Properties

Label 1008.2.s.m.289.1
Level $1008$
Weight $2$
Character 1008.289
Analytic conductor $8.049$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $2$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 1008 = 2^{4} \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1008.s (of order \(3\), degree \(2\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(8.04892052375\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
Defining polynomial: \(x^{2} - x + 1\)
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 168)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 289.1
Root \(0.500000 - 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 1008.289
Dual form 1008.2.s.m.865.1

$q$-expansion

\(f(q)\) \(=\) \(q+(1.00000 - 1.73205i) q^{5} +(-2.50000 + 0.866025i) q^{7} +O(q^{10})\) \(q+(1.00000 - 1.73205i) q^{5} +(-2.50000 + 0.866025i) q^{7} +(3.00000 + 5.19615i) q^{11} -3.00000 q^{13} +(2.00000 + 3.46410i) q^{17} +(-2.50000 + 4.33013i) q^{19} +(2.00000 - 3.46410i) q^{23} +(0.500000 + 0.866025i) q^{25} +4.00000 q^{29} +(3.50000 + 6.06218i) q^{31} +(-1.00000 + 5.19615i) q^{35} +(4.50000 - 7.79423i) q^{37} +2.00000 q^{41} +1.00000 q^{43} +(-1.00000 + 1.73205i) q^{47} +(5.50000 - 4.33013i) q^{49} +(4.00000 + 6.92820i) q^{53} +12.0000 q^{55} +(-5.00000 + 8.66025i) q^{61} +(-3.00000 + 5.19615i) q^{65} +(-7.50000 - 12.9904i) q^{67} -6.00000 q^{71} +(5.50000 + 9.52628i) q^{73} +(-12.0000 - 10.3923i) q^{77} +(0.500000 - 0.866025i) q^{79} +6.00000 q^{83} +8.00000 q^{85} +(-4.00000 + 6.92820i) q^{89} +(7.50000 - 2.59808i) q^{91} +(5.00000 + 8.66025i) q^{95} -14.0000 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2q + 2q^{5} - 5q^{7} + O(q^{10}) \) \( 2q + 2q^{5} - 5q^{7} + 6q^{11} - 6q^{13} + 4q^{17} - 5q^{19} + 4q^{23} + q^{25} + 8q^{29} + 7q^{31} - 2q^{35} + 9q^{37} + 4q^{41} + 2q^{43} - 2q^{47} + 11q^{49} + 8q^{53} + 24q^{55} - 10q^{61} - 6q^{65} - 15q^{67} - 12q^{71} + 11q^{73} - 24q^{77} + q^{79} + 12q^{83} + 16q^{85} - 8q^{89} + 15q^{91} + 10q^{95} - 28q^{97} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1008\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(577\) \(757\) \(785\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{3}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 1.00000 1.73205i 0.447214 0.774597i −0.550990 0.834512i \(-0.685750\pi\)
0.998203 + 0.0599153i \(0.0190830\pi\)
\(6\) 0 0
\(7\) −2.50000 + 0.866025i −0.944911 + 0.327327i
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 3.00000 + 5.19615i 0.904534 + 1.56670i 0.821541 + 0.570149i \(0.193114\pi\)
0.0829925 + 0.996550i \(0.473552\pi\)
\(12\) 0 0
\(13\) −3.00000 −0.832050 −0.416025 0.909353i \(-0.636577\pi\)
−0.416025 + 0.909353i \(0.636577\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 2.00000 + 3.46410i 0.485071 + 0.840168i 0.999853 0.0171533i \(-0.00546033\pi\)
−0.514782 + 0.857321i \(0.672127\pi\)
\(18\) 0 0
\(19\) −2.50000 + 4.33013i −0.573539 + 0.993399i 0.422659 + 0.906289i \(0.361097\pi\)
−0.996199 + 0.0871106i \(0.972237\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 2.00000 3.46410i 0.417029 0.722315i −0.578610 0.815604i \(-0.696405\pi\)
0.995639 + 0.0932891i \(0.0297381\pi\)
\(24\) 0 0
\(25\) 0.500000 + 0.866025i 0.100000 + 0.173205i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 4.00000 0.742781 0.371391 0.928477i \(-0.378881\pi\)
0.371391 + 0.928477i \(0.378881\pi\)
\(30\) 0 0
\(31\) 3.50000 + 6.06218i 0.628619 + 1.08880i 0.987829 + 0.155543i \(0.0497126\pi\)
−0.359211 + 0.933257i \(0.616954\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −1.00000 + 5.19615i −0.169031 + 0.878310i
\(36\) 0 0
\(37\) 4.50000 7.79423i 0.739795 1.28136i −0.212792 0.977098i \(-0.568256\pi\)
