856i
\(342\) 0 0
\(343\) −10.0000 + 15.5885i −0.539949 + 0.841698i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −4.50000 7.79423i −0.241573 0.418416i 0.719590 0.694399i \(-0.244330\pi\)
−0.961162 + 0.275983i \(0.910997\pi\)
\(348\) 0 0
\(349\) 26.0000 1.39175 0.695874 0.718164i \(-0.255017\pi\)
0.695874 + 0.718164i \(0.255017\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −10.5000 18.1865i −0.558859 0.967972i −0.997592 0.0693543i \(-0.977906\pi\)
0.438733 0.898617i \(-0.355427\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −7.50000 + 12.9904i −0.395835 + 0.685606i −0.993207 0.116358i \(-0.962878\pi\)
0.597372 + 0.801964i \(0.296211\pi\)
\(360\) 0 0
\(361\) 9.00000 + 15.5885i 0.473684 + 0.820445i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 3.00000 0.157027
\(366\) 0 0
\(367\) 2.50000 + 4.33013i 0.130499 + 0.226031i 0.923869 0.382709i \(-0.125009\pi\)
−0.793370 + 0.608740i \(0.791675\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −1.50000 + 7.79423i −0.0778761 + 0.404656i
\(372\) 0 0
\(373\) 12.5000 21.6506i 0.647225 1.12103i −0.336557 0.941663i \(-0.609263\pi\)
0.983783 0.179364i \(-0.0574041\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 12.0000 0.618031
\(378\) 0 0
\(379\) −8.00000 −0.410932 −0.205466 0.978664i \(-0.565871\pi\)
−0.205466 + 0.978664i \(0.565871\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 16.5000 28.5788i 0.843111 1.46031i −0.0441413 0.999025i \(-0.514055\pi\)
0.887252 0.461285i \(-0.152611\pi\)
\(384\) 0 0
\(385\) 18.0000 + 15.5885i 0.917365 + 0.794461i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 7.50000 + 12.9904i 0.380265 + 0.658638i 0.991100 0.133120i \(-0.0424994\pi\)
−0.610835 + 0.791758i \(0.709166\pi\)
\(390\) 0 0
\(391\) −9.00000 −0.455150
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 19.5000 + 33.7750i 0.981151 + 1.69940i
\(396\) 0 0
\(397\) 18.5000 32.0429i 0.928488 1.60819i 0.142636 0.989775i \(-0.454442\pi\)
0.785853 0.618414i \(-0.212224\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 1.50000 2.59808i 0.0749064 0.129742i −0.826139 0.563466i \(-0.809468\pi\)
0.901046 + 0.433724i \(0.142801\pi\)
\(402\) 0 0
\(403\) −7.00000 12.1244i −0.348695 0.603957i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 3.00000 0.148704
\(408\) 0 0
\(409\) −5.50000 9.52628i −0.271957 0.471044i 0.697406 0.716677i \(-0.254338\pi\)
−0.969363 + 0.245633i \(0.921004\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 4.50000 23.3827i 0.221431 1.15059i
\(414\) 0 0
\(415\) 18.0000 31.1769i 0.883585 1.53041i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −12.0000 −0.586238 −0.293119 0.956076i \(-0.594693\pi\)
−0.293119 + 0.956076i \(0.594693\pi\)
\(420\) 0 0
\(421\) −22.0000 −1.07221 −0.536107 0.844150i \(-0.680106\pi\)
−0.536107 + 0.844150i \(0.680106\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 6.00000 10.3923i 0.291043 0.504101i
\(426\) 0 0
\(427\) 2.50000 0.866025i 0.120983 0.0419099i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 7.50000 + 12.9904i 0.361262 + 0.625725i 0.988169 0.153370i \(-0.0490126\pi\)
−0.626907 + 0.779094i \(0.715679\pi\)
\(432\) 0 0
\(433\) −10.0000 −0.480569 −0.240285 0.970702i \(-0.577241\pi\)
−0.240285 + 0.970702i \(0.577241\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −1.50000 2.59808i −0.0717547 0.124283i
\(438\) 0 0
\(439\) −0.500000 + 0.866025i −0.0238637 + 0.0413331i −0.877711 0.479191i \(-0.840930\pi\)
0.853847 + 0.520524i \(0.174263\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 4.50000 7.79423i 0.213801 0.370315i −0.739100 0.673596i \(-0.764749\pi\)
0.952901 + 0.303281i \(0.0980821\pi\)
\(444\) 0 0
\(445\) −22.5000 38.9711i −1.06660 1.84741i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 18.0000 0.849473 0.424736 0.905317i \(-0.360367\pi\)
0.424736 + 0.905317i \(0.360367\pi\)
\(450\) 0 0
