Properties

Label 1008.2.s.b.865.1
Level $1008$
Weight $2$
Character 1008.865
Analytic conductor $8.049$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1008,2,Mod(289,1008)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1008, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1008.289");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1008 = 2^{4} \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1008.s (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(8.04892052375\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{19}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 126)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 865.1
Root \(0.500000 + 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 1008.865
Dual form 1008.2.s.b.289.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.50000 - 2.59808i) q^{5} +(0.500000 + 2.59808i) q^{7} +(-1.50000 + 2.59808i) q^{11} +2.00000 q^{13} +(-3.00000 + 5.19615i) q^{17} +(1.00000 + 1.73205i) q^{19} +(-3.00000 - 5.19615i) q^{23} +(-2.00000 + 3.46410i) q^{25} +9.00000 q^{29} +(-3.50000 + 6.06218i) q^{31} +(6.00000 - 5.19615i) q^{35} +(5.00000 + 8.66025i) q^{37} +4.00000 q^{43} +(6.00000 + 10.3923i) q^{47} +(-6.50000 + 2.59808i) q^{49} +(1.50000 - 2.59808i) q^{53} +9.00000 q^{55} +(-1.50000 + 2.59808i) q^{59} +(2.00000 + 3.46410i) q^{61} +(-3.00000 - 5.19615i) q^{65} +(1.00000 - 1.73205i) q^{67} +(-1.00000 + 1.73205i) q^{73} +(-7.50000 - 2.59808i) q^{77} +(2.50000 + 4.33013i) q^{79} -9.00000 q^{83} +18.0000 q^{85} +(3.00000 + 5.19615i) q^{89} +(1.00000 + 5.19615i) q^{91} +(3.00000 - 5.19615i) q^{95} -13.0000 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 3 q^{5} + q^{7} - 3 q^{11} + 4 q^{13} - 6 q^{17} + 2 q^{19} - 6 q^{23} - 4 q^{25} + 18 q^{29} - 7 q^{31} + 12 q^{35} + 10 q^{37} + 8 q^{43} + 12 q^{47} - 13 q^{49} + 3 q^{53} + 18 q^{55} - 3 q^{59}+ \cdots - 26 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1008\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(577\) \(757\) \(785\)
\(\chi(n)\) \(1\) \(e\left(\frac{2}{3}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −1.50000 2.59808i −0.670820 1.16190i −0.977672 0.210138i \(-0.932609\pi\)
0.306851 0.951757i \(-0.400725\pi\)
\(6\) 0 0
\(7\) 0.500000 + 2.59808i 0.188982 + 0.981981i
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −1.50000 + 2.59808i −0.452267 + 0.783349i −0.998526 0.0542666i \(-0.982718\pi\)
0.546259 + 0.837616i \(0.316051\pi\)
\(12\) 0 0
\(13\) 2.00000 0.554700 0.277350 0.960769i \(-0.410544\pi\)
0.277350 + 0.960769i \(0.410544\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −3.00000 + 5.19615i −0.727607 + 1.26025i 0.230285 + 0.973123i \(0.426034\pi\)
−0.957892 + 0.287129i \(0.907299\pi\)
\(18\) 0 0
\(19\) 1.00000 + 1.73205i 0.229416 + 0.397360i 0.957635 0.287984i \(-0.0929851\pi\)
−0.728219 + 0.685344i \(0.759652\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −3.00000 5.19615i −0.625543 1.08347i −0.988436 0.151642i \(-0.951544\pi\)
0.362892 0.931831i \(-0.381789\pi\)
\(24\) 0 0
\(25\) −2.00000 + 3.46410i −0.400000 + 0.692820i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 9.00000 1.67126 0.835629 0.549294i \(-0.185103\pi\)
0.835629 + 0.549294i \(0.185103\pi\)
\(30\) 0 0
\(31\) −3.50000 + 6.06218i −0.628619 + 1.08880i 0.359211 + 0.933257i \(0.383046\pi\)
−0.987829 + 0.155543i \(0.950287\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 6.00000 5.19615i 1.01419 0.878310i
\(36\) 0 0
\(37\) 5.00000 + 8.66025i 0.821995 + 1.42374i 0.904194 + 0.427121i \(0.140472\pi\)
−0.0821995 + 0.996616i \(0.526194\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(42\) 0 0
\(43\) 4.00000 0.609994 0.304997 0.952353i \(-0.401344\pi\)