0.952587 0.304266i \(-0.0984111\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 2.00000 0.312348 0.156174 0.987730i \(-0.450084\pi\)
0.156174 + 0.987730i \(0.450084\pi\)
\(42\) 0 0
\(43\) 1.00000 0.152499 0.0762493 0.997089i \(-0.475706\pi\)
0.0762493 + 0.997089i \(0.475706\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −1.00000 + 1.73205i −0.145865 + 0.252646i −0.929695 0.368329i \(-0.879930\pi\)
0.783830 + 0.620975i \(0.213263\pi\)
\(48\) 0 0
\(49\) 5.50000 4.33013i 0.785714 0.618590i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 4.00000 + 6.92820i 0.549442 + 0.951662i 0.998313 + 0.0580651i \(0.0184931\pi\)
−0.448871 + 0.893597i \(0.648174\pi\)
\(54\) 0 0
\(55\) 12.0000 1.61808
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(60\) 0 0
\(61\) −5.00000 + 8.66025i −0.640184 + 1.10883i 0.345207 + 0.938527i \(0.387809\pi\)
−0.985391 + 0.170305i \(0.945525\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −3.00000 + 5.19615i −0.372104 + 0.644503i
\(66\) 0 0
\(67\) −7.50000 12.9904i −0.916271 1.58703i −0.805030 0.593234i \(-0.797851\pi\)
−0.111241 0.993793i \(-0.535483\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −6.00000 −0.712069 −0.356034 0.934473i \(-0.615871\pi\)
−0.356034 + 0.934473i \(0.615871\pi\)
\(72\) 0 0
\(73\) 5.50000 + 9.52628i 0.643726 + 1.11497i 0.984594 + 0.174855i \(0.0559458\pi\)
−0.340868 + 0.940111i \(0.610721\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −12.0000 10.3923i −1.36753 1.18431i
\(78\) 0 0
\(79\) 0.500000 0.866025i 0.0562544 0.0974355i −0.836527 0.547926i \(-0.815418\pi\)
0.892781 + 0.450490i \(0.148751\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 6.00000 0.658586 0.329293 0.944228i \(-0.393190\pi\)
0.329293 + 0.944228i \(0.393190\pi\)
\(84\) 0 0
\(85\) 8.00000 0.867722
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −4.00000 + 6.92820i −0.423999 + 0.734388i −0.996326 0.0856373i \(-0.972707\pi\)
0.572327 + 0.820025i \(0.306041\pi\)
\(90\) 0 0
\(91\) 7.50000 2.59808i 0.786214 0.272352i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 5.00000 + 8.66025i 0.512989 + 0.888523i
\(96\) 0 0
\(97\) −14.0000 −1.42148 −0.710742 0.703452i \(-0.751641\pi\)
−0.710742 + 0.703452i \(0.751641\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −3.00000 5.19615i −0.298511 0.517036i 0.677284 0.735721i \(-0.263157\pi\)
−0.975796 + 0.218685i \(0.929823\pi\)
\(102\) 0 0
\(103\) −4.50000 + 7.79423i −0.443398 + 0.767988i −0.997939 0.0641683i \(-0.979561\pi\)
0.554541 + 0.832156i \(0.312894\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 6.00000 10.3923i 0.580042 1.00466i −0.415432 0.909624i \(-0.636370\pi\)
0.995474 0.0950377i \(-0.0302972\pi\)
\(108\) 0 0
\(109\) 5.50000 + 9.52628i 0.526804 + 0.912452i 0.999512 + 0.0312328i \(0.00994332\pi\)
−0.472708 + 0.881219i \(0.656723\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −6.00000 −0.564433 −0.282216 0.959351i \(-0.591070\pi\)
−0.282216 + 0.959351i \(0.591070\pi\)
\(114\) 0 0
\(115\) −4.00000 6.92820i −0.373002 0.646058i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −8.00000 6.92820i −0.733359 0.635107i
\(120\) 0 0
\(121\) −12.5000 + 21.6506i −1.13636 + 1.96824i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 12.0000 1.07331
\(126\) 0 0
\(127\) 1.00000 0.0887357 0.0443678 0.999015i \(-0.485873\pi\)
0.0443678 + 0.999015i \(0.485873\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −7.00000 + 12.1244i −0.611593 + 1.05931i 0.379379 + 0.925241i \(0.376138\pi\)
−0.990972 + 0.134069i \(0.957196\pi\)
\(132\) 0 0
\(133\) 2.50000 12.9904i 0.216777 1.12641i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 10.0000 + 17.3205i 0.854358 + 1.47979i 0.877240 + 0.480053i \(0.159382\pi\)
