Properties

Label 1008.2.s.o.289.1
Level $1008$
Weight $2$
Character 1008.289
Analytic conductor $8.049$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1008,2,Mod(289,1008)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1008, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1008.289");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1008 = 2^{4} \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1008.s (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(8.04892052375\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{19}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 126)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 289.1
Root \(0.500000 - 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 1008.289
Dual form 1008.2.s.o.865.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.50000 - 2.59808i) q^{5} +(0.500000 - 2.59808i) q^{7} +(1.50000 + 2.59808i) q^{11} +2.00000 q^{13} +(3.00000 + 5.19615i) q^{17} +(1.00000 - 1.73205i) q^{19} +(3.00000 - 5.19615i) q^{23} +(-2.00000 - 3.46410i) q^{25} -9.00000 q^{29} +(-3.50000 - 6.06218i) q^{31} +(-6.00000 - 5.19615i) q^{35} +(5.00000 - 8.66025i) q^{37} +4.00000 q^{43} +(-6.00000 + 10.3923i) q^{47} +(-6.50000 - 2.59808i) q^{49} +(-1.50000 - 2.59808i) q^{53} +9.00000 q^{55} +(1.50000 + 2.59808i) q^{59} +(2.00000 - 3.46410i) q^{61} +(3.00000 - 5.19615i) q^{65} +(1.00000 + 1.73205i) q^{67} +(-1.00000 - 1.73205i) q^{73} +(7.50000 - 2.59808i) q^{77} +(2.50000 - 4.33013i) q^{79} +9.00000 q^{83} +18.0000 q^{85} +(-3.00000 + 5.19615i) q^{89} +(1.00000 - 5.19615i) q^{91} +(-3.00000 - 5.19615i) q^{95} -13.0000 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 3 q^{5} + q^{7} + 3 q^{11} + 4 q^{13} + 6 q^{17} + 2 q^{19} + 6 q^{23} - 4 q^{25} - 18 q^{29} - 7 q^{31} - 12 q^{35} + 10 q^{37} + 8 q^{43} - 12 q^{47} - 13 q^{49} - 3 q^{53} + 18 q^{55} + 3 q^{59}+ \cdots - 26 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1008\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(577\) \(757\) \(785\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{3}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 1.50000 2.59808i 0.670820 1.16190i −0.306851 0.951757i \(-0.599275\pi\)
0.977672 0.210138i \(-0.0673912\pi\)
\(6\) 0 0
\(7\) 0.500000 2.59808i 0.188982 0.981981i
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 1.50000 + 2.59808i 0.452267 + 0.783349i 0.998526 0.0542666i \(-0.0172821\pi\)
−0.546259 + 0.837616i \(0.683949\pi\)
\(12\) 0 0
\(13\) 2.00000 0.554700 0.277350 0.960769i \(-0.410544\pi\)
0.277350 + 0.960769i \(0.410544\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 3.00000 + 5.19615i 0.727607 + 1.26025i 0.957892 + 0.287129i \(0.0927008\pi\)
−0.230285 + 0.973123i \(0.573966\pi\)
\(18\) 0 0
\(19\) 1.00000 1.73205i 0.229416 0.397360i −0.728219 0.685344i \(-0.759652\pi\)
0.957635 + 0.287984i \(0.0929851\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 3.00000 5.19615i 0.625543 1.08347i −0.362892 0.931831i \(-0.618211\pi\)
0.988436 0.151642i \(-0.0484560\pi\)
\(24\) 0 0
\(25\) −2.00000 3.46410i −0.400000 0.692820i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −9.00000 −1.67126 −0.835629 0.549294i \(-0.814897\pi\)
−0.835629 + 0.549294i \(0.814897\pi\)
\(30\) 0 0
\(31\) −3.50000 6.06218i −0.628619 1.08880i −0.987829 0.155543i \(-0.950287\pi\)
0.359211 0.933257i \(-0.383046\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −6.00000 5.19615i −1.01419 0.878310i
\(36\) 0 0
\(37\) 5.00000 8.66025i 0.821995 1.42374i −0.0821995 0.996616i \(-0.526194\pi\)
0.904194 0.427121i \(-0.140472\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(42\) 0 0
\(43\) 4.00000 0.609994 0.304997 0.952353i \(-0.401344\pi\)
0.304997 + 0.952353i \(0.401344\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −6.00000 + 10.3923i −0.875190 + 1.51587i −0.0186297 + 0.999826i \(0.505930\pi\)
−0.856560 + 0.516047i \(0.827403\pi\)
\(48\) 0 0
\(49\) −6.50000 2.59808i −0.928571 0.371154i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −1.50000 2.59808i −0.206041 0.356873i 0.744423 0.667708i \(-0.232725\pi\)
−0.950464 + 0.310835i \(0.899391\pi\)
\(54\) 0 0
\(55\) 9.00000 1.21356
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 1.50000 + 2.59808i 0.195283 + 0.338241i 0.946993 0.321253i \(-0.104104\pi\)
−0.751710 + 0.659494i \(0.770771\pi\)
\(60\) 0 0
\(61\) 2.00000 3.46410i 0.256074 0.443533i −0.709113 0.705095i \(-0.750904\pi\)
0.965187 + 0.261562i \(0.0842377\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 3.00000 5.19615i 0.372104 0.644503i
\(66\) 0 0
\(67\) 1.00000 + 1.73205i 0.122169 + 0.211604i 0.920623 0.390453i \(-0.127682\pi\)
−0.798454 + 0.602056i \(0.794348\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(72\) 0 0
