Properties

Label 1008.2.s.e.865.1
Level $1008$
Weight $2$
Character 1008.865
Analytic conductor $8.049$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $2$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 1008 = 2^{4} \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1008.s (of order \(3\), degree \(2\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(8.04892052375\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
Defining polynomial: \(x^{2} - x + 1\)
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 56)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 865.1
Root \(0.500000 + 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 1008.865
Dual form 1008.2.s.e.289.1

$q$-expansion

\(f(q)\) \(=\) \(q+(-0.500000 - 0.866025i) q^{5} +(-2.00000 + 1.73205i) q^{7} +O(q^{10})\) \(q+(-0.500000 - 0.866025i) q^{5} +(-2.00000 + 1.73205i) q^{7} +(0.500000 - 0.866025i) q^{11} +2.00000 q^{13} +(1.50000 - 2.59808i) q^{17} +(2.50000 + 4.33013i) q^{19} +(1.50000 + 2.59808i) q^{23} +(2.00000 - 3.46410i) q^{25} +6.00000 q^{29} +(-0.500000 + 0.866025i) q^{31} +(2.50000 + 0.866025i) q^{35} +(2.50000 + 4.33013i) q^{37} +10.0000 q^{41} +4.00000 q^{43} +(-0.500000 - 0.866025i) q^{47} +(1.00000 - 6.92820i) q^{49} +(-4.50000 + 7.79423i) q^{53} -1.00000 q^{55} +(-1.50000 + 2.59808i) q^{59} +(-1.50000 - 2.59808i) q^{61} +(-1.00000 - 1.73205i) q^{65} +(5.50000 - 9.52628i) q^{67} +16.0000 q^{71} +(-3.50000 + 6.06218i) q^{73} +(0.500000 + 2.59808i) q^{77} +(-5.50000 - 9.52628i) q^{79} -4.00000 q^{83} -3.00000 q^{85} +(-4.50000 - 7.79423i) q^{89} +(-4.00000 + 3.46410i) q^{91} +(2.50000 - 4.33013i) q^{95} +6.00000 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2q - q^{5} - 4q^{7} + O(q^{10}) \) \( 2q - q^{5} - 4q^{7} + q^{11} + 4q^{13} + 3q^{17} + 5q^{19} + 3q^{23} + 4q^{25} + 12q^{29} - q^{31} + 5q^{35} + 5q^{37} + 20q^{41} + 8q^{43} - q^{47} + 2q^{49} - 9q^{53} - 2q^{55} - 3q^{59} - 3q^{61} - 2q^{65} + 11q^{67} + 32q^{71} - 7q^{73} + q^{77} - 11q^{79} - 8q^{83} - 6q^{85} - 9q^{89} - 8q^{91} + 5q^{95} + 12q^{97} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1008\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(577\) \(757\) \(785\)
\(\chi(n)\) \(1\) \(e\left(\frac{2}{3}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −0.500000 0.866025i −0.223607 0.387298i 0.732294 0.680989i \(-0.238450\pi\)
−0.955901 + 0.293691i \(0.905116\pi\)
\(6\) 0 0
\(7\) −2.00000 + 1.73205i −0.755929 + 0.654654i
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 0.500000 0.866025i 0.150756 0.261116i −0.780750 0.624844i \(-0.785163\pi\)
0.931505 + 0.363727i \(0.118496\pi\)
\(12\) 0 0
\(13\) 2.00000 0.554700 0.277350 0.960769i \(-0.410544\pi\)
0.277350 + 0.960769i \(0.410544\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 1.50000 2.59808i 0.363803 0.630126i −0.624780 0.780801i \(-0.714811\pi\)
0.988583 + 0.150675i \(0.0481447\pi\)
\(18\) 0 0
\(19\) 2.50000 + 4.33013i 0.573539 + 0.993399i 0.996199 + 0.0871106i \(0.0277634\pi\)
−0.422659 + 0.906289i \(0.638903\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 1.50000 + 2.59808i 0.312772 + 0.541736i 0.978961 0.204046i \(-0.0654092\pi\)
−0.666190 + 0.745782i \(0.732076\pi\)
\(24\) 0 0
\(25\) 2.00000 3.46410i 0.400000 0.692820i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 6.00000 1.11417 0.557086 0.830455i \(-0.311919\pi\)
0.557086 + 0.830455i \(0.311919\pi\)
\(30\) 0 0
\(31\) −0.500000 + 0.866025i −0.0898027 + 0.155543i −0.907428 0.420208i \(-0.861957\pi\)
0.817625 + 0.575751i \(0.195290\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 2.50000 + 0.866025i 0.422577 + 0.146385i
\(36\) 0 0
\(37\) 2.50000 + 4.33013i 0.410997 + 0.711868i 0.994999 0.0998840i \(-0.0318472\pi\)
−0.584002 + 0.811752i \(0.698514\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 10.0000 1.56174 0.780869 0.624695i \(-0.214777\pi\)