−0.0228820 + 0.999738i \(0.507284\pi\)
\(138\) 0 0
\(139\) 9.00000 0.763370 0.381685 0.924292i \(-0.375344\pi\)
0.381685 + 0.924292i \(0.375344\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −9.00000 15.5885i −0.752618 1.30357i
\(144\) 0 0
\(145\) 4.00000 6.92820i 0.332182 0.575356i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 2.00000 3.46410i 0.163846 0.283790i −0.772399 0.635138i \(-0.780943\pi\)
0.936245 + 0.351348i \(0.114277\pi\)
\(150\) 0 0
\(151\) −4.00000 6.92820i −0.325515 0.563809i 0.656101 0.754673i \(-0.272204\pi\)
−0.981617 + 0.190864i \(0.938871\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 14.0000 1.12451
\(156\) 0 0
\(157\) −9.00000 15.5885i −0.718278 1.24409i −0.961681 0.274169i \(-0.911597\pi\)
0.243403 0.969925i \(-0.421736\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −2.00000 + 10.3923i −0.157622 + 0.819028i
\(162\) 0 0
\(163\) 2.00000 3.46410i 0.156652 0.271329i −0.777007 0.629492i \(-0.783263\pi\)
0.933659 + 0.358162i \(0.116597\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 18.0000 1.39288 0.696441 0.717614i \(-0.254766\pi\)
0.696441 + 0.717614i \(0.254766\pi\)
\(168\) 0 0
\(169\) −4.00000 −0.307692
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 10.0000 17.3205i 0.760286 1.31685i −0.182417 0.983221i \(-0.558392\pi\)
0.942703 0.333633i \(-0.108275\pi\)
\(174\) 0 0
\(175\) −2.00000 1.73205i −0.151186 0.130931i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −13.0000 22.5167i −0.971666 1.68297i −0.690526 0.723307i \(-0.742621\pi\)
−0.281139 0.959667i \(-0.590712\pi\)
\(180\) 0 0
\(181\) −7.00000 −0.520306 −0.260153 0.965567i \(-0.583773\pi\)
−0.260153 + 0.965567i \(0.583773\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −9.00000 15.5885i −0.661693 1.14609i
\(186\) 0 0
\(187\) −12.0000 + 20.7846i −0.877527 + 1.51992i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −5.00000 + 8.66025i −0.361787 + 0.626634i −0.988255 0.152813i \(-0.951167\pi\)
0.626468 + 0.779447i \(0.284500\pi\)
\(192\) 0 0
\(193\) −1.50000 2.59808i −0.107972 0.187014i 0.806976 0.590584i \(-0.201102\pi\)
−0.914949 + 0.403570i \(0.867769\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 12.0000 0.854965 0.427482 0.904024i \(-0.359401\pi\)
0.427482 + 0.904024i \(0.359401\pi\)
\(198\) 0 0
\(199\) −8.00000 13.8564i −0.567105 0.982255i −0.996850 0.0793045i \(-0.974730\pi\)
0.429745 0.902950i \(-0.358603\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −10.0000 + 3.46410i −0.701862 + 0.243132i
\(204\) 0 0
\(205\) 2.00000 3.46410i 0.139686 0.241943i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −30.0000 −2.07514
\(210\) 0 0
\(211\) 4.00000 0.275371 0.137686 0.990476i \(-0.456034\pi\)
0.137686 + 0.990476i \(0.456034\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 1.00000 1.73205i 0.0681994 0.118125i
\(216\) 0 0
\(217\) −14.0000 12.1244i −0.950382 0.823055i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −6.00000 10.3923i −0.403604 0.699062i
\(222\) 0 0
\(223\) −24.0000 −1.60716 −0.803579 0.595198i \(-0.797074\pi\)
−0.803579 + 0.595198i \(0.797074\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −7.00000 12.1244i −0.464606 0.804722i 0.534577 0.845120i \(-0.320471\pi\)
−0.999184 + 0.0403978i \(0.987137\pi\)
\(228\) 0 0
\(229\) 3.50000 6.06218i 0.231287 0.400600i −0.726900 0.686743i \(-0.759040\pi\)
0.958187 + 0.286143i \(0.0923732\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 13.0000 22.5167i 0.851658 1.47512i −0.0280525 0.999606i \(-0.508931\pi\)
0.879711 0.475509i \(-0.157736\pi\)
\(234\) 0 0
\(235\) 2.00000 + 3.46410i 0.130466 + 0.225973i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 2.00000 0.129369 0.0646846 0.997906i \(-0.479396\pi\)