\(73\) −1.00000 1.73205i −0.117041 0.202721i 0.801553 0.597924i \(-0.204008\pi\)
−0.918594 + 0.395203i \(0.870674\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 7.50000 2.59808i 0.854704 0.296078i
\(78\) 0 0
\(79\) 2.50000 4.33013i 0.281272 0.487177i −0.690426 0.723403i \(-0.742577\pi\)
0.971698 + 0.236225i \(0.0759104\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 9.00000 0.987878 0.493939 0.869496i \(-0.335557\pi\)
0.493939 + 0.869496i \(0.335557\pi\)
\(84\) 0 0
\(85\) 18.0000 1.95237
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −3.00000 + 5.19615i −0.317999 + 0.550791i −0.980071 0.198650i \(-0.936344\pi\)
0.662071 + 0.749441i \(0.269678\pi\)
\(90\) 0 0
\(91\) 1.00000 5.19615i 0.104828 0.544705i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −3.00000 5.19615i −0.307794 0.533114i
\(96\) 0 0
\(97\) −13.0000 −1.31995 −0.659975 0.751288i \(-0.729433\pi\)
−0.659975 + 0.751288i \(0.729433\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 3.00000 + 5.19615i 0.298511 + 0.517036i 0.975796 0.218685i \(-0.0701767\pi\)
−0.677284 + 0.735721i \(0.736843\pi\)
\(102\) 0 0
\(103\) −8.00000 + 13.8564i −0.788263 + 1.36531i 0.138767 + 0.990325i \(0.455686\pi\)
−0.927030 + 0.374987i \(0.877647\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −1.50000 + 2.59808i −0.145010 + 0.251166i −0.929377 0.369132i \(-0.879655\pi\)
0.784366 + 0.620298i \(0.212988\pi\)
\(108\) 0 0
\(109\) 5.00000 + 8.66025i 0.478913 + 0.829502i 0.999708 0.0241802i \(-0.00769755\pi\)
−0.520794 + 0.853682i \(0.674364\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(114\) 0 0
\(115\) −9.00000 15.5885i −0.839254 1.45363i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 15.0000 5.19615i 1.37505 0.476331i
\(120\) 0 0
\(121\) 1.00000 1.73205i 0.0909091 0.157459i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 3.00000 0.268328
\(126\) 0 0
\(127\) 1.00000 0.0887357 0.0443678 0.999015i \(-0.485873\pi\)
0.0443678 + 0.999015i \(0.485873\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 7.50000 12.9904i 0.655278 1.13497i −0.326546 0.945181i \(-0.605885\pi\)
0.981824 0.189794i \(-0.0607819\pi\)
\(132\) 0 0
\(133\) −4.00000 3.46410i −0.346844 0.300376i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 3.00000 + 5.19615i 0.256307 + 0.443937i 0.965250 0.261329i \(-0.0841608\pi\)
−0.708942 + 0.705266i \(0.750827\pi\)
\(138\) 0 0
\(139\) −2.00000 −0.169638 −0.0848189 0.996396i \(-0.527031\pi\)
−0.0848189 + 0.996396i \(0.527031\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 3.00000 + 5.19615i 0.250873 + 0.434524i
\(144\) 0 0
\(145\) −13.5000 + 23.3827i −1.12111 + 1.94183i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −3.00000 + 5.19615i −0.245770 + 0.425685i −0.962348 0.271821i \(-0.912374\pi\)
0.716578 + 0.697507i \(0.245707\pi\)
\(150\) 0 0
\(151\) 2.50000 + 4.33013i 0.203447 + 0.352381i 0.949637 0.313353i \(-0.101452\pi\)
−0.746190 + 0.665733i \(0.768119\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −21.0000 −1.68676
\(156\) 0 0
\(157\) 2.00000 + 3.46410i 0.159617 + 0.276465i 0.934731 0.355357i \(-0.115641\pi\)
−0.775113 + 0.631822i \(0.782307\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −12.0000 10.3923i −0.945732 0.819028i
\(162\) 0 0
\(163\) −5.00000 + 8.66025i −0.391630 + 0.678323i −0.992665 0.120900i \(-0.961422\pi\)
0.601035 + 0.799223i \(0.294755\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −18.0000 −1.39288 −0.696441 0.717614i \(-0.745234\pi\)
−0.696441 + 0.717614i \(0.745234\pi\)
\(168\) 0 0
\(169\) −9.00000 −0.692308
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −3.00000 + 5.19615i −0.228086 + 0.395056i −0.957241 0.289292i \(-0.906580\pi\)
0.729155 + 0.684349i \(0.239913\pi\)
\(174\) 0 0
\(175\) −10.0000 + 3.46410i −0.755929 + 0.261861i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 6.00000 + 10.3923i 0.448461 + 0.776757i 0.998286 0.0585225i \(-0.0186389\pi\)
−0.549825 + 0.835280i \(0.685306\pi\)
\(180\) 0 0
\(181\) 20.0000 1.48659 0.743294 0.668965i \(-0.233262\pi\)
0.743294 + 0.668965i \(0.233262\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −15.0000 25.9808i −1.10282 1.91014i
\(186\) 0 0
\(187\) −9.00000 + 15.5885i −0.658145 + 1.13994i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −6.00000 + 10.3923i −0.434145 + 0.751961i −0.997225 0.0744412i \(-0.976283\pi\)
0.563081 + 0.826402i \(0.309616\pi\)
\(192\) 0 0
\(193\) 3.50000 + 6.06218i 0.251936 + 0.436365i 0.964059 0.265689i \(-0.0855996\pi\)
−0.712123 + 0.702055i \(0.752266\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 18.0000 1.28245 0.641223 0.767354i \(-0.278427\pi\)
0.641223 + 0.767354i \(0.278427\pi\)
\(198\) 0 0
\(199\) 4.00000 + 6.92820i 0.283552 + 0.491127i 0.972257 0.233915i \(-0.0751537\pi\)