0.780869 + 0.624695i \(0.214777\pi\)
\(42\) 0 0
\(43\) 4.00000 0.609994 0.304997 0.952353i \(-0.401344\pi\)
0.304997 + 0.952353i \(0.401344\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −0.500000 0.866025i −0.0729325 0.126323i 0.827253 0.561830i \(-0.189902\pi\)
−0.900185 + 0.435507i \(0.856569\pi\)
\(48\) 0 0
\(49\) 1.00000 6.92820i 0.142857 0.989743i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −4.50000 + 7.79423i −0.618123 + 1.07062i 0.371706 + 0.928351i \(0.378773\pi\)
−0.989828 + 0.142269i \(0.954560\pi\)
\(54\) 0 0
\(55\) −1.00000 −0.134840
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −1.50000 + 2.59808i −0.195283 + 0.338241i −0.946993 0.321253i \(-0.895896\pi\)
0.751710 + 0.659494i \(0.229229\pi\)
\(60\) 0 0
\(61\) −1.50000 2.59808i −0.192055 0.332650i 0.753876 0.657017i \(-0.228182\pi\)
−0.945931 + 0.324367i \(0.894849\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −1.00000 1.73205i −0.124035 0.214834i
\(66\) 0 0
\(67\) 5.50000 9.52628i 0.671932 1.16382i −0.305424 0.952217i \(-0.598798\pi\)
0.977356 0.211604i \(-0.0678686\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 16.0000 1.89885 0.949425 0.313993i \(-0.101667\pi\)
0.949425 + 0.313993i \(0.101667\pi\)
\(72\) 0 0
\(73\) −3.50000 + 6.06218i −0.409644 + 0.709524i −0.994850 0.101361i \(-0.967680\pi\)
0.585206 + 0.810885i \(0.301014\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 0.500000 + 2.59808i 0.0569803 + 0.296078i
\(78\) 0 0
\(79\) −5.50000 9.52628i −0.618798 1.07179i −0.989705 0.143120i \(-0.954286\pi\)
0.370907 0.928670i \(-0.379047\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −4.00000 −0.439057 −0.219529 0.975606i \(-0.570452\pi\)
−0.219529 + 0.975606i \(0.570452\pi\)
\(84\) 0 0
\(85\) −3.00000 −0.325396
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −4.50000 7.79423i −0.476999 0.826187i 0.522654 0.852545i \(-0.324942\pi\)
−0.999653 + 0.0263586i \(0.991609\pi\)
\(90\) 0 0
\(91\) −4.00000 + 3.46410i −0.419314 + 0.363137i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 2.50000 4.33013i 0.256495 0.444262i
\(96\) 0 0
\(97\) 6.00000 0.609208 0.304604 0.952479i \(-0.401476\pi\)
0.304604 + 0.952479i \(0.401476\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −6.50000 + 11.2583i −0.646774 + 1.12025i 0.337115 + 0.941464i \(0.390549\pi\)
−0.983889 + 0.178782i \(0.942784\pi\)
\(102\) 0 0
\(103\) 2.50000 + 4.33013i 0.246332 + 0.426660i 0.962505 0.271263i \(-0.0874412\pi\)
−0.716173 + 0.697923i \(0.754108\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 1.50000 + 2.59808i 0.145010 + 0.251166i 0.929377 0.369132i \(-0.120345\pi\)
−0.784366 + 0.620298i \(0.787012\pi\)
\(108\) 0 0
\(109\) −5.50000 + 9.52628i −0.526804 + 0.912452i 0.472708 + 0.881219i \(0.343277\pi\)
−0.999512 + 0.0312328i \(0.990057\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 10.0000 0.940721 0.470360 0.882474i \(-0.344124\pi\)
0.470360 + 0.882474i \(0.344124\pi\)
\(114\) 0 0
\(115\) 1.50000 2.59808i 0.139876 0.242272i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 1.50000 + 7.79423i 0.137505 + 0.714496i
\(120\) 0 0
\(121\) 5.00000 + 8.66025i 0.454545 + 0.787296i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −9.00000 −0.804984
\(126\) 0 0
\(127\) 8.00000 0.709885 0.354943 0.934888i \(-0.384500\pi\)
0.354943 + 0.934888i \(0.384500\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −8.50000 14.7224i −0.742648 1.28630i −0.951285 0.308312i \(-0.900236\pi\)
0.208637 0.977993i \(-0.433097\pi\)
\(132\) 0 0
\(133\) −12.5000 4.33013i −1.08389 0.375470i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 1.50000 2.59808i 0.128154 0.221969i −0.794808 0.606861i \(-0.792428\pi\)
0.922961 + 0.384893i \(0.125762\pi\)
\(138\) 0 0
\(139\) −4.00000 −0.339276 −0.169638 0.985506i \(-0.554260\pi\)