0.0646846 + 0.997906i \(0.479396\pi\)
\(240\) 0 0
\(241\) 1.00000 + 1.73205i 0.0644157 + 0.111571i 0.896435 0.443176i \(-0.146148\pi\)
−0.832019 + 0.554747i \(0.812815\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −2.00000 13.8564i −0.127775 0.885253i
\(246\) 0 0
\(247\) 7.50000 12.9904i 0.477214 0.826558i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 4.00000 0.252478 0.126239 0.992000i \(-0.459709\pi\)
0.126239 + 0.992000i \(0.459709\pi\)
\(252\) 0 0
\(253\) 24.0000 1.50887
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −9.00000 + 15.5885i −0.561405 + 0.972381i 0.435970 + 0.899961i \(0.356405\pi\)
−0.997374 + 0.0724199i \(0.976928\pi\)
\(258\) 0 0
\(259\) −4.50000 + 23.3827i −0.279616 + 1.45293i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 6.00000 + 10.3923i 0.369976 + 0.640817i 0.989561 0.144112i \(-0.0460326\pi\)
−0.619586 + 0.784929i \(0.712699\pi\)
\(264\) 0 0
\(265\) 16.0000 0.982872
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −9.00000 15.5885i −0.548740 0.950445i −0.998361 0.0572259i \(-0.981774\pi\)
0.449622 0.893219i \(-0.351559\pi\)
\(270\) 0 0
\(271\) 4.00000 6.92820i 0.242983 0.420858i −0.718580 0.695444i \(-0.755208\pi\)
0.961563 + 0.274586i \(0.0885408\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −3.00000 + 5.19615i −0.180907 + 0.313340i
\(276\) 0 0
\(277\) −0.500000 0.866025i −0.0300421 0.0520344i 0.850613 0.525792i \(-0.176231\pi\)
−0.880656 + 0.473757i \(0.842897\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(282\) 0 0
\(283\) −0.500000 0.866025i −0.0297219 0.0514799i 0.850782 0.525519i \(-0.176129\pi\)
−0.880504 + 0.474039i \(0.842796\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −5.00000 + 1.73205i −0.295141 + 0.102240i
\(288\) 0 0
\(289\) 0.500000 0.866025i 0.0294118 0.0509427i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −6.00000 + 10.3923i −0.346989 + 0.601003i
\(300\) 0 0
\(301\) −2.50000 + 0.866025i −0.144098 + 0.0499169i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 10.0000 + 17.3205i 0.572598 + 0.991769i
\(306\) 0 0
\(307\) 11.0000 0.627803 0.313902 0.949456i \(-0.398364\pi\)
0.313902 + 0.949456i \(0.398364\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 9.00000 + 15.5885i 0.510343 + 0.883940i 0.999928 + 0.0119847i \(0.00381495\pi\)
−0.489585 + 0.871956i \(0.662852\pi\)
\(312\) 0 0
\(313\) 0.500000 0.866025i 0.0282617 0.0489506i −0.851549 0.524276i \(-0.824336\pi\)
0.879810 + 0.475325i \(0.157669\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(318\) 0 0
\(319\) 12.0000 + 20.7846i 0.671871 + 1.16371i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −20.0000 −1.11283
\(324\) 0 0
\(325\) −1.50000 2.59808i −0.0832050 0.144115i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 1.00000 5.19615i 0.0551318 0.286473i
\(330\) 0 0
\(331\) 2.50000 4.33013i 0.137412 0.238005i −0.789104 0.614260i \(-0.789455\pi\)
0.926516 + 0.376254i \(0.122788\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −30.0000 −1.63908
\(336\) 0 0
\(337\) 29.0000 1.57973 0.789865 0.613280i \(-0.210150\pi\)
0.789865 + 0.613280i \(0.210150\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −21.0000 + 36.3731i −1.13721 + 1.96971i
\(342\) 0 0
\(343\) −10.0000 + 15.5885i −0.539949 + 0.841698i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −6.00000 10.3923i −0.322097 0.557888i 0.658824 0.752297i \(-0.271054\pi\)
−0.980921 + 0.194409i \(0.937721\pi\)
\(348\) 0 0
\(349\) −22.0000 −1.17763 −0.588817 0.808267i \(-0.700406\pi\)
−0.588817 + 0.808267i \(0.700406\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 3.00000 + 5.19615i 0.159674 + 0.276563i 0.934751 0.355303i \(-0.115622\pi\)
−0.775077 + 0.631867i \(0.782289\pi\)
\(354\) 0 0
