Properties

 Label 1008.2.s.i Level $1008$ Weight $2$ Character orbit 1008.s Analytic conductor $8.049$ Analytic rank $0$ Dimension $2$ CM discriminant -3 Inner twists $4$

Related objects

Newspace parameters

 Level: $$N$$ $$=$$ $$1008 = 2^{4} \cdot 3^{2} \cdot 7$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 1008.s (of order $$3$$, degree $$2$$, not minimal)

Newform invariants

 Self dual: no Analytic conductor: $$8.04892052375$$ Analytic rank: $$0$$ Dimension: $$2$$ Coefficient field: $$\Q(\sqrt{-3})$$ Defining polynomial: $$x^{2} - x + 1$$ Coefficient ring: $$\Z[a_1, \ldots, a_{7}]$$ Coefficient ring index: $$1$$ Twist minimal: no (minimal twist has level 252) Sato-Tate group: $\mathrm{U}(1)[D_{3}]$

$q$-expansion

Coefficients of the $$q$$-expansion are expressed in terms of a primitive root of unity $$\zeta_{6}$$. We also show the integral $$q$$-expansion of the trace form.

 $$f(q)$$ $$=$$ $$q + ( -2 - \zeta_{6} ) q^{7} +O(q^{10})$$ $$q + ( -2 - \zeta_{6} ) q^{7} + 5 q^{13} -\zeta_{6} q^{19} + ( 5 - 5 \zeta_{6} ) q^{25} + ( 11 - 11 \zeta_{6} ) q^{31} -11 \zeta_{6} q^{37} + 13 q^{43} + ( 3 + 5 \zeta_{6} ) q^{49} -14 \zeta_{6} q^{61} + ( 5 - 5 \zeta_{6} ) q^{67} + ( -17 + 17 \zeta_{6} ) q^{73} + 17 \zeta_{6} q^{79} + ( -10 - 5 \zeta_{6} ) q^{91} + 14 q^{97} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$2q - 5q^{7} + O(q^{10})$$ $$2q - 5q^{7} + 10q^{13} - q^{19} + 5q^{25} + 11q^{31} - 11q^{37} + 26q^{43} + 11q^{49} - 14q^{61} + 5q^{67} - 17q^{73} + 17q^{79} - 25q^{91} + 28q^{97} + O(q^{100})$$

Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/1008\mathbb{Z}\right)^\times$$.

 $$n$$ $$127$$ $$577$$ $$757$$ $$785$$ $$\chi(n)$$ $$1$$ $$-\zeta_{6}$$ $$1$$ $$1$$

Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

Label $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
289.1
 0.5 − 0.866025i 0.5 + 0.866025i
0 0 0 0 0 −2.50000 + 0.866025i 0 0 0
865.1 0 0 0 0 0 −2.50000 0.866025i 0 0 0
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 CM by $$\Q(\sqrt{-3})$$
7.c even 3 1 inner
21.h odd 6 1 inner

Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1008.2.s.i 2
3.b odd 2 1 CM 1008.2.s.i 2
4.b odd 2 1 252.2.k.b 2
7.c even 3 1 inner 1008.2.s.i 2
7.c even 3 1 7056.2.a.be 1
7.d odd 6 1 7056.2.a.z 1
12.b even 2 1 252.2.k.b 2
21.g even 6 1 7056.2.a.z 1
21.h odd 6 1 inner 1008.2.s.i 2
21.h odd 6 1 7056.2.a.be 1
28.d even 2 1 1764.2.k.f 2
28.f even 6 1 1764.2.a.d 1
28.f even 6 1 1764.2.k.f 2
28.g odd 6 1 252.2.k.b 2
28.g odd 6 1 1764.2.a.f 1
36.f odd 6 1 2268.2.i.c 2
36.f odd 6 1 2268.2.l.e 2
36.h even 6 1 2268.2.i.c 2
36.h even 6 1 2268.2.l.e 2
84.h odd 2 1 1764.2.k.f 2
84.j odd 6 1 1764.2.a.d 1
84.j odd 6 1 1764.2.k.f 2
84.n even 6 1 252.2.k.b 2
84.n even 6 1 1764.2.a.f 1
252.o even 6 1 2268.2.i.c 2
252.u odd 6 1 2268.2.l.e 2
252.bb even 6 1 2268.2.l.e 2
252.bl odd 6 1 2268.2.i.c 2

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
252.2.k.b 2 4.b odd 2 1
252.2.k.b 2 12.b even 2 1
252.2.k.b 2 28.g odd 6 1
252.2.k.b 2 84.n even 6 1
1008.2.s.i 2 1.a even 1 1 trivial
1008.2.s.i 2 3.b odd 2 1 CM
1008.2.s.i 2 7.c even 3 1 inner
1008.2.s.i 2 21.h odd 6 1 inner
1764.2.a.d 1 28.f even 6 1
1764.2.a.d 1 84.j odd 6 1
1764.2.a.f 1 28.g odd 6 1
1764.2.a.f 1 84.n even 6 1
1764.2.k.f 2 28.d even 2 1
1764.2.k.f 2 28.f even 6 1
1764.2.k.f 2 84.h odd 2 1
1764.2.k.f 2 84.j odd 6 1
2268.2.i.c 2 36.f odd 6 1
2268.2.i.c 2 36.h even 6 1
2268.2.i.c 2 252.o even 6 1
2268.2.i.c 2 252.bl odd 6 1
2268.2.l.e 2 36.f odd 6 1
2268.2.l.e 2 36.h even 6 1
2268.2.l.e 2 252.u odd 6 1
2268.2.l.e 2 252.bb even 6 1
7056.2.a.z 1 7.d odd 6 1
7056.2.a.z 1 21.g even 6 1
7056.2.a.be 1 7.c even 3 1
7056.2.a.be 1 21.h odd 6 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{2}^{\mathrm{new}}(1008, [\chi])$$:

 $$T_{5}$$ $$T_{11}$$ $$T_{13} - 5$$ $$T_{17}$$

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$T^{2}$$
$3$ $$T^{2}$$
$5$ $$T^{2}$$
$7$ $$7 + 5 T + T^{2}$$
$11$ $$T^{2}$$
$13$ $$( -5 + T )^{2}$$
$17$ $$T^{2}$$
$19$ $$1 + T + T^{2}$$
$23$ $$T^{2}$$
$29$ $$T^{2}$$
$31$ $$121 - 11 T + T^{2}$$
$37$ $$121 + 11 T + T^{2}$$
$41$ $$T^{2}$$
$43$ $$( -13 + T )^{2}$$
$47$ $$T^{2}$$
$53$ $$T^{2}$$
$59$ $$T^{2}$$
$61$ $$196 + 14 T + T^{2}$$
$67$ $$25 - 5 T + T^{2}$$
$71$ $$T^{2}$$
$73$ $$289 + 17 T + T^{2}$$
$79$ $$289 - 17 T + T^{2}$$
$83$ $$T^{2}$$
$89$ $$T^{2}$$
$97$ $$( -14 + T )^{2}$$