−0.688705 + 0.725042i \(0.741820\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −4.50000 + 23.3827i −0.315838 + 1.64114i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 6.00000 0.415029
\(210\) 0 0
\(211\) 16.0000 1.10149 0.550743 0.834675i \(-0.314345\pi\)
0.550743 + 0.834675i \(0.314345\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 6.00000 10.3923i 0.409197 0.708749i
\(216\) 0 0
\(217\) −17.5000 + 6.06218i −1.18798 + 0.411527i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 6.00000 + 10.3923i 0.403604 + 0.699062i
\(222\) 0 0
\(223\) 1.00000 0.0669650 0.0334825 0.999439i \(-0.489340\pi\)
0.0334825 + 0.999439i \(0.489340\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −7.50000 12.9904i −0.497792 0.862202i 0.502204 0.864749i \(-0.332523\pi\)
−0.999997 + 0.00254715i \(0.999189\pi\)
\(228\) 0 0
\(229\) −10.0000 + 17.3205i −0.660819 + 1.14457i 0.319582 + 0.947559i \(0.396457\pi\)
−0.980401 + 0.197013i \(0.936876\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −3.00000 + 5.19615i −0.196537 + 0.340411i −0.947403 0.320043i \(-0.896303\pi\)
0.750867 + 0.660454i \(0.229636\pi\)
\(234\) 0 0
\(235\) 18.0000 + 31.1769i 1.17419 + 2.03376i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 18.0000 1.16432 0.582162 0.813073i \(-0.302207\pi\)
0.582162 + 0.813073i \(0.302207\pi\)
\(240\) 0 0
\(241\) −11.5000 19.9186i −0.740780 1.28307i −0.952141 0.305661i \(-0.901123\pi\)
0.211360 0.977408i \(-0.432211\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −16.5000 + 12.9904i −1.05415 + 0.829925i
\(246\) 0 0
\(247\) 2.00000 3.46410i 0.127257 0.220416i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 9.00000 0.568075 0.284037 0.958813i \(-0.408326\pi\)
0.284037 + 0.958813i \(0.408326\pi\)
\(252\) 0 0
\(253\) 18.0000 1.13165
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −3.00000 + 5.19615i −0.187135 + 0.324127i −0.944294 0.329104i \(-0.893253\pi\)
0.757159 + 0.653231i \(0.226587\pi\)
\(258\) 0 0
\(259\) −20.0000 17.3205i −1.24274 1.07624i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −12.0000 20.7846i −0.739952 1.28163i −0.952517 0.304487i \(-0.901515\pi\)
0.212565 0.977147i \(-0.431818\pi\)
\(264\) 0 0
\(265\) −9.00000 −0.552866
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −1.50000 2.59808i −0.0914566 0.158408i 0.816668 0.577108i \(-0.195819\pi\)
−0.908124 + 0.418701i \(0.862486\pi\)
\(270\) 0 0
\(271\) −9.50000 + 16.4545i −0.577084 + 0.999539i 0.418728 + 0.908112i \(0.362476\pi\)
−0.995812 + 0.0914269i \(0.970857\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 6.00000 10.3923i 0.361814 0.626680i
\(276\) 0 0
\(277\) 2.00000 + 3.46410i 0.120168 + 0.208138i 0.919834 0.392308i \(-0.128323\pi\)
−0.799666 + 0.600446i \(0.794990\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 18.0000 1.07379 0.536895 0.843649i \(-0.319597\pi\)
0.536895 + 0.843649i \(0.319597\pi\)
\(282\) 0 0
\(283\) 10.0000 + 17.3205i 0.594438 + 1.02960i 0.993626 + 0.112728i \(0.0359589\pi\)
−0.399188 + 0.916869i \(0.630708\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) −9.50000 + 16.4545i −0.558824 + 0.967911i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −9.00000 −0.525786 −0.262893 0.964825i \(-0.584677\pi\)
−0.262893 + 0.964825i \(0.584677\pi\)
\(294\) 0 0
\(295\) 9.00000 0.524000
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 6.00000 10.3923i 0.346989 0.601003i
\(300\) 0 0
\(301\) 2.00000 10.3923i 0.115278 0.599002i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −6.00000 10.3923i −0.343559 0.595062i
\(306\) 0 0
\(307\) −26.0000 −1.48390 −0.741949 0.670456i \(-0.766098\pi\)
−0.741949 + 0.670456i \(0.766098\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 6.00000 + 10.3923i 0.340229 + 0.589294i 0.984475 0.175525i \(-0.0561621\pi\)
−0.644246 + 0.764818i \(0.722829\pi\)
\(312\) 0 0
\(313\) −8.50000 + 14.7224i −0.480448 + 0.832161i −0.999748 0.0224310i \(-0.992859\pi\)
0.519300 + 0.854592i \(0.326193\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 10.5000 18.1865i 0.589739 1.02146i −0.404528 0.914526i \(-0.632564\pi\)
0.994266 0.106932i \(-0.0341026\pi\)
\(318\) 0 0
\(319\) −13.5000 23.3827i −0.755855 1.30918i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 12.0000 0.667698
\(324\) 0 0
\(325\) −4.00000 6.92820i −0.221880 0.384308i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 24.0000 + 20.7846i 1.32316 + 1.14589i
\(330\) 0 0
\(331\) 4.00000 6.92820i 0.219860 0.380808i −0.734905 0.678170i \(-0.762773\pi\)
0.954765 + 0.297361i \(0.0961066\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 6.00000 0.327815
\(336\) 0 0
\(337\) 5.00000 0.272367 0.136184 0.990684i \(-0.456516\pi\)
0.136184 + 0.990684i \(0.456516\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 10.5000 18.1865i 0.568607 0.984856i