−0.169638 + 0.985506i \(0.554260\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 1.00000 1.73205i 0.0836242 0.144841i
\(144\) 0 0
\(145\) −3.00000 5.19615i −0.249136 0.431517i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 7.50000 + 12.9904i 0.614424 + 1.06421i 0.990485 + 0.137619i \(0.0439449\pi\)
−0.376061 + 0.926595i \(0.622722\pi\)
\(150\) 0 0
\(151\) 7.50000 12.9904i 0.610341 1.05714i −0.380841 0.924640i \(-0.624366\pi\)
0.991183 0.132502i \(-0.0423010\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 1.00000 0.0803219
\(156\) 0 0
\(157\) −7.50000 + 12.9904i −0.598565 + 1.03675i 0.394468 + 0.918910i \(0.370929\pi\)
−0.993033 + 0.117836i \(0.962404\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −7.50000 2.59808i −0.591083 0.204757i
\(162\) 0 0
\(163\) 4.50000 + 7.79423i 0.352467 + 0.610491i 0.986681 0.162667i \(-0.0520095\pi\)
−0.634214 + 0.773158i \(0.718676\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −20.0000 −1.54765 −0.773823 0.633402i \(-0.781658\pi\)
−0.773823 + 0.633402i \(0.781658\pi\)
\(168\) 0 0
\(169\) −9.00000 −0.692308
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −10.5000 18.1865i −0.798300 1.38270i −0.920722 0.390218i \(-0.872399\pi\)
0.122422 0.992478i \(-0.460934\pi\)
\(174\) 0 0
\(175\) 2.00000 + 10.3923i 0.151186 + 0.785584i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 0.500000 0.866025i 0.0373718 0.0647298i −0.846735 0.532016i \(-0.821435\pi\)
0.884106 + 0.467286i \(0.154768\pi\)
\(180\) 0 0
\(181\) 22.0000 1.63525 0.817624 0.575753i \(-0.195291\pi\)
0.817624 + 0.575753i \(0.195291\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 2.50000 4.33013i 0.183804 0.318357i
\(186\) 0 0
\(187\) −1.50000 2.59808i −0.109691 0.189990i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −8.50000 14.7224i −0.615038 1.06528i −0.990378 0.138390i \(-0.955807\pi\)
0.375339 0.926887i \(-0.377526\pi\)
\(192\) 0 0
\(193\) 2.50000 4.33013i 0.179954 0.311689i −0.761911 0.647682i \(-0.775738\pi\)
0.941865 + 0.335993i \(0.109072\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −18.0000 −1.28245 −0.641223 0.767354i \(-0.721573\pi\)
−0.641223 + 0.767354i \(0.721573\pi\)
\(198\) 0 0
\(199\) −4.50000 + 7.79423i −0.318997 + 0.552518i −0.980279 0.197619i \(-0.936679\pi\)
0.661282 + 0.750137i \(0.270013\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −12.0000 + 10.3923i −0.842235 + 0.729397i
\(204\) 0 0
\(205\) −5.00000 8.66025i −0.349215 0.604858i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 5.00000 0.345857
\(210\) 0 0
\(211\) −12.0000 −0.826114 −0.413057 0.910705i \(-0.635539\pi\)
−0.413057 + 0.910705i \(0.635539\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −2.00000 3.46410i −0.136399 0.236250i
\(216\) 0 0
\(217\) −0.500000 2.59808i −0.0339422 0.176369i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 3.00000 5.19615i 0.201802 0.349531i
\(222\) 0 0
\(223\) −24.0000 −1.60716 −0.803579 0.595198i \(-0.797074\pi\)
−0.803579 + 0.595198i \(0.797074\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −3.50000 + 6.06218i −0.232303 + 0.402361i −0.958485 0.285141i \(-0.907959\pi\)
0.726182 + 0.687502i \(0.241293\pi\)
\(228\) 0 0
\(229\) −3.50000 6.06218i −0.231287 0.400600i 0.726900 0.686743i \(-0.240960\pi\)
−0.958187 + 0.286143i \(0.907627\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −6.50000 11.2583i −0.425829 0.737558i 0.570668 0.821181i \(-0.306684\pi\)
−0.996497 + 0.0836229i \(0.973351\pi\)
\(234\) 0 0
\(235\) −0.500000 + 0.866025i −0.0326164 + 0.0564933i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −4.00000 −0.258738 −0.129369 0.991596i \(-0.541295\pi\)
−0.129369 + 0.991596i \(0.541295\pi\)
\(240\) 0 0
\(241\) 8.50000 14.7224i 0.547533 0.948355i −0.450910 0.892570i \(-0.648900\pi\)