\(355\) −6.00000 + 10.3923i −0.318447 + 0.551566i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 6.00000 10.3923i 0.316668 0.548485i −0.663123 0.748511i \(-0.730769\pi\)
0.979791 + 0.200026i \(0.0641026\pi\)
\(360\) 0 0
\(361\) −3.00000 5.19615i −0.157895 0.273482i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 22.0000 1.15153
\(366\) 0 0
\(367\) −3.50000 6.06218i −0.182699 0.316443i 0.760100 0.649806i \(-0.225150\pi\)
−0.942799 + 0.333363i \(0.891817\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −16.0000 13.8564i −0.830679 0.719389i
\(372\) 0 0
\(373\) 6.50000 11.2583i 0.336557 0.582934i −0.647225 0.762299i \(-0.724071\pi\)
0.983783 + 0.179364i \(0.0574041\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −12.0000 −0.618031
\(378\) 0 0
\(379\) 15.0000 0.770498 0.385249 0.922813i \(-0.374116\pi\)
0.385249 + 0.922813i \(0.374116\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(384\) 0 0
\(385\) −30.0000 + 10.3923i −1.52894 + 0.529641i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −13.0000 22.5167i −0.659126 1.14164i −0.980842 0.194804i \(-0.937593\pi\)
0.321716 0.946836i \(-0.395740\pi\)
\(390\) 0 0
\(391\) 16.0000 0.809155
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −1.00000 1.73205i −0.0503155 0.0871489i
\(396\) 0 0
\(397\) 2.50000 4.33013i 0.125471 0.217323i −0.796446 0.604710i \(-0.793289\pi\)
0.921917 + 0.387387i \(0.126622\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(402\) 0 0
\(403\) −10.5000 18.1865i −0.523042 0.905936i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 54.0000 2.67668
\(408\) 0 0
\(409\) 1.50000 + 2.59808i 0.0741702 + 0.128467i 0.900725 0.434389i \(-0.143036\pi\)
−0.826555 + 0.562856i \(0.809703\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 6.00000 10.3923i 0.294528 0.510138i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 26.0000 1.27018 0.635092 0.772437i \(-0.280962\pi\)
0.635092 + 0.772437i \(0.280962\pi\)
\(420\) 0 0
\(421\) −35.0000 −1.70580 −0.852898 0.522078i \(-0.825157\pi\)
−0.852898 + 0.522078i \(0.825157\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −2.00000 + 3.46410i −0.0970143 + 0.168034i
\(426\) 0 0
\(427\) 5.00000 25.9808i 0.241967 1.25730i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 9.00000 + 15.5885i 0.433515 + 0.750870i 0.997173 0.0751385i \(-0.0239399\pi\)
−0.563658 + 0.826008i \(0.690607\pi\)
\(432\) 0 0
\(433\) 31.0000 1.48976 0.744882 0.667196i \(-0.232506\pi\)
0.744882 + 0.667196i \(0.232506\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 10.0000 + 17.3205i 0.478365 + 0.828552i
\(438\) 0 0
\(439\) 12.0000 20.7846i 0.572729 0.991995i −0.423556 0.905870i \(-0.639218\pi\)
0.996284 0.0861252i \(-0.0274485\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 8.00000 13.8564i 0.380091 0.658338i −0.610984 0.791643i \(-0.709226\pi\)
0.991075 + 0.133306i \(0.0425592\pi\)
\(444\) 0 0
\(445\) 8.00000 + 13.8564i 0.379236 + 0.656857i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 38.0000 1.79333 0.896665 0.442709i \(-0.145982\pi\)
0.896665 + 0.442709i \(0.145982\pi\)
\(450\) 0 0
\(451\) 6.00000 + 10.3923i 0.282529 + 0.489355i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 3.00000 15.5885i 0.140642 0.730798i
\(456\) 0 0
\(457\) −6.50000 + 11.2583i −0.304057 + 0.526642i −0.977051 0.213006i \(-0.931675\pi\)
0.672994 + 0.739648i \(0.265008\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 12.0000 0.558896 0.279448 0.960161i \(-0.409849\pi\)
0.279448 + 0.960161i \(0.409849\pi\)
\(462\) 0 0
\(463\) −17.0000 −0.790057 −0.395029 0.918669i \(-0.629265\pi\)
−0.395029 + 0.918669i \(0.629265\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −15.0000 + 25.9808i −0.694117 + 1.20225i 0.276360 + 0.961054i \(0.410872\pi\)