\(342\) 0 0
\(343\) −10.0000 + 15.5885i −0.539949 + 0.841698i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 6.00000 + 10.3923i 0.322097 + 0.557888i 0.980921 0.194409i \(-0.0622790\pi\)
−0.658824 + 0.752297i \(0.728946\pi\)
\(348\) 0 0
\(349\) 14.0000 0.749403 0.374701 0.927146i \(-0.377745\pi\)
0.374701 + 0.927146i \(0.377745\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 12.0000 + 20.7846i 0.638696 + 1.10625i 0.985719 + 0.168397i \(0.0538590\pi\)
−0.347024 + 0.937856i \(0.612808\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −15.0000 + 25.9808i −0.791670 + 1.37121i 0.133263 + 0.991081i \(0.457455\pi\)
−0.924932 + 0.380131i \(0.875879\pi\)
\(360\) 0 0
\(361\) 7.50000 + 12.9904i 0.394737 + 0.683704i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −6.00000 −0.314054
\(366\) 0 0
\(367\) −18.5000 32.0429i −0.965692 1.67263i −0.707744 0.706469i \(-0.750287\pi\)
−0.257948 0.966159i \(-0.583046\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −7.50000 + 2.59808i −0.389381 + 0.134885i
\(372\) 0 0
\(373\) 2.00000 3.46410i 0.103556 0.179364i −0.809591 0.586994i \(-0.800311\pi\)
0.913147 + 0.407630i \(0.133645\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −18.0000 −0.927047
\(378\) 0 0
\(379\) 28.0000 1.43826 0.719132 0.694874i \(-0.244540\pi\)
0.719132 + 0.694874i \(0.244540\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −15.0000 + 25.9808i −0.766464 + 1.32755i 0.173005 + 0.984921i \(0.444652\pi\)
−0.939469 + 0.342634i \(0.888681\pi\)
\(384\) 0 0
\(385\) 4.50000 23.3827i 0.229341 1.19169i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −15.0000 25.9808i −0.760530 1.31728i −0.942578 0.333987i \(-0.891606\pi\)
0.182047 0.983290i \(-0.441728\pi\)
\(390\) 0 0
\(391\) 36.0000 1.82060
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −7.50000 12.9904i −0.377366 0.653617i
\(396\) 0 0
\(397\) −4.00000 + 6.92820i −0.200754 + 0.347717i −0.948772 0.315963i \(-0.897673\pi\)
0.748017 + 0.663679i \(0.231006\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −12.0000 + 20.7846i −0.599251 + 1.03793i 0.393680 + 0.919247i \(0.371202\pi\)
−0.992932 + 0.118686i \(0.962132\pi\)
\(402\) 0 0
\(403\) −7.00000 12.1244i −0.348695 0.603957i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 30.0000 1.48704
\(408\) 0 0
\(409\) −5.50000 9.52628i −0.271957 0.471044i 0.697406 0.716677i \(-0.254338\pi\)
−0.969363 + 0.245633i \(0.921004\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 7.50000 2.59808i 0.369051 0.127843i
\(414\) 0 0
\(415\) 13.5000 23.3827i 0.662689 1.14781i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −36.0000 −1.75872 −0.879358 0.476162i \(-0.842028\pi\)
−0.879358 + 0.476162i \(0.842028\pi\)
\(420\) 0 0
\(421\) 8.00000 0.389896 0.194948 0.980814i \(-0.437546\pi\)
0.194948 + 0.980814i \(0.437546\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 12.0000 20.7846i 0.582086 1.00820i
\(426\) 0 0
\(427\) −8.00000 6.92820i −0.387147 0.335279i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −12.0000 20.7846i −0.578020 1.00116i −0.995706 0.0925683i \(-0.970492\pi\)
0.417687 0.908591i \(-0.362841\pi\)
\(432\) 0 0
\(433\) 26.0000 1.24948 0.624740 0.780833i \(-0.285205\pi\)
0.624740 + 0.780833i \(0.285205\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −6.00000 10.3923i −0.287019 0.497131i
\(438\) 0 0
\(439\) −9.50000 + 16.4545i −0.453410 + 0.785330i −0.998595 0.0529862i \(-0.983126\pi\)
0.545185 + 0.838316i \(0.316459\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 7.50000 12.9904i 0.356336 0.617192i −0.631010 0.775775i \(-0.717359\pi\)
0.987346 + 0.158583i \(0.0506926\pi\)
\(444\) 0 0
\(445\) 9.00000 + 15.5885i 0.426641 + 0.738964i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −18.0000 −0.849473 −0.424736 0.905317i \(-0.639633\pi\)
−0.424736 + 0.905317i \(0.639633\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −12.0000 10.3923i −0.562569 0.487199i
\(456\) 0 0
\(457\) 6.50000 11.2583i 0.304057 0.526642i −0.672994 0.739648i \(-0.734992\pi\)
0.977051 + 0.213006i \(0.0683253\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −18.0000 −0.838344 −0.419172 0.907907i \(-0.637680\pi\)
−0.419172 + 0.907907i \(0.637680\pi\)
\(462\) 0 0
\(463\) 4.00000 0.185896 0.0929479 0.995671i \(-0.470371\pi\)
0.0929479 + 0.995671i \(0.470371\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −6.00000 + 10.3923i −0.277647 + 0.480899i −0.970799 0.239892i \(-0.922888\pi\)
0.693153 + 0.720791i \(0.256221\pi\)
\(468\) 0 0
\(469\) 5.00000 1.73205i 0.230879 0.0799787i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 6.00000 + 10.3923i 0.275880 + 0.477839i
\(474\) 0 0
\(475\) −8.00000 −0.367065