0.998443 0.0557856i \(-0.0177663\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −6.50000 + 2.59808i −0.415270 + 0.165985i
\(246\) 0 0
\(247\) 5.00000 + 8.66025i 0.318142 + 0.551039i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 24.0000 1.51487 0.757433 0.652913i \(-0.226453\pi\)
0.757433 + 0.652913i \(0.226453\pi\)
\(252\) 0 0
\(253\) 3.00000 0.188608
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −6.50000 11.2583i −0.405459 0.702275i 0.588916 0.808194i \(-0.299555\pi\)
−0.994375 + 0.105919i \(0.966222\pi\)
\(258\) 0 0
\(259\) −12.5000 4.33013i −0.776712 0.269061i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −1.50000 + 2.59808i −0.0924940 + 0.160204i −0.908560 0.417755i \(-0.862817\pi\)
0.816066 + 0.577959i \(0.196151\pi\)
\(264\) 0 0
\(265\) 9.00000 0.552866
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −8.50000 + 14.7224i −0.518254 + 0.897643i 0.481521 + 0.876435i \(0.340085\pi\)
−0.999775 + 0.0212079i \(0.993249\pi\)
\(270\) 0 0
\(271\) −1.50000 2.59808i −0.0911185 0.157822i 0.816864 0.576831i \(-0.195711\pi\)
−0.907982 + 0.419009i \(0.862378\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −2.00000 3.46410i −0.120605 0.208893i
\(276\) 0 0
\(277\) −3.50000 + 6.06218i −0.210295 + 0.364241i −0.951807 0.306699i \(-0.900776\pi\)
0.741512 + 0.670940i \(0.234109\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 18.0000 1.07379 0.536895 0.843649i \(-0.319597\pi\)
0.536895 + 0.843649i \(0.319597\pi\)
\(282\) 0 0
\(283\) −8.50000 + 14.7224i −0.505273 + 0.875158i 0.494709 + 0.869059i \(0.335275\pi\)
−0.999981 + 0.00609896i \(0.998059\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −20.0000 + 17.3205i −1.18056 + 1.02240i
\(288\) 0 0
\(289\) 4.00000 + 6.92820i 0.235294 + 0.407541i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −6.00000 −0.350524 −0.175262 0.984522i \(-0.556077\pi\)
−0.175262 + 0.984522i \(0.556077\pi\)
\(294\) 0 0
\(295\) 3.00000 0.174667
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 3.00000 + 5.19615i 0.173494 + 0.300501i
\(300\) 0 0
\(301\) −8.00000 + 6.92820i −0.461112 + 0.399335i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −1.50000 + 2.59808i −0.0858898 + 0.148765i
\(306\) 0 0
\(307\) −4.00000 −0.228292 −0.114146 0.993464i \(-0.536413\pi\)
−0.114146 + 0.993464i \(0.536413\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −5.50000 + 9.52628i −0.311876 + 0.540186i −0.978769 0.204968i \(-0.934291\pi\)
0.666892 + 0.745154i \(0.267624\pi\)
\(312\) 0 0
\(313\) −15.5000 26.8468i −0.876112 1.51747i −0.855574 0.517681i \(-0.826795\pi\)
−0.0205381 0.999789i \(-0.506538\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 13.5000 + 23.3827i 0.758236 + 1.31330i 0.943750 + 0.330661i \(0.107272\pi\)
−0.185514 + 0.982642i \(0.559395\pi\)
\(318\) 0 0
\(319\) 3.00000 5.19615i 0.167968 0.290929i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 15.0000 0.834622
\(324\) 0 0
\(325\) 4.00000 6.92820i 0.221880 0.384308i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 2.50000 + 0.866025i 0.137829 + 0.0477455i
\(330\) 0 0
\(331\) −3.50000 6.06218i −0.192377 0.333207i 0.753660 0.657264i \(-0.228286\pi\)
−0.946038 + 0.324057i \(0.894953\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −11.0000 −0.600994
\(336\) 0 0
\(337\) 14.0000 0.762629 0.381314 0.924445i \(-0.375472\pi\)
0.381314 + 0.924445i \(0.375472\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 0.500000 + 0.866025i 0.0270765 + 0.0468979i
\(342\) 0 0
\(343\) 10.0000 + 15.5885i 0.539949 + 0.841698i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −1.50000 + 2.59808i −0.0805242 + 0.139472i −0.903475 0.428640i \(-0.858993\pi\)
0.822951 + 0.568112i \(0.192326\pi\)
\(348\) 0 0
\(349\) −6.00000 −0.321173 −0.160586 0.987022i \(-0.551338\pi\)