\(451\) −9.00000 15.5885i −0.423793 0.734032i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 15.0000 5.19615i 0.703211 0.243599i
\(456\) 0 0
\(457\) −11.5000 + 19.9186i −0.537947 + 0.931752i 0.461067 + 0.887365i \(0.347467\pi\)
−0.999014 + 0.0443868i \(0.985867\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 6.00000 0.279448 0.139724 0.990190i \(-0.455378\pi\)
0.139724 + 0.990190i \(0.455378\pi\)
\(462\) 0 0
\(463\) 16.0000 0.743583 0.371792 0.928316i \(-0.378744\pi\)
0.371792 + 0.928316i \(0.378744\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 10.5000 18.1865i 0.485882 0.841572i −0.513986 0.857798i \(-0.671832\pi\)
0.999868 + 0.0162260i \(0.00516512\pi\)
\(468\) 0 0
\(469\) 3.50000 18.1865i 0.161615 0.839776i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 6.00000 + 10.3923i 0.275880 + 0.477839i
\(474\) 0 0
\(475\) 4.00000 0.183533
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 1.50000 + 2.59808i 0.0685367 + 0.118709i 0.898257 0.439470i \(-0.144834\pi\)
−0.829721 + 0.558179i \(0.811500\pi\)
\(480\) 0 0
\(481\) 1.00000 1.73205i 0.0455961 0.0789747i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −15.0000 + 25.9808i −0.681115 + 1.17973i
\(486\) 0 0
\(487\) −9.50000 16.4545i −0.430486 0.745624i 0.566429 0.824110i \(-0.308325\pi\)
−0.996915 + 0.0784867i \(0.974991\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 24.0000 1.08310 0.541552 0.840667i \(-0.317837\pi\)
0.541552 + 0.840667i \(0.317837\pi\)
\(492\) 0 0
\(493\) 9.00000 + 15.5885i 0.405340 + 0.702069i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 5.50000 9.52628i 0.246214 0.426455i −0.716258 0.697835i \(-0.754147\pi\)
0.962472 + 0.271380i \(0.0874801\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(504\) 0 0
\(505\) 45.0000 2.00247
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 1.50000 2.59808i 0.0664863 0.115158i −0.830866 0.556473i \(-0.812154\pi\)
0.897352 + 0.441315i \(0.145488\pi\)
\(510\) 0 0
\(511\) −0.500000 + 2.59808i −0.0221187 + 0.114932i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −16.5000 28.5788i −0.727077 1.25933i
\(516\) 0 0
\(517\) 27.0000 1.18746
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 19.5000 + 33.7750i 0.854311 + 1.47971i 0.877283 + 0.479973i \(0.159354\pi\)
−0.0229727 + 0.999736i \(0.507313\pi\)
\(522\) 0 0
\(523\) −0.500000 + 0.866025i −0.0218635 + 0.0378686i −0.876750 0.480946i \(-0.840293\pi\)
0.854887 + 0.518815i \(0.173627\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 10.5000 18.1865i 0.457387 0.792218i
\(528\) 0 0
\(529\) 7.00000 + 12.1244i 0.304348 + 0.527146i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −12.0000 −0.519778
\(534\) 0 0
\(535\) 22.5000 + 38.9711i 0.972760 + 1.68487i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −16.5000 + 12.9904i −0.710705 + 0.559535i
\(540\) 0 0
\(541\) −17.5000 + 30.3109i −0.752384 + 1.30317i 0.194281 + 0.980946i \(0.437763\pi\)
−0.946664 + 0.322221i \(0.895571\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 3.00000 0.128506
\(546\) 0 0
\(547\) −8.00000 −0.342055 −0.171028 0.985266i \(-0.554709\pi\)
−0.171028 + 0.985266i \(0.554709\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −3.00000 + 5.19615i −0.127804 + 0.221364i
\(552\) 0 0
\(553\) −32.5000 + 11.2583i −1.38204 + 0.478753i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −16.5000 28.5788i −0.699127 1.21092i −0.968769 0.247964i \(-0.920239\pi\)
0.269642 0.962961i \(-0.413095\pi\)
\(558\) 0 0
\(559\) 8.00000 0.338364
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −4.50000 7.79423i −0.189652 0.328488i 0.755482 0.655169i \(-0.227403\pi\)
−0.945134 + 0.326682i \(0.894069\pi\)
\(564\) 0 0
\(565\) −9.00000 + 15.5885i −0.378633 + 0.655811i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −4.50000 + 7.79423i −0.188650 + 0.326751i −0.944800 0.327647i \(-0.893744\pi\)
0.756151 + 0.654398i \(0.227078\pi\)
\(570\) 0 0
\(571\) 14.5000 + 25.1147i 0.606806 + 1.05102i 0.991763 + 0.128085i \(0.0408829\pi\)