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −12.0000 20.7846i −0.548294 0.949673i −0.998392 0.0566937i \(-0.981944\pi\)
0.450098 0.892979i \(-0.351389\pi\)
\(480\) 0 0
\(481\) 10.0000 17.3205i 0.455961 0.789747i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −19.5000 + 33.7750i −0.885449 + 1.53364i
\(486\) 0 0
\(487\) 5.50000 + 9.52628i 0.249229 + 0.431677i 0.963312 0.268384i \(-0.0864896\pi\)
−0.714083 + 0.700061i \(0.753156\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 9.00000 0.406164 0.203082 0.979162i \(-0.434904\pi\)
0.203082 + 0.979162i \(0.434904\pi\)
\(492\) 0 0
\(493\) −27.0000 46.7654i −1.21602 2.10621i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 19.0000 32.9090i 0.850557 1.47321i −0.0301498 0.999545i \(-0.509598\pi\)
0.880707 0.473662i \(-0.157068\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 18.0000 0.802580 0.401290 0.915951i \(-0.368562\pi\)
0.401290 + 0.915951i \(0.368562\pi\)
\(504\) 0 0
\(505\) 18.0000 0.800989
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −7.50000 + 12.9904i −0.332432 + 0.575789i −0.982988 0.183669i \(-0.941202\pi\)
0.650556 + 0.759458i \(0.274536\pi\)
\(510\) 0 0
\(511\) −5.00000 + 1.73205i −0.221187 + 0.0766214i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 24.0000 + 41.5692i 1.05757 + 1.83176i
\(516\) 0 0
\(517\) −36.0000 −1.58328
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 12.0000 + 20.7846i 0.525730 + 0.910590i 0.999551 + 0.0299693i \(0.00954094\pi\)
−0.473821 + 0.880621i \(0.657126\pi\)
\(522\) 0 0
\(523\) 13.0000 22.5167i 0.568450 0.984585i −0.428269 0.903651i \(-0.640876\pi\)
0.996719 0.0809336i \(-0.0257902\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 21.0000 36.3731i 0.914774 1.58444i
\(528\) 0 0
\(529\) −6.50000 11.2583i −0.282609 0.489493i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) 4.50000 + 7.79423i 0.194552 + 0.336974i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −3.00000 20.7846i −0.129219 0.895257i
\(540\) 0 0
\(541\) 8.00000 13.8564i 0.343947 0.595733i −0.641215 0.767361i \(-0.721569\pi\)
0.985162 + 0.171628i \(0.0549027\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 30.0000 1.28506
\(546\) 0 0
\(547\) −14.0000 −0.598597 −0.299298 0.954160i \(-0.596753\pi\)
−0.299298 + 0.954160i \(0.596753\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −9.00000 + 15.5885i −0.383413 + 0.664091i
\(552\) 0 0
\(553\) −10.0000 8.66025i −0.425243 0.368271i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 7.50000 + 12.9904i 0.317785 + 0.550420i 0.980026 0.198871i \(-0.0637276\pi\)
−0.662240 + 0.749291i \(0.730394\pi\)
\(558\) 0 0
\(559\) 8.00000 0.338364
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 1.50000 + 2.59808i 0.0632175 + 0.109496i 0.895902 0.444252i \(-0.146530\pi\)
−0.832684 + 0.553748i \(0.813197\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 15.0000 25.9808i 0.628833 1.08917i −0.358954 0.933355i \(-0.616866\pi\)
0.987786 0.155815i \(-0.0498003\pi\)
\(570\) 0 0
\(571\) 16.0000 + 27.7128i 0.669579 + 1.15975i 0.978022 + 0.208502i \(0.0668588\pi\)
−0.308443 + 0.951243i \(0.599808\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −24.0000 −1.00087
\(576\) 0 0
\(577\) 0.500000 + 0.866025i 0.0208153 + 0.0360531i 0.876245 0.481865i \(-0.160040\pi\)
−0.855430 + 0.517918i \(0.826707\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 4.50000 23.3827i 0.186691 0.970077i
\(582\) 0 0
\(583\) 4.50000 7.79423i 0.186371 0.322804i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 27.0000 1.11441 0.557205 0.830375i \(-0.311874\pi\)
0.557205 + 0.830375i \(0.311874\pi\)
\(588\) 0 0
\(589\) −14.0000 −0.576860
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 15.0000 25.9808i 0.615976 1.06690i −0.374236 0.927333i \(-0.622095\pi\)
0.990212 0.139569i \(-0.0445716\pi\)
\(594\) 0 0
\(595\) 9.00000 46.7654i 0.368964 1.91719i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 15.0000 + 25.9808i 0.612883 + 1.06155i 0.990752 + 0.135686i \(0.0433238\pi\)
−0.377869 + 0.925859i \(0.623343\pi\)
\(600\) 0 0
\(601\) 23.0000 0.938190 0.469095 0.883148i \(-0.344580\pi\)
0.469095 + 0.883148i \(0.344580\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −3.00000 5.19615i −0.121967 0.211254i
\(606\) 0 0
\(607\) −6.50000 + 11.2583i −0.263827 + 0.456962i −0.967256 0.253804i \(-0.918318\pi\)
0.703429 + 0.710766i \(0.251651\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −12.0000 + 20.7846i −0.485468 + 0.840855i
\(612\) 0 0
\(613\) −13.0000 22.5167i −0.525065 0.909439i −0.999574 0.0291886i \(-0.990708\pi\)
0.474509 0.880251i \(-0.342626\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −36.0000 −1.44931 −0.724653 0.689114i \(-0.758000\pi\)
−0.724653 + 0.689114i \(0.758000\pi\)
\(618\) 0 0