−0.160586 + 0.987022i \(0.551338\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −2.50000 + 4.33013i −0.133062 + 0.230469i −0.924855 0.380319i \(-0.875814\pi\)
0.791794 + 0.610789i \(0.209147\pi\)
\(354\) 0 0
\(355\) −8.00000 13.8564i −0.424596 0.735422i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 7.50000 + 12.9904i 0.395835 + 0.685606i 0.993207 0.116358i \(-0.0371219\pi\)
−0.597372 + 0.801964i \(0.703789\pi\)
\(360\) 0 0
\(361\) −3.00000 + 5.19615i −0.157895 + 0.273482i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 7.00000 0.366397
\(366\) 0 0
\(367\) 9.50000 16.4545i 0.495896 0.858917i −0.504093 0.863649i \(-0.668173\pi\)
0.999989 + 0.00473247i \(0.00150640\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −4.50000 23.3827i −0.233628 1.21397i
\(372\) 0 0
\(373\) −9.50000 16.4545i −0.491891 0.851981i 0.508065 0.861319i \(-0.330361\pi\)
−0.999956 + 0.00933789i \(0.997028\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 12.0000 0.618031
\(378\) 0 0
\(379\) 16.0000 0.821865 0.410932 0.911666i \(-0.365203\pi\)
0.410932 + 0.911666i \(0.365203\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −4.50000 7.79423i −0.229939 0.398266i 0.727851 0.685736i \(-0.240519\pi\)
−0.957790 + 0.287469i \(0.907186\pi\)
\(384\) 0 0
\(385\) 2.00000 1.73205i 0.101929 0.0882735i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 9.50000 16.4545i 0.481669 0.834275i −0.518110 0.855314i \(-0.673364\pi\)
0.999779 + 0.0210389i \(0.00669738\pi\)
\(390\) 0 0
\(391\) 9.00000 0.455150
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −5.50000 + 9.52628i −0.276735 + 0.479319i
\(396\) 0 0
\(397\) 8.50000 + 14.7224i 0.426603 + 0.738898i 0.996569 0.0827707i \(-0.0263769\pi\)
−0.569966 + 0.821668i \(0.693044\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 1.50000 + 2.59808i 0.0749064 + 0.129742i 0.901046 0.433724i \(-0.142801\pi\)
−0.826139 + 0.563466i \(0.809468\pi\)
\(402\) 0 0
\(403\) −1.00000 + 1.73205i −0.0498135 + 0.0862796i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 5.00000 0.247841
\(408\) 0 0
\(409\) −9.50000 + 16.4545i −0.469745 + 0.813622i −0.999402 0.0345902i \(-0.988987\pi\)
0.529657 + 0.848212i \(0.322321\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −1.50000 7.79423i −0.0738102 0.383529i
\(414\) 0 0
\(415\) 2.00000 + 3.46410i 0.0981761 + 0.170046i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 20.0000 0.977064 0.488532 0.872546i \(-0.337533\pi\)
0.488532 + 0.872546i \(0.337533\pi\)
\(420\) 0 0
\(421\) 10.0000 0.487370 0.243685 0.969854i \(-0.421644\pi\)
0.243685 + 0.969854i \(0.421644\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −6.00000 10.3923i −0.291043 0.504101i
\(426\) 0 0
\(427\) 7.50000 + 2.59808i 0.362950 + 0.125730i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 20.5000 35.5070i 0.987450 1.71031i 0.356953 0.934122i \(-0.383815\pi\)
0.630497 0.776192i \(-0.282851\pi\)
\(432\) 0 0
\(433\) −26.0000 −1.24948 −0.624740 0.780833i \(-0.714795\pi\)
−0.624740 + 0.780833i \(0.714795\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −7.50000 + 12.9904i −0.358774 + 0.621414i
\(438\) 0 0
\(439\) −7.50000 12.9904i −0.357955 0.619997i 0.629664 0.776868i \(-0.283193\pi\)
−0.987619 + 0.156871i \(0.949859\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 13.5000 + 23.3827i 0.641404 + 1.11094i 0.985119 + 0.171871i \(0.0549812\pi\)
−0.343715 + 0.939074i \(0.611685\pi\)
\(444\) 0 0
\(445\) −4.50000 + 7.79423i −0.213320 + 0.369482i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 2.00000 0.0943858 0.0471929 0.998886i \(-0.484972\pi\)
0.0471929 + 0.998886i \(0.484972\pi\)
\(450\) 0 0
\(451\) 5.00000 8.66025i 0.235441 0.407795i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 5.00000 + 1.73205i 0.234404 + 0.0811998i
\(456\) 0 0
\(457\) 8.50000 + 14.7224i 0.397613 + 0.688686i 0.993431 0.114433i \(-0.0365053\pi\)