−0.384957 + 0.922934i \(0.625784\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 12.0000 0.500435
\(576\) 0 0
\(577\) 0.500000 + 0.866025i 0.0208153 + 0.0360531i 0.876245 0.481865i \(-0.160040\pi\)
−0.855430 + 0.517918i \(0.826707\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 24.0000 + 20.7846i 0.995688 + 0.862291i
\(582\) 0 0
\(583\) −4.50000 + 7.79423i −0.186371 + 0.322804i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 12.0000 0.495293 0.247647 0.968850i \(-0.420343\pi\)
0.247647 + 0.968850i \(0.420343\pi\)
\(588\) 0 0
\(589\) 7.00000 0.288430
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −10.5000 + 18.1865i −0.431183 + 0.746831i −0.996976 0.0777165i \(-0.975237\pi\)
0.565792 + 0.824548i \(0.308570\pi\)
\(594\) 0 0
\(595\) 18.0000 + 15.5885i 0.737928 + 0.639064i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 13.5000 + 23.3827i 0.551595 + 0.955391i 0.998160 + 0.0606393i \(0.0193139\pi\)
−0.446565 + 0.894751i \(0.647353\pi\)
\(600\) 0 0
\(601\) 14.0000 0.571072 0.285536 0.958368i \(-0.407828\pi\)
0.285536 + 0.958368i \(0.407828\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −3.00000 5.19615i −0.121967 0.211254i
\(606\) 0 0
\(607\) 23.5000 40.7032i 0.953836 1.65209i 0.216825 0.976210i \(-0.430430\pi\)
0.737011 0.675881i \(-0.236237\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 9.00000 15.5885i 0.364101 0.630641i
\(612\) 0 0
\(613\) 12.5000 + 21.6506i 0.504870 + 0.874461i 0.999984 + 0.00563283i \(0.00179300\pi\)
−0.495114 + 0.868828i \(0.664874\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −6.00000 −0.241551 −0.120775 0.992680i \(-0.538538\pi\)
−0.120775 + 0.992680i \(0.538538\pi\)
\(618\) 0 0
\(619\) −15.5000 26.8468i −0.622998 1.07906i −0.988924 0.148420i \(-0.952581\pi\)
0.365927 0.930644i \(-0.380752\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 37.5000 12.9904i 1.50241 0.520449i
\(624\) 0 0
\(625\) 14.5000 25.1147i 0.580000 1.00459i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 3.00000 0.119618
\(630\) 0 0
\(631\) 16.0000 0.636950 0.318475 0.947931i \(-0.396829\pi\)
0.318475 + 0.947931i \(0.396829\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −12.0000 + 20.7846i −0.476205 + 0.824812i
\(636\) 0 0
\(637\) 2.00000 + 13.8564i 0.0792429 + 0.549011i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 7.50000 + 12.9904i 0.296232 + 0.513089i 0.975271 0.221013i \(-0.0709364\pi\)
−0.679039 + 0.734103i \(0.737603\pi\)
\(642\) 0 0
\(643\) −20.0000 −0.788723 −0.394362 0.918955i \(-0.629034\pi\)
−0.394362 + 0.918955i \(0.629034\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −10.5000 18.1865i −0.412798 0.714986i 0.582397 0.812905i \(-0.302115\pi\)
−0.995194 + 0.0979182i \(0.968782\pi\)
\(648\) 0 0
\(649\) 13.5000 23.3827i 0.529921 0.917851i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 19.5000 33.7750i 0.763094 1.32172i −0.178154 0.984003i \(-0.557013\pi\)
0.941248 0.337715i \(-0.109654\pi\)
\(654\) 0 0
\(655\) 4.50000 + 7.79423i 0.175830 + 0.304546i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 12.0000 0.467454 0.233727 0.972302i \(-0.424908\pi\)
0.233727 + 0.972302i \(0.424908\pi\)
\(660\) 0 0
\(661\) −5.50000 9.52628i −0.213925 0.370529i 0.739014 0.673690i \(-0.235292\pi\)
−0.952940 + 0.303160i \(0.901958\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −1.50000 + 7.79423i −0.0581675 + 0.302247i
\(666\) 0 0
\(667\) −9.00000 + 15.5885i −0.348481 + 0.603587i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 3.00000 0.115814
\(672\) 0 0
\(673\) 14.0000 0.539660 0.269830 0.962908i \(-0.413032\pi\)
0.269830 + 0.962908i \(0.413032\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 13.5000 23.3827i 0.518847 0.898670i −0.480913 0.876768i \(-0.659695\pi\)
0.999760 0.0219013i \(-0.00697196\pi\)
\(678\) 0 0
\(679\) −20.0000 17.3205i −0.767530 0.664700i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −10.5000 18.1865i −0.401771 0.695888i 0.592168 0.805814i \(-0.298272\pi\)