−0.970477 + 0.241192i \(0.922462\pi\)
\(468\) 0 0
\(469\) 30.0000 + 25.9808i 1.38527 + 1.19968i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 3.00000 + 5.19615i 0.137940 + 0.238919i
\(474\) 0 0
\(475\) −5.00000 −0.229416
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −8.00000 13.8564i −0.365529 0.633115i 0.623332 0.781958i \(-0.285779\pi\)
−0.988861 + 0.148842i \(0.952445\pi\)
\(480\) 0 0
\(481\) −13.5000 + 23.3827i −0.615547 + 1.06616i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −14.0000 + 24.2487i −0.635707 + 1.10108i
\(486\) 0 0
\(487\) 12.5000 + 21.6506i 0.566429 + 0.981084i 0.996915 + 0.0784867i \(0.0250088\pi\)
−0.430486 + 0.902597i \(0.641658\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 36.0000 1.62466 0.812329 0.583200i \(-0.198200\pi\)
0.812329 + 0.583200i \(0.198200\pi\)
\(492\) 0 0
\(493\) 8.00000 + 13.8564i 0.360302 + 0.624061i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 15.0000 5.19615i 0.672842 0.233079i
\(498\) 0 0
\(499\) −8.50000 + 14.7224i −0.380512 + 0.659067i −0.991136 0.132855i \(-0.957586\pi\)
0.610623 + 0.791921i \(0.290919\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −14.0000 −0.624229 −0.312115 0.950044i \(-0.601037\pi\)
−0.312115 + 0.950044i \(0.601037\pi\)
\(504\) 0 0
\(505\) −12.0000 −0.533993
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 3.00000 5.19615i 0.132973 0.230315i −0.791849 0.610718i \(-0.790881\pi\)
0.924821 + 0.380402i \(0.124214\pi\)
\(510\) 0 0
\(511\) −22.0000 19.0526i −0.973223 0.842836i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 9.00000 + 15.5885i 0.396587 + 0.686909i
\(516\) 0 0
\(517\) −12.0000 −0.527759
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −6.00000 10.3923i −0.262865 0.455295i 0.704137 0.710064i \(-0.251334\pi\)
−0.967002 + 0.254769i \(0.918001\pi\)
\(522\) 0 0
\(523\) 14.5000 25.1147i 0.634041 1.09819i −0.352677 0.935745i \(-0.614728\pi\)
0.986718 0.162446i \(-0.0519382\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −14.0000 + 24.2487i −0.609850 + 1.05629i
\(528\) 0 0
\(529\) 3.50000 + 6.06218i 0.152174 + 0.263573i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −6.00000 −0.259889
\(534\) 0 0
\(535\) −12.0000 20.7846i −0.518805 0.898597i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 39.0000 + 15.5885i 1.67985 + 0.671442i
\(540\) 0 0
\(541\) −0.500000 + 0.866025i −0.0214967 + 0.0372333i −0.876574 0.481268i \(-0.840176\pi\)
0.855077 + 0.518501i \(0.173510\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 22.0000 0.942376
\(546\) 0 0
\(547\) −4.00000 −0.171028 −0.0855138 0.996337i \(-0.527253\pi\)
−0.0855138 + 0.996337i \(0.527253\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −10.0000 + 17.3205i −0.426014 + 0.737878i
\(552\) 0 0
\(553\) −0.500000 + 2.59808i −0.0212622 + 0.110481i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −1.00000 1.73205i −0.0423714 0.0733893i 0.844062 0.536246i \(-0.180158\pi\)
−0.886433 + 0.462856i \(0.846825\pi\)
\(558\) 0 0
\(559\) −3.00000 −0.126886
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 1.00000 + 1.73205i 0.0421450 + 0.0729972i 0.886328 0.463057i \(-0.153248\pi\)
−0.844183 + 0.536054i \(0.819914\pi\)
\(564\) 0 0
\(565\) −6.00000 + 10.3923i −0.252422 + 0.437208i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −9.00000 + 15.5885i −0.377300 + 0.653502i −0.990668 0.136295i \(-0.956481\pi\)
0.613369 + 0.789797i \(0.289814\pi\)
\(570\) 0 0
\(571\) 11.5000 + 19.9186i 0.481260 + 0.833567i 0.999769 0.0215055i \(-0.00684595\pi\)
−0.518509 + 0.855072i \(0.673513\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 4.00000 0.166812
\(576\) 0 0
\(577\) −19.5000 33.7750i −0.811796 1.40607i −0.911606 0.411065i \(-0.865157\pi\)