−0.595818 + 0.803120i \(0.703172\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 6.00000 0.279448 0.139724 0.990190i \(-0.455378\pi\)
0.139724 + 0.990190i \(0.455378\pi\)
\(462\) 0 0
\(463\) 16.0000 0.743583 0.371792 0.928316i \(-0.378744\pi\)
0.371792 + 0.928316i \(0.378744\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −12.5000 21.6506i −0.578431 1.00187i −0.995660 0.0930703i \(-0.970332\pi\)
0.417229 0.908802i \(-0.363001\pi\)
\(468\) 0 0
\(469\) 5.50000 + 28.5788i 0.253966 + 1.31965i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 2.00000 3.46410i 0.0919601 0.159280i
\(474\) 0 0
\(475\) 20.0000 0.917663
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 10.5000 18.1865i 0.479757 0.830964i −0.519973 0.854183i \(-0.674058\pi\)
0.999730 + 0.0232187i \(0.00739140\pi\)
\(480\) 0 0
\(481\) 5.00000 + 8.66025i 0.227980 + 0.394874i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −3.00000 5.19615i −0.136223 0.235945i
\(486\) 0 0
\(487\) −6.50000 + 11.2583i −0.294543 + 0.510164i −0.974879 0.222737i \(-0.928501\pi\)
0.680335 + 0.732901i \(0.261834\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(492\) 0 0
\(493\) 9.00000 15.5885i 0.405340 0.702069i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −32.0000 + 27.7128i −1.43540 + 1.24309i
\(498\) 0 0
\(499\) −3.50000 6.06218i −0.156682 0.271380i 0.776989 0.629515i \(-0.216746\pi\)
−0.933670 + 0.358134i \(0.883413\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 16.0000 0.713405 0.356702 0.934218i \(-0.383901\pi\)
0.356702 + 0.934218i \(0.383901\pi\)
\(504\) 0 0
\(505\) 13.0000 0.578492
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 3.50000 + 6.06218i 0.155135 + 0.268701i 0.933108 0.359596i \(-0.117085\pi\)
−0.777973 + 0.628297i \(0.783752\pi\)
\(510\) 0 0
\(511\) −3.50000 18.1865i −0.154831 0.804525i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 2.50000 4.33013i 0.110163 0.190808i
\(516\) 0 0
\(517\) −1.00000 −0.0439799
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 7.50000 12.9904i 0.328581 0.569119i −0.653650 0.756797i \(-0.726763\pi\)
0.982231 + 0.187678i \(0.0600963\pi\)
\(522\) 0 0
\(523\) 6.50000 + 11.2583i 0.284225 + 0.492292i 0.972421 0.233233i \(-0.0749303\pi\)
−0.688196 + 0.725525i \(0.741597\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 1.50000 + 2.59808i 0.0653410 + 0.113174i
\(528\) 0 0
\(529\) 7.00000 12.1244i 0.304348 0.527146i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 20.0000 0.866296
\(534\) 0 0
\(535\) 1.50000 2.59808i 0.0648507 0.112325i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −5.50000 4.33013i −0.236902 0.186512i
\(540\) 0 0
\(541\) 12.5000 + 21.6506i 0.537417 + 0.930834i 0.999042 + 0.0437584i \(0.0139332\pi\)
−0.461625 + 0.887075i \(0.652733\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 11.0000 0.471188
\(546\) 0 0
\(547\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 15.0000 + 25.9808i 0.639021 + 1.10682i
\(552\) 0 0
\(553\) 27.5000 + 9.52628i 1.16942 + 0.405099i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 5.50000 9.52628i 0.233042 0.403641i −0.725660 0.688054i \(-0.758465\pi\)
0.958702 + 0.284413i \(0.0917985\pi\)
\(558\) 0 0
\(559\) 8.00000 0.338364
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −5.50000 + 9.52628i −0.231797 + 0.401485i −0.958337 0.285640i \(-0.907794\pi\)
0.726540 + 0.687124i \(0.241127\pi\)
\(564\) 0 0
\(565\) −5.00000 8.66025i −0.210352 0.364340i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −0.500000 0.866025i −0.0209611 0.0363057i 0.855355 0.518043i \(-0.173339\pi\)
−0.876316 + 0.481737i \(0.840006\pi\)
\(570\) 0 0
\(571\) −8.50000 + 14.7224i −0.355714 + 0.616115i −0.987240 0.159240i \(-0.949096\pi\)
0.631526 + 0.775355i \(0.282429\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 12.0000 0.500435
\(576\) 0 0