0.304997 + 0.952353i \(0.401344\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 6.00000 + 10.3923i 0.875190 + 1.51587i 0.856560 + 0.516047i \(0.172597\pi\)
0.0186297 + 0.999826i \(0.494070\pi\)
\(48\) 0 0
\(49\) −6.50000 + 2.59808i −0.928571 + 0.371154i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 1.50000 2.59808i 0.206041 0.356873i −0.744423 0.667708i \(-0.767275\pi\)
0.950464 + 0.310835i \(0.100609\pi\)
\(54\) 0 0
\(55\) 9.00000 1.21356
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −1.50000 + 2.59808i −0.195283 + 0.338241i −0.946993 0.321253i \(-0.895896\pi\)
0.751710 + 0.659494i \(0.229229\pi\)
\(60\) 0 0
\(61\) 2.00000 + 3.46410i 0.256074 + 0.443533i 0.965187 0.261562i \(-0.0842377\pi\)
−0.709113 + 0.705095i \(0.750904\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −3.00000 5.19615i −0.372104 0.644503i
\(66\) 0 0
\(67\) 1.00000 1.73205i 0.122169 0.211604i −0.798454 0.602056i \(-0.794348\pi\)
0.920623 + 0.390453i \(0.127682\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(72\) 0 0
\(73\) −1.00000 + 1.73205i −0.117041 + 0.202721i −0.918594 0.395203i \(-0.870674\pi\)
0.801553 + 0.597924i \(0.204008\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −7.50000 2.59808i −0.854704 0.296078i
\(78\) 0 0
\(79\) 2.50000 + 4.33013i 0.281272 + 0.487177i 0.971698 0.236225i \(-0.0759104\pi\)
−0.690426 + 0.723403i \(0.742577\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −9.00000 −0.987878 −0.493939 0.869496i \(-0.664443\pi\)
−0.493939 + 0.869496i \(0.664443\pi\)
\(84\) 0 0
\(85\) 18.0000 1.95237
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 3.00000 + 5.19615i 0.317999 + 0.550791i 0.980071 0.198650i \(-0.0636557\pi\)
−0.662071 + 0.749441i \(0.730322\pi\)
\(90\) 0 0
\(91\) 1.00000 + 5.19615i 0.104828 + 0.544705i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 3.00000 5.19615i 0.307794 0.533114i
\(96\) 0 0
\(97\) −13.0000 −1.31995 −0.659975 0.751288i \(-0.729433\pi\)
−0.659975 + 0.751288i \(0.729433\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −3.00000 + 5.19615i −0.298511 + 0.517036i −0.975796 0.218685i \(-0.929823\pi\)
0.677284 + 0.735721i \(0.263157\pi\)
\(102\) 0 0
\(103\) −8.00000 13.8564i −0.788263 1.36531i −0.927030 0.374987i \(-0.877647\pi\)
0.138767 0.990325i \(-0.455686\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 1.50000 + 2.59808i 0.145010 + 0.251166i 0.929377 0.369132i \(-0.120345\pi\)
−0.784366 + 0.620298i \(0.787012\pi\)
\(108\) 0 0
\(109\) 5.00000 8.66025i 0.478913 0.829502i −0.520794 0.853682i \(-0.674364\pi\)
0.999708 + 0.0241802i \(0.00769755\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(114\) 0 0
\(115\) −9.00000 + 15.5885i −0.839254 + 1.45363i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −15.0000 5.19615i −1.37505 0.476331i
\(120\) 0 0
\(121\) 1.00000 + 1.73205i 0.0909091 + 0.157459i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −3.00000 −0.268328
\(126\) 0 0
\(127\) 1.00000 0.0887357 0.0443678 0.999015i \(-0.485873\pi\)
0.0443678 + 0.999015i \(0.485873\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −7.50000 12.9904i −0.655278 1.13497i −0.981824 0.189794i \(-0.939218\pi\)
0.326546 0.945181i \(-0.394115\pi\)
\(132\) 0 0
\(133\) −4.00000 + 3.46410i −0.346844 + 0.300376i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −3.00000 + 5.19615i −0.256307 + 0.443937i −0.965250 0.261329i \(-0.915839\pi\)
0.708942 + 0.705266i \(0.249173\pi\)
\(138\) 0 0
\(139\) −2.00000 −0.169638 −0.0848189 0.996396i \(-0.527031\pi\)
−0.0848189 + 0.996396i \(0.527031\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −3.00000 + 5.19615i −0.250873 + 0.434524i
\(144\) 0 0
\(145\) −13.5000 23.3827i −1.12111 1.94183i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 3.00000 + 5.19615i 0.245770 + 0.425685i 0.962348 0.271821i \(-0.0876260\pi\)