\(619\) −2.00000 3.46410i −0.0803868 0.139234i 0.823029 0.567999i \(-0.192282\pi\)
−0.903416 + 0.428765i \(0.858949\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 12.0000 + 10.3923i 0.480770 + 0.416359i
\(624\) 0 0
\(625\) 14.5000 25.1147i 0.580000 1.00459i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 60.0000 2.39236
\(630\) 0 0
\(631\) 37.0000 1.47295 0.736473 0.676467i \(-0.236490\pi\)
0.736473 + 0.676467i \(0.236490\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 1.50000 2.59808i 0.0595257 0.103102i
\(636\) 0 0
\(637\) −13.0000 5.19615i −0.515079 0.205879i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −6.00000 10.3923i −0.236986 0.410471i 0.722862 0.690992i \(-0.242826\pi\)
−0.959848 + 0.280521i \(0.909493\pi\)
\(642\) 0 0
\(643\) −38.0000 −1.49857 −0.749287 0.662246i \(-0.769604\pi\)
−0.749287 + 0.662246i \(0.769604\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 6.00000 + 10.3923i 0.235884 + 0.408564i 0.959529 0.281609i \(-0.0908680\pi\)
−0.723645 + 0.690172i \(0.757535\pi\)
\(648\) 0 0
\(649\) −4.50000 + 7.79423i −0.176640 + 0.305950i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 19.5000 33.7750i 0.763094 1.32172i −0.178154 0.984003i \(-0.557013\pi\)
0.941248 0.337715i \(-0.109654\pi\)
\(654\) 0 0
\(655\) −22.5000 38.9711i −0.879148 1.52273i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −36.0000 −1.40236 −0.701180 0.712984i \(-0.747343\pi\)
−0.701180 + 0.712984i \(0.747343\pi\)
\(660\) 0 0
\(661\) 20.0000 + 34.6410i 0.777910 + 1.34738i 0.933144 + 0.359502i \(0.117053\pi\)
−0.155235 + 0.987878i \(0.549613\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −15.0000 + 5.19615i −0.581675 + 0.201498i
\(666\) 0 0
\(667\) −27.0000 + 46.7654i −1.04544 + 1.81076i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 12.0000 0.463255
\(672\) 0 0
\(673\) 17.0000 0.655302 0.327651 0.944799i \(-0.393743\pi\)
0.327651 + 0.944799i \(0.393743\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −16.5000 + 28.5788i −0.634147 + 1.09837i 0.352549 + 0.935793i \(0.385315\pi\)
−0.986695 + 0.162581i \(0.948018\pi\)
\(678\) 0 0
\(679\) −6.50000 + 33.7750i −0.249447 + 1.29617i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −25.5000 44.1673i −0.975730 1.69001i −0.677503 0.735520i \(-0.736938\pi\)
−0.298227 0.954495i \(-0.596395\pi\)
\(684\) 0 0
\(685\) 18.0000 0.687745
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −3.00000 5.19615i −0.114291 0.197958i
\(690\) 0 0
\(691\) 16.0000 27.7128i 0.608669 1.05425i −0.382791 0.923835i \(-0.625037\pi\)
0.991460 0.130410i \(-0.0416295\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −3.00000 + 5.19615i −0.113796 + 0.197101i
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −9.00000 −0.339925 −0.169963 0.985451i \(-0.554365\pi\)
−0.169963 + 0.985451i \(0.554365\pi\)
\(702\) 0 0
\(703\) −10.0000 17.3205i −0.377157 0.653255i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 15.0000 5.19615i 0.564133 0.195421i
\(708\) 0 0
\(709\) −7.00000 + 12.1244i −0.262891 + 0.455340i −0.967009 0.254743i \(-0.918009\pi\)
0.704118 + 0.710083i \(0.251342\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −42.0000 −1.57291
\(714\) 0 0
\(715\) 18.0000 0.673162
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 21.0000 36.3731i 0.783168 1.35649i −0.146920 0.989148i \(-0.546936\pi\)
0.930087 0.367338i \(-0.119731\pi\)
\(720\) 0 0
\(721\) 32.0000 + 27.7128i 1.19174 + 1.03208i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 18.0000 + 31.1769i 0.668503 + 1.15788i
\(726\) 0 0
\(727\) 31.0000 1.14973 0.574863 0.818250i \(-0.305055\pi\)
0.574863 + 0.818250i \(0.305055\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 12.0000 + 20.7846i 0.443836 + 0.768747i
\(732\) 0 0
\(733\) −10.0000 + 17.3205i −0.369358 + 0.639748i −0.989465 0.144770i \(-0.953756\pi\)
0.620107 + 0.784517i \(0.287089\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −3.00000 + 5.19615i −0.110506 + 0.191403i
\(738\) 0 0
\(739\) 13.0000 + 22.5167i 0.478213 + 0.828289i 0.999688 0.0249776i \(-0.00795146\pi\)
−0.521475 + 0.853266i \(0.674618\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −54.0000 −1.98107 −0.990534 0.137268i \(-0.956168\pi\)
−0.990534 + 0.137268i \(0.956168\pi\)
\(744\) 0 0
\(745\) 9.00000 + 15.5885i 0.329734 + 0.571117i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 6.00000 + 5.19615i 0.219235 + 0.189863i
\(750\) 0 0
\(751\) 11.5000 19.9186i 0.419641 0.726839i −0.576262 0.817265i \(-0.695489\pi\)
0.995903 + 0.0904254i \(0.0288227\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 15.0000 0.545906
\(756\) 0 0
\(757\) −28.0000 −1.01768 −0.508839 0.860862i \(-0.669925\pi\)
−0.508839 + 0.860862i \(0.669925\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −21.0000 + 36.3731i −0.761249 + 1.31852i 0.180957 + 0.983491i \(0.442080\pi\)