0.0998105 0.995006i \(-0.468176\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −15.0000 + 5.19615i −0.622305 + 0.215573i
\(582\) 0 0
\(583\) −24.0000 + 41.5692i −0.993978 + 1.72162i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 16.0000 0.660391 0.330195 0.943913i \(-0.392885\pi\)
0.330195 + 0.943913i \(0.392885\pi\)
\(588\) 0 0
\(589\) −35.0000 −1.44215
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −15.0000 + 25.9808i −0.615976 + 1.06690i 0.374236 + 0.927333i \(0.377905\pi\)
−0.990212 + 0.139569i \(0.955428\pi\)
\(594\) 0 0
\(595\) −20.0000 + 6.92820i −0.819920 + 0.284029i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −2.00000 3.46410i −0.0817178 0.141539i 0.822270 0.569097i \(-0.192707\pi\)
−0.903988 + 0.427558i \(0.859374\pi\)
\(600\) 0 0
\(601\) 31.0000 1.26452 0.632258 0.774758i \(-0.282128\pi\)
0.632258 + 0.774758i \(0.282128\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 25.0000 + 43.3013i 1.01639 + 1.76045i
\(606\) 0 0
\(607\) 0.500000 0.866025i 0.0202944 0.0351509i −0.855700 0.517472i \(-0.826873\pi\)
0.875994 + 0.482322i \(0.160206\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 3.00000 5.19615i 0.121367 0.210214i
\(612\) 0 0
\(613\) 19.0000 + 32.9090i 0.767403 + 1.32918i 0.938967 + 0.344008i \(0.111785\pi\)
−0.171564 + 0.985173i \(0.554882\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 6.00000 0.241551 0.120775 0.992680i \(-0.461462\pi\)
0.120775 + 0.992680i \(0.461462\pi\)
\(618\) 0 0
\(619\) 4.50000 + 7.79423i 0.180870 + 0.313276i 0.942177 0.335115i \(-0.108775\pi\)
−0.761307 + 0.648392i \(0.775442\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 4.00000 20.7846i 0.160257 0.832718i
\(624\) 0 0
\(625\) 9.50000 16.4545i 0.380000 0.658179i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 36.0000 1.43541
\(630\) 0 0
\(631\) 40.0000 1.59237 0.796187 0.605050i \(-0.206847\pi\)
0.796187 + 0.605050i \(0.206847\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 1.00000 1.73205i 0.0396838 0.0687343i
\(636\) 0 0
\(637\) −16.5000 + 12.9904i −0.653754 + 0.514698i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −10.0000 17.3205i −0.394976 0.684119i 0.598122 0.801405i \(-0.295914\pi\)
−0.993098 + 0.117286i \(0.962581\pi\)
\(642\) 0 0
\(643\) 17.0000 0.670415 0.335207 0.942144i \(-0.391194\pi\)
0.335207 + 0.942144i \(0.391194\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 9.00000 + 15.5885i 0.353827 + 0.612845i 0.986916 0.161233i \(-0.0515470\pi\)
−0.633090 + 0.774078i \(0.718214\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −11.0000 + 19.0526i −0.430463 + 0.745584i −0.996913 0.0785119i \(-0.974983\pi\)
0.566450 + 0.824096i \(0.308316\pi\)
\(654\) 0 0
\(655\) 14.0000 + 24.2487i 0.547025 + 0.947476i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −40.0000 −1.55818 −0.779089 0.626913i \(-0.784318\pi\)
−0.779089 + 0.626913i \(0.784318\pi\)
\(660\) 0 0
\(661\) −17.5000 30.3109i −0.680671 1.17896i −0.974776 0.223184i \(-0.928355\pi\)
0.294105 0.955773i \(-0.404978\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −20.0000 17.3205i −0.775567 0.671660i
\(666\) 0 0
\(667\) 8.00000 13.8564i 0.309761 0.536522i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −60.0000 −2.31627
\(672\) 0 0
\(673\) 7.00000 0.269830 0.134915 0.990857i \(-0.456924\pi\)
0.134915 + 0.990857i \(0.456924\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 6.00000 10.3923i 0.230599 0.399409i −0.727386 0.686229i \(-0.759265\pi\)
0.957984 + 0.286820i \(0.0925982\pi\)
\(678\) 0 0
\(679\) 35.0000 12.1244i 1.34318 0.465290i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(684\) 0 0
\(685\) 40.0000 1.52832
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −12.0000 20.7846i −0.457164 0.791831i