\(577\) −15.5000 + 26.8468i −0.645273 + 1.11765i 0.338965 + 0.940799i \(0.389923\pi\)
−0.984238 + 0.176847i \(0.943410\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 8.00000 6.92820i 0.331896 0.287430i
\(582\) 0 0
\(583\) 4.50000 + 7.79423i 0.186371 + 0.322804i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 12.0000 0.495293 0.247647 0.968850i \(-0.420343\pi\)
0.247647 + 0.968850i \(0.420343\pi\)
\(588\) 0 0
\(589\) −5.00000 −0.206021
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 21.5000 + 37.2391i 0.882899 + 1.52923i 0.848103 + 0.529832i \(0.177745\pi\)
0.0347964 + 0.999394i \(0.488922\pi\)
\(594\) 0 0
\(595\) 6.00000 5.19615i 0.245976 0.213021i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 10.5000 18.1865i 0.429018 0.743082i −0.567768 0.823189i \(-0.692193\pi\)
0.996786 + 0.0801071i \(0.0255262\pi\)
\(600\) 0 0
\(601\) −34.0000 −1.38689 −0.693444 0.720510i \(-0.743908\pi\)
−0.693444 + 0.720510i \(0.743908\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 5.00000 8.66025i 0.203279 0.352089i
\(606\) 0 0
\(607\) −3.50000 6.06218i −0.142061 0.246056i 0.786212 0.617957i \(-0.212039\pi\)
−0.928272 + 0.371901i \(0.878706\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −1.00000 1.73205i −0.0404557 0.0700713i
\(612\) 0 0
\(613\) 10.5000 18.1865i 0.424091 0.734547i −0.572244 0.820083i \(-0.693927\pi\)
0.996335 + 0.0855362i \(0.0272603\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −22.0000 −0.885687 −0.442843 0.896599i \(-0.646030\pi\)
−0.442843 + 0.896599i \(0.646030\pi\)
\(618\) 0 0
\(619\) −2.50000 + 4.33013i −0.100483 + 0.174042i −0.911884 0.410448i \(-0.865372\pi\)
0.811400 + 0.584491i \(0.198706\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 22.5000 + 7.79423i 0.901443 + 0.312269i
\(624\) 0 0
\(625\) −5.50000 9.52628i −0.220000 0.381051i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 15.0000 0.598089
\(630\) 0 0
\(631\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −4.00000 6.92820i −0.158735 0.274937i
\(636\) 0 0
\(637\) 2.00000 13.8564i 0.0792429 0.549011i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 7.50000 12.9904i 0.296232 0.513089i −0.679039 0.734103i \(-0.737603\pi\)
0.975271 + 0.221013i \(0.0709364\pi\)
\(642\) 0 0
\(643\) 44.0000 1.73519 0.867595 0.497271i \(-0.165665\pi\)
0.867595 + 0.497271i \(0.165665\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −21.5000 + 37.2391i −0.845252 + 1.46402i 0.0401498 + 0.999194i \(0.487216\pi\)
−0.885402 + 0.464826i \(0.846117\pi\)
\(648\) 0 0
\(649\) 1.50000 + 2.59808i 0.0588802 + 0.101983i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −2.50000 4.33013i −0.0978326 0.169451i 0.812955 0.582327i \(-0.197858\pi\)
−0.910787 + 0.412876i \(0.864524\pi\)
\(654\) 0 0
\(655\) −8.50000 + 14.7224i −0.332122 + 0.575253i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −36.0000 −1.40236 −0.701180 0.712984i \(-0.747343\pi\)
−0.701180 + 0.712984i \(0.747343\pi\)
\(660\) 0 0
\(661\) 0.500000 0.866025i 0.0194477 0.0336845i −0.856138 0.516748i \(-0.827143\pi\)
0.875585 + 0.483063i \(0.160476\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 2.50000 + 12.9904i 0.0969458 + 0.503745i
\(666\) 0 0
\(667\) 9.00000 + 15.5885i 0.348481 + 0.603587i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −3.00000 −0.115814
\(672\) 0 0
\(673\) −2.00000 −0.0770943 −0.0385472 0.999257i \(-0.512273\pi\)
−0.0385472 + 0.999257i \(0.512273\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −4.50000 7.79423i −0.172949 0.299557i 0.766501 0.642244i \(-0.221996\pi\)
−0.939450 + 0.342687i \(0.888663\pi\)
\(678\) 0 0
\(679\) −12.0000 + 10.3923i −0.460518 + 0.398820i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −19.5000 + 33.7750i −0.746147 + 1.29236i 0.203510 + 0.979073i \(0.434765\pi\)
−0.949657 + 0.313291i \(0.898568\pi\)
\(684\) 0 0