−0.942207 + 0.335032i \(0.891253\pi\)
\(762\) 0 0
\(763\) 25.0000 8.66025i 0.905061 0.313522i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 3.00000 + 5.19615i 0.108324 + 0.187622i
\(768\) 0 0
\(769\) 5.00000 0.180305 0.0901523 0.995928i \(-0.471265\pi\)
0.0901523 + 0.995928i \(0.471265\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 3.00000 + 5.19615i 0.107903 + 0.186893i 0.914920 0.403634i \(-0.132253\pi\)
−0.807018 + 0.590527i \(0.798920\pi\)
\(774\) 0 0
\(775\) −14.0000 + 24.2487i −0.502895 + 0.871039i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 12.0000 0.428298
\(786\) 0 0
\(787\) −8.00000 13.8564i −0.285169 0.493928i 0.687481 0.726202i \(-0.258716\pi\)
−0.972650 + 0.232275i \(0.925383\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 4.00000 6.92820i 0.142044 0.246028i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −27.0000 −0.956389 −0.478195 0.878254i \(-0.658709\pi\)
−0.478195 + 0.878254i \(0.658709\pi\)
\(798\) 0 0
\(799\) −72.0000 −2.54718
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 3.00000 5.19615i 0.105868 0.183368i
\(804\) 0 0
\(805\) −45.0000 + 15.5885i −1.58604 + 0.549421i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −6.00000 10.3923i −0.210949 0.365374i 0.741063 0.671436i \(-0.234322\pi\)
−0.952012 + 0.306062i \(0.900989\pi\)
\(810\) 0 0
\(811\) −2.00000 −0.0702295 −0.0351147 0.999383i \(-0.511180\pi\)
−0.0351147 + 0.999383i \(0.511180\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 15.0000 + 25.9808i 0.525427 + 0.910066i
\(816\) 0 0
\(817\) 4.00000 6.92820i 0.139942 0.242387i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −7.50000 + 12.9904i −0.261752 + 0.453367i −0.966708 0.255884i \(-0.917634\pi\)
0.704956 + 0.709251i \(0.250967\pi\)
\(822\) 0 0
\(823\) −8.00000 13.8564i −0.278862 0.483004i 0.692240 0.721668i \(-0.256624\pi\)
−0.971102 + 0.238664i \(0.923291\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 9.00000 0.312961 0.156480 0.987681i \(-0.449985\pi\)
0.156480 + 0.987681i \(0.449985\pi\)
\(828\) 0 0
\(829\) −1.00000 1.73205i −0.0347314 0.0601566i 0.848137 0.529777i \(-0.177724\pi\)
−0.882869 + 0.469620i \(0.844391\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −6.00000 41.5692i −0.207888 1.44029i
\(834\) 0 0
\(835\) −27.0000 + 46.7654i −0.934374 + 1.61838i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −54.0000 −1.86429 −0.932144 0.362089i \(-0.882064\pi\)
−0.932144 + 0.362089i \(0.882064\pi\)
\(840\) 0 0
\(841\) 52.0000 1.79310
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −13.5000 + 23.3827i −0.464414 + 0.804389i
\(846\) 0 0
\(847\) −4.00000 3.46410i −0.137442 0.119028i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −30.0000 51.9615i −1.02839 1.78122i
\(852\) 0 0
\(853\) −46.0000 −1.57501 −0.787505 0.616308i \(-0.788628\pi\)
−0.787505 + 0.616308i \(0.788628\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −6.00000 10.3923i −0.204956 0.354994i 0.745163 0.666883i \(-0.232372\pi\)
−0.950119 + 0.311888i \(0.899038\pi\)
\(858\) 0 0
\(859\) −8.00000 + 13.8564i −0.272956 + 0.472774i −0.969618 0.244626i \(-0.921335\pi\)
0.696661 + 0.717400i \(0.254668\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 3.00000 5.19615i 0.102121 0.176879i −0.810437 0.585826i \(-0.800770\pi\)
0.912558 + 0.408946i \(0.134104\pi\)
\(864\) 0 0
\(865\) 9.00000 + 15.5885i 0.306009 + 0.530023i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 15.0000 0.508840
\(870\) 0 0
\(871\) 2.00000 + 3.46410i 0.0677674 + 0.117377i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 1.50000 7.79423i 0.0507093 0.263493i
\(876\) 0 0
\(877\) −28.0000 + 48.4974i −0.945493 + 1.63764i −0.190731 + 0.981642i \(0.561086\pi\)
−0.754761 + 0.655999i \(0.772247\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 18.0000 0.606435 0.303218 0.952921i \(-0.401939\pi\)
0.303218 + 0.952921i \(0.401939\pi\)
\(882\) 0 0
\(883\) −20.0000 −0.673054 −0.336527 0.941674i \(-0.609252\pi\)
−0.336527 + 0.941674i \(0.609252\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 3.00000 5.19615i 0.100730 0.174470i −0.811256 0.584692i \(-0.801215\pi\)
0.911986 + 0.410222i \(0.134549\pi\)
\(888\) 0 0
\(889\) 0.500000 2.59808i 0.0167695 0.0871367i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 12.0000 + 20.7846i 0.401565 + 0.695530i
\(894\) 0 0
\(895\) 36.0000 1.20335
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 31.5000 + 54.5596i 1.05058 + 1.81966i
\(900\) 0 0
\(901\) 9.00000 15.5885i 0.299833 0.519327i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 30.0000 51.9615i 0.997234 1.72726i
\(906\) 0 0
\(907\) 25.0000 + 43.3013i 0.830111 + 1.43780i 0.897949 + 0.440099i \(0.145057\pi\)