−0.716578 + 0.697507i \(0.754293\pi\)
\(150\) 0 0
\(151\) 2.50000 4.33013i 0.203447 0.352381i −0.746190 0.665733i \(-0.768119\pi\)
0.949637 + 0.313353i \(0.101452\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 21.0000 1.68676
\(156\) 0 0
\(157\) 2.00000 3.46410i 0.159617 0.276465i −0.775113 0.631822i \(-0.782307\pi\)
0.934731 + 0.355357i \(0.115641\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 12.0000 10.3923i 0.945732 0.819028i
\(162\) 0 0
\(163\) −5.00000 8.66025i −0.391630 0.678323i 0.601035 0.799223i \(-0.294755\pi\)
−0.992665 + 0.120900i \(0.961422\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 18.0000 1.39288 0.696441 0.717614i \(-0.254766\pi\)
0.696441 + 0.717614i \(0.254766\pi\)
\(168\) 0 0
\(169\) −9.00000 −0.692308
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 3.00000 + 5.19615i 0.228086 + 0.395056i 0.957241 0.289292i \(-0.0934200\pi\)
−0.729155 + 0.684349i \(0.760087\pi\)
\(174\) 0 0
\(175\) −10.0000 3.46410i −0.755929 0.261861i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −6.00000 + 10.3923i −0.448461 + 0.776757i −0.998286 0.0585225i \(-0.981361\pi\)
0.549825 + 0.835280i \(0.314694\pi\)
\(180\) 0 0
\(181\) 20.0000 1.48659 0.743294 0.668965i \(-0.233262\pi\)
0.743294 + 0.668965i \(0.233262\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 15.0000 25.9808i 1.10282 1.91014i
\(186\) 0 0
\(187\) −9.00000 15.5885i −0.658145 1.13994i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 6.00000 + 10.3923i 0.434145 + 0.751961i 0.997225 0.0744412i \(-0.0237173\pi\)
−0.563081 + 0.826402i \(0.690384\pi\)
\(192\) 0 0
\(193\) 3.50000 6.06218i 0.251936 0.436365i −0.712123 0.702055i \(-0.752266\pi\)
0.964059 + 0.265689i \(0.0855996\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −18.0000 −1.28245 −0.641223 0.767354i \(-0.721573\pi\)
−0.641223 + 0.767354i \(0.721573\pi\)
\(198\) 0 0
\(199\) 4.00000 6.92820i 0.283552 0.491127i −0.688705 0.725042i \(-0.741820\pi\)
0.972257 + 0.233915i \(0.0751537\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 4.50000 + 23.3827i 0.315838 + 1.64114i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −6.00000 −0.415029
\(210\) 0 0
\(211\) 16.0000 1.10149 0.550743 0.834675i \(-0.314345\pi\)
0.550743 + 0.834675i \(0.314345\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −6.00000 10.3923i −0.409197 0.708749i
\(216\) 0 0
\(217\) −17.5000 6.06218i −1.18798 0.411527i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −6.00000 + 10.3923i −0.403604 + 0.699062i
\(222\) 0 0
\(223\) 1.00000 0.0669650 0.0334825 0.999439i \(-0.489340\pi\)
0.0334825 + 0.999439i \(0.489340\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 7.50000 12.9904i 0.497792 0.862202i −0.502204 0.864749i \(-0.667477\pi\)
0.999997 + 0.00254715i \(0.000810783\pi\)
\(228\) 0 0
\(229\) −10.0000 17.3205i −0.660819 1.14457i −0.980401 0.197013i \(-0.936876\pi\)
0.319582 0.947559i \(-0.396457\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 3.00000 + 5.19615i 0.196537 + 0.340411i 0.947403 0.320043i \(-0.103697\pi\)
−0.750867 + 0.660454i \(0.770364\pi\)
\(234\) 0 0
\(235\) 18.0000 31.1769i 1.17419 2.03376i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −18.0000 −1.16432 −0.582162 0.813073i \(-0.697793\pi\)
−0.582162 + 0.813073i \(0.697793\pi\)
\(240\) 0 0
\(241\) −11.5000 + 19.9186i −0.740780 + 1.28307i 0.211360 + 0.977408i \(0.432211\pi\)
−0.952141 + 0.305661i \(0.901123\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 16.5000 + 12.9904i 1.05415 + 0.829925i
\(246\) 0 0
\(247\) 2.00000 + 3.46410i 0.127257 + 0.220416i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −9.00000 −0.568075 −0.284037 0.958813i \(-0.591674\pi\)
−0.284037 + 0.958813i \(0.591674\pi\)
\(252\) 0 0
\(253\) 18.0000 1.13165