\(685\) −3.00000 −0.114624
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −9.00000 + 15.5885i −0.342873 + 0.593873i
\(690\) 0 0
\(691\) −23.5000 40.7032i −0.893982 1.54842i −0.835059 0.550160i \(-0.814567\pi\)
−0.0589228 0.998263i \(-0.518767\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 2.00000 + 3.46410i 0.0758643 + 0.131401i
\(696\) 0 0
\(697\) 15.0000 25.9808i 0.568166 0.984092i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 18.0000 0.679851 0.339925 0.940452i \(-0.389598\pi\)
0.339925 + 0.940452i \(0.389598\pi\)
\(702\) 0 0
\(703\) −12.5000 + 21.6506i −0.471446 + 0.816569i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −6.50000 33.7750i −0.244458 1.27024i
\(708\) 0 0
\(709\) −13.5000 23.3827i −0.507003 0.878155i −0.999967 0.00810550i \(-0.997420\pi\)
0.492964 0.870050i \(-0.335913\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −3.00000 −0.112351
\(714\) 0 0
\(715\) −2.00000 −0.0747958
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −14.5000 25.1147i −0.540759 0.936622i −0.998861 0.0477220i \(-0.984804\pi\)
0.458102 0.888900i \(-0.348529\pi\)
\(720\) 0 0
\(721\) −12.5000 4.33013i −0.465524 0.161262i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 12.0000 20.7846i 0.445669 0.771921i
\(726\) 0 0
\(727\) −16.0000 −0.593407 −0.296704 0.954970i \(-0.595887\pi\)
−0.296704 + 0.954970i \(0.595887\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 6.00000 10.3923i 0.221918 0.384373i
\(732\) 0 0
\(733\) −5.50000 9.52628i −0.203147 0.351861i 0.746394 0.665505i \(-0.231784\pi\)
−0.949541 + 0.313644i \(0.898450\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −5.50000 9.52628i −0.202595 0.350905i
\(738\) 0 0
\(739\) −20.5000 + 35.5070i −0.754105 + 1.30615i 0.191714 + 0.981451i \(0.438596\pi\)
−0.945818 + 0.324697i \(0.894738\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 32.0000 1.17397 0.586983 0.809599i \(-0.300316\pi\)
0.586983 + 0.809599i \(0.300316\pi\)
\(744\) 0 0
\(745\) 7.50000 12.9904i 0.274779 0.475931i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −7.50000 2.59808i −0.274044 0.0949316i
\(750\) 0 0
\(751\) −23.5000 40.7032i −0.857527 1.48528i −0.874281 0.485421i \(-0.838666\pi\)
0.0167534 0.999860i \(-0.494667\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −15.0000 −0.545906
\(756\) 0 0
\(757\) 34.0000 1.23575 0.617876 0.786276i \(-0.287994\pi\)
0.617876 + 0.786276i \(0.287994\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 13.5000 + 23.3827i 0.489375 + 0.847622i 0.999925 0.0122260i \(-0.00389175\pi\)
−0.510551 + 0.859848i \(0.670558\pi\)
\(762\) 0 0
\(763\) −5.50000 28.5788i −0.199113 1.03462i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −3.00000 + 5.19615i −0.108324 + 0.187622i
\(768\) 0 0
\(769\) 14.0000 0.504853 0.252426 0.967616i \(-0.418771\pi\)
0.252426 + 0.967616i \(0.418771\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 17.5000 30.3109i 0.629431 1.09021i −0.358235 0.933632i \(-0.616621\pi\)
0.987666 0.156575i \(-0.0500454\pi\)
\(774\) 0 0
\(775\) 2.00000 + 3.46410i 0.0718421 + 0.124434i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 25.0000 + 43.3013i 0.895718 + 1.55143i
\(780\) 0 0
\(781\) 8.00000 13.8564i 0.286263 0.495821i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 15.0000 0.535373
\(786\) 0 0
\(787\) −6.50000 + 11.2583i −0.231700 + 0.401316i −0.958308 0.285736i \(-0.907762\pi\)
0.726609 + 0.687052i \(0.241095\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −20.0000 + 17.3205i −0.711118 + 0.615846i
\(792\) 0 0
\(793\) −3.00000 5.19615i −0.106533 0.184521i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −42.0000 −1.48772 −0.743858 0.668338i \(-0.767006\pi\)
−0.743858 + 0.668338i \(0.767006\pi\)
\(798\) 0 0
\(799\) −3.00000 −0.106132
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 3.50000 + 6.06218i