−0.0678380 + 0.997696i \(0.521610\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(912\) 0 0
\(913\) 13.5000 + 23.3827i 0.446785 + 0.773854i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −30.0000 25.9808i −0.990687 0.857960i
\(918\) 0 0
\(919\) −14.0000 + 24.2487i −0.461817 + 0.799891i −0.999052 0.0435419i \(-0.986136\pi\)
0.537234 + 0.843433i \(0.319469\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) −40.0000 −1.31519
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −12.0000 + 20.7846i −0.393707 + 0.681921i −0.992935 0.118657i \(-0.962141\pi\)
0.599228 + 0.800578i \(0.295474\pi\)
\(930\) 0 0
\(931\) −11.0000 + 8.66025i −0.360510 + 0.283828i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 27.0000 + 46.7654i 0.882994 + 1.52939i
\(936\) 0 0
\(937\) −37.0000 −1.20874 −0.604369 0.796705i \(-0.706575\pi\)
−0.604369 + 0.796705i \(0.706575\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 7.50000 + 12.9904i 0.244493 + 0.423474i 0.961989 0.273088i \(-0.0880451\pi\)
−0.717496 + 0.696563i \(0.754712\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −6.00000 + 10.3923i −0.194974 + 0.337705i −0.946892 0.321552i \(-0.895796\pi\)
0.751918 + 0.659256i \(0.229129\pi\)
\(948\) 0 0
\(949\) −2.00000 3.46410i −0.0649227 0.112449i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 36.0000 1.16615 0.583077 0.812417i \(-0.301849\pi\)
0.583077 + 0.812417i \(0.301849\pi\)
\(954\) 0 0
\(955\) 18.0000 + 31.1769i 0.582466 + 1.00886i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 15.0000 5.19615i 0.484375 0.167793i
\(960\) 0 0
\(961\) −9.00000 + 15.5885i −0.290323 + 0.502853i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 21.0000 0.676014
\(966\) 0 0
\(967\) −29.0000 −0.932577 −0.466289 0.884633i \(-0.654409\pi\)
−0.466289 + 0.884633i \(0.654409\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −19.5000 + 33.7750i −0.625785 + 1.08389i 0.362604 + 0.931943i \(0.381888\pi\)
−0.988389 + 0.151948i \(0.951445\pi\)
\(972\) 0 0
\(973\) −1.00000 + 5.19615i −0.0320585 + 0.166581i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −6.00000 10.3923i −0.191957 0.332479i 0.753942 0.656941i \(-0.228150\pi\)
−0.945899 + 0.324462i \(0.894817\pi\)
\(978\) 0 0
\(979\) −18.0000 −0.575282
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −12.0000 20.7846i −0.382741 0.662926i 0.608712 0.793391i \(-0.291686\pi\)
−0.991453 + 0.130465i \(0.958353\pi\)
\(984\) 0 0
\(985\) 27.0000 46.7654i 0.860292 1.49007i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 12.0000 20.7846i 0.381578 0.660912i
\(990\) 0 0
\(991\) −9.50000 16.4545i −0.301777 0.522694i 0.674761 0.738036i \(-0.264247\pi\)
−0.976539 + 0.215342i \(0.930913\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 24.0000 0.760851
\(996\) 0 0
\(997\) 11.0000 + 19.0526i 0.348373 + 0.603401i 0.985961 0.166978i \(-0.0534008\pi\)
−0.637587 + 0.770378i \(0.720067\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1008.2.s.o.289.1 2
3.2 odd 2 1008.2.s.b.289.1 2
4.3 odd 2 126.2.g.d.37.1 yes 2
7.2 even 3 7056.2.a.e.1.1 1
7.4 even 3 inner 1008.2.s.o.865.1 2
7.5 odd 6 7056.2.a.bx.1.1 1
12.11 even 2 126.2.g.a.37.1 2
21.2 odd 6 7056.2.a.by.1.1 1
21.5 even 6 7056.2.a.h.1.1 1
21.11 odd 6 1008.2.s.b.865.1 2
28.3 even 6 882.2.g.g.361.1 2
28.11 odd 6 126.2.g.d.109.1 yes 2
28.19 even 6 882.2.a.e.1.1 1
28.23 odd 6 882.2.a.a.1.1 1
28.27 even 2 882.2.g.g.667.1 2
36.7 odd 6 1134.2.e.g.919.1 2
36.11 even 6 1134.2.e.k.919.1 2
36.23 even 6 1134.2.h.f.541.1 2
36.31 odd 6 1134.2.h.j.541.1 2
84.11 even 6 126.2.g.a.109.1 yes 2
84.23 even 6 882.2.a.j.1.1 1
84.47 odd 6 882.2.a.h.1.1 1
84.59 odd 6 882.2.g.e.361.1 2
84.83 odd 2 882.2.g.e.667.1 2
252.11 even 6 1134.2.h.f.109.1 2
252.67 odd 6 1134.2.e.g.865.1 2
252.95 even 6 1134.2.e.k.865.1 2
252.151 odd 6 1134.2.h.j.109.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
126.2.g.a.37.1 2 12.11 even 2
126.2.g.a.109.1 yes 2 84.11 even 6
126.2.g.d.37.1 yes 2 4.3 odd 2
126.2.g.d.109.1 yes 2 28.11 odd 6
882.2.a.a.1.1 1 28.23 odd 6
882.2.a.e.1.1 1 28.19 even 6
882.2.a.h.1.1 1 84.47 odd 6
882.2.a.j.1.1 1 84.23 even 6
882.2.g.e.361.1 2 84.59 odd 6
882.2.g.e.667.1 2 84.83 odd 2
882.2.g.g.361.1 2 28.3 even 6
882.2.g.g.667.1 2 28.27 even 2
1008.2.s.b.289.1 2 3.2 odd 2
1008.2.s.b.865.1 2 21.11 odd 6
1008.2.s.o.289.1 2 1.1 even 1 trivial
1008.2.s.o.865.1 2 7.4 even 3 inner
1134.2.e.g.865.1 2 252.67 odd 6
1134.2.e.g.919.1 2 36.7 odd 6
1134.2.e.k.865.1 2 252.95 even 6
1134.2.e.k.919.1 2 36.11 even 6
1134.2.h.f.109.1 2 252.11 even 6
1134.2.h.f.541.1 2 36.23 even 6
1134.2.h.j.109.1 2 252.151 odd 6
1134.2.h.j.541.1 2 36.31 odd 6
7056.2.a.e.1.1 1 7.2 even 3
7056.2.a.h.1.1 1 21.5 even 6
7056.2.a.bx.1.1 1 7.5 odd 6
7056.2.a.by.1.1 1 21.2 odd 6