\(690\) 0 0
\(691\) −3.50000 + 6.06218i −0.133146 + 0.230616i −0.924888 0.380240i \(-0.875841\pi\)
0.791742 + 0.610856i \(0.209175\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 9.00000 15.5885i 0.341389 0.591304i
\(696\) 0 0
\(697\) 4.00000 + 6.92820i 0.151511 + 0.262424i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −28.0000 −1.05755 −0.528773 0.848763i \(-0.677348\pi\)
−0.528773 + 0.848763i \(0.677348\pi\)
\(702\) 0 0
\(703\) 22.5000 + 38.9711i 0.848604 + 1.46982i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 12.0000 + 10.3923i 0.451306 + 0.390843i
\(708\) 0 0
\(709\) 25.0000 43.3013i 0.938895 1.62621i 0.171358 0.985209i \(-0.445185\pi\)
0.767537 0.641004i \(-0.221482\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 28.0000 1.04861
\(714\) 0 0
\(715\) −36.0000 −1.34632
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 15.0000 25.9808i 0.559406 0.968919i −0.438141 0.898906i \(-0.644363\pi\)
0.997546 0.0700124i \(-0.0223039\pi\)
\(720\) 0 0
\(721\) 4.50000 23.3827i 0.167589 0.870817i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 2.00000 + 3.46410i 0.0742781 + 0.128654i
\(726\) 0 0
\(727\) −5.00000 −0.185440 −0.0927199 0.995692i \(-0.529556\pi\)
−0.0927199 + 0.995692i \(0.529556\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 2.00000 + 3.46410i 0.0739727 + 0.128124i
\(732\) 0 0
\(733\) 5.50000 9.52628i 0.203147 0.351861i −0.746394 0.665505i \(-0.768216\pi\)
0.949541 + 0.313644i \(0.101550\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 45.0000 77.9423i 1.65760 2.87104i
\(738\) 0 0
\(739\) −2.50000 4.33013i −0.0919640 0.159286i 0.816373 0.577524i \(-0.195981\pi\)
−0.908337 + 0.418238i \(0.862648\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −34.0000 −1.24734 −0.623670 0.781688i \(-0.714359\pi\)
−0.623670 + 0.781688i \(0.714359\pi\)
\(744\) 0 0
\(745\) −4.00000 6.92820i −0.146549 0.253830i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −6.00000 + 31.1769i −0.219235 + 1.13918i
\(750\) 0 0
\(751\) −18.5000 + 32.0429i −0.675075 + 1.16926i 0.301373 + 0.953506i \(0.402555\pi\)
−0.976447 + 0.215757i \(0.930778\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −16.0000 −0.582300
\(756\) 0 0
\(757\) 10.0000 0.363456 0.181728 0.983349i \(-0.441831\pi\)
0.181728 + 0.983349i \(0.441831\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −6.00000 + 10.3923i −0.217500 + 0.376721i −0.954043 0.299670i \(-0.903123\pi\)
0.736543 + 0.676391i \(0.236457\pi\)
\(762\) 0 0
\(763\) −22.0000 19.0526i −0.796453 0.689749i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) 7.00000 0.252426 0.126213 0.992003i \(-0.459718\pi\)
0.126213 + 0.992003i \(0.459718\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −25.0000 43.3013i −0.899188 1.55744i −0.828535 0.559937i \(-0.810825\pi\)
−0.0706526 0.997501i \(-0.522508\pi\)
\(774\) 0 0
\(775\) −3.50000 + 6.06218i −0.125724 + 0.217760i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −5.00000 + 8.66025i −0.179144 + 0.310286i
\(780\) 0 0
\(781\) −18.0000 31.1769i −0.644091 1.11560i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −36.0000 −1.28490
\(786\) 0 0
\(787\) −16.0000 27.7128i −0.570338 0.987855i −0.996531 0.0832226i \(-0.973479\pi\)
0.426193 0.904632i \(-0.359855\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 15.0000 5.19615i 0.533339 0.184754i
\(792\) 0 0
\(793\) 15.0000 25.9808i 0.532666 0.922604i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −12.0000 −0.425062 −0.212531 0.977154i \(-0.568171\pi\)
−0.212531 + 0.977154i \(0.568171\pi\)
\(798\) 0 0
\(799\) −8.00000 −0.283020
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −33.0000 + 57.1577i −1.16454 + 2.01705i