−0.993940 + 0.109926i \(0.964939\pi\)
\(684\) 0 0
\(685\) −63.0000 −2.40711
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 3.00000 + 5.19615i 0.114291 + 0.197958i
\(690\) 0 0
\(691\) −6.50000 + 11.2583i −0.247272 + 0.428287i −0.962768 0.270330i \(-0.912867\pi\)
0.715496 + 0.698617i \(0.246201\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −30.0000 + 51.9615i −1.13796 + 1.97101i
\(696\) 0 0
\(697\) −9.00000 15.5885i −0.340899 0.590455i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 18.0000 0.679851 0.339925 0.940452i \(-0.389598\pi\)
0.339925 + 0.940452i \(0.389598\pi\)
\(702\) 0 0
\(703\) 0.500000 + 0.866025i 0.0188579 + 0.0326628i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −7.50000 + 38.9711i −0.282067 + 1.46566i
\(708\) 0 0
\(709\) 0.500000 0.866025i 0.0187779 0.0325243i −0.856484 0.516174i \(-0.827356\pi\)
0.875262 + 0.483650i \(0.160689\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 21.0000 0.786456
\(714\) 0 0
\(715\) 18.0000 0.673162
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 10.5000 18.1865i 0.391584 0.678243i −0.601075 0.799193i \(-0.705261\pi\)
0.992659 + 0.120950i \(0.0385939\pi\)
\(720\) 0 0
\(721\) 27.5000 9.52628i 1.02415 0.354777i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −12.0000 20.7846i −0.445669 0.771921i
\(726\) 0 0
\(727\) −32.0000 −1.18681 −0.593407 0.804902i \(-0.702218\pi\)
−0.593407 + 0.804902i \(0.702218\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 6.00000 + 10.3923i 0.221918 + 0.384373i
\(732\) 0 0
\(733\) 12.5000 21.6506i 0.461698 0.799684i −0.537348 0.843361i \(-0.680574\pi\)
0.999046 + 0.0436764i \(0.0139070\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 10.5000 18.1865i 0.386772 0.669910i
\(738\) 0 0
\(739\) −9.50000 16.4545i −0.349463 0.605288i 0.636691 0.771119i \(-0.280303\pi\)
−0.986154 + 0.165831i \(0.946969\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −48.0000 −1.76095 −0.880475 0.474093i \(-0.842776\pi\)
−0.880475 + 0.474093i \(0.842776\pi\)
\(744\) 0 0
\(745\) −4.50000 7.79423i −0.164867 0.285558i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −37.5000 + 12.9904i −1.37022 + 0.474658i
\(750\) 0 0
\(751\) −12.5000 + 21.6506i −0.456131 + 0.790043i −0.998752 0.0499348i \(-0.984099\pi\)
0.542621 + 0.839978i \(0.317432\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 51.0000 1.85608
\(756\) 0 0
\(757\) 2.00000 0.0726912 0.0363456 0.999339i \(-0.488428\pi\)
0.0363456 + 0.999339i \(0.488428\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 1.50000 2.59808i 0.0543750 0.0941802i −0.837557 0.546350i \(-0.816017\pi\)
0.891932 + 0.452170i \(0.149350\pi\)
\(762\) 0 0
\(763\) −0.500000 + 2.59808i −0.0181012 + 0.0940567i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −9.00000 15.5885i −0.324971 0.562867i
\(768\) 0 0
\(769\) −34.0000 −1.22607 −0.613036 0.790055i \(-0.710052\pi\)
−0.613036 + 0.790055i \(0.710052\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −16.5000 28.5788i −0.593464 1.02791i −0.993762 0.111524i \(-0.964427\pi\)
0.400298 0.916385i \(-0.368907\pi\)
\(774\) 0 0
\(775\) −14.0000 + 24.2487i −0.502895 + 0.871039i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 3.00000 5.19615i 0.107486 0.186171i
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 39.0000 1.39197
\(786\) 0 0
\(787\) −15.5000 26.8468i −0.552515 0.956985i −0.998092 0.0617409i \(-0.980335\pi\)
0.445577 0.895244i \(-0.352999\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −12.0000 10.3923i −0.426671 0.369508i
\(792\) 0 0
\(793\) 1.00000 1.73205i 0.0355110 0.0615069i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −42.0000 −1.48772 −0.743858 0.668338i \(-0.767006\pi\)
−0.743858 + 0.668338i \(0.767006\pi\)
\(798\) 0 0
\(799\) 27.0000 0.955191
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −1.50000 + 2.59808i −0.0529339 + </