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 3.00000 + 5.19615i 0.187135 + 0.324127i 0.944294 0.329104i \(-0.106747\pi\)
−0.757159 + 0.653231i \(0.773413\pi\)
\(258\) 0 0
\(259\) −20.0000 + 17.3205i −1.24274 + 1.07624i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 12.0000 20.7846i 0.739952 1.28163i −0.212565 0.977147i \(-0.568182\pi\)
0.952517 0.304487i \(-0.0984850\pi\)
\(264\) 0 0
\(265\) −9.00000 −0.552866
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 1.50000 2.59808i 0.0914566 0.158408i −0.816668 0.577108i \(-0.804181\pi\)
0.908124 + 0.418701i \(0.137514\pi\)
\(270\) 0 0
\(271\) −9.50000 16.4545i −0.577084 0.999539i −0.995812 0.0914269i \(-0.970857\pi\)
0.418728 0.908112i \(-0.362476\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −6.00000 10.3923i −0.361814 0.626680i
\(276\) 0 0
\(277\) 2.00000 3.46410i 0.120168 0.208138i −0.799666 0.600446i \(-0.794990\pi\)
0.919834 + 0.392308i \(0.128323\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −18.0000 −1.07379 −0.536895 0.843649i \(-0.680403\pi\)
−0.536895 + 0.843649i \(0.680403\pi\)
\(282\) 0 0
\(283\) 10.0000 17.3205i 0.594438 1.02960i −0.399188 0.916869i \(-0.630708\pi\)
0.993626 0.112728i \(-0.0359589\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) −9.50000 16.4545i −0.558824 0.967911i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 9.00000 0.525786 0.262893 0.964825i \(-0.415323\pi\)
0.262893 + 0.964825i \(0.415323\pi\)
\(294\) 0 0
\(295\) 9.00000 0.524000
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −6.00000 10.3923i −0.346989 0.601003i
\(300\) 0 0
\(301\) 2.00000 + 10.3923i 0.115278 + 0.599002i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 6.00000 10.3923i 0.343559 0.595062i
\(306\) 0 0
\(307\) −26.0000 −1.48390 −0.741949 0.670456i \(-0.766098\pi\)
−0.741949 + 0.670456i \(0.766098\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −6.00000 + 10.3923i −0.340229 + 0.589294i −0.984475 0.175525i \(-0.943838\pi\)
0.644246 + 0.764818i \(0.277171\pi\)
\(312\) 0 0
\(313\) −8.50000 14.7224i −0.480448 0.832161i 0.519300 0.854592i \(-0.326193\pi\)
−0.999748 + 0.0224310i \(0.992859\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −10.5000 18.1865i −0.589739 1.02146i −0.994266 0.106932i \(-0.965897\pi\)
0.404528 0.914526i \(-0.367436\pi\)
\(318\) 0 0
\(319\) −13.5000 + 23.3827i −0.755855 + 1.30918i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −12.0000 −0.667698
\(324\) 0 0
\(325\) −4.00000 + 6.92820i −0.221880 + 0.384308i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −24.0000 + 20.7846i −1.32316 + 1.14589i
\(330\) 0 0
\(331\) 4.00000 + 6.92820i 0.219860 + 0.380808i 0.954765 0.297361i \(-0.0961066\pi\)
−0.734905 + 0.678170i \(0.762773\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −6.00000 −0.327815
\(336\) 0 0
\(337\) 5.00000 0.272367 0.136184 0.990684i \(-0.456516\pi\)
0.136184 + 0.990684i \(0.456516\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −10.5000 18.1865i −0.568607 0.984856i
\(342\) 0 0
\(343\) −10.0000 15.5885i −0.539949 0.841698i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −6.00000 + 10.3923i −0.322097 + 0.557888i −0.980921 0.194409i \(-0.937721\pi\)
0.658824 + 0.752297i \(0.271054\pi\)
\(348\) 0 0
\(349\) 14.0000 0.749403 0.374701 0.927146i \(-0.377745\pi\)
0.374701 + 0.927146i \(0.377745\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −12.0000 + 20.7846i −0.638696 + 1.10625i 0.347024 + 0.937856i \(0.387192\pi\)
−0.985719 + 0.168397i \(0.946141\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 15.0000 + 25.9808i 0.791670 + 1.37121i 0.924932 + 0.380131i \(0.124121\pi\)
−0.133263 + 0.991081i \(0.542545\pi\)
\(360\) 0 0
\(361\) 7.50000 12.9904i 0.394737 0.683704i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 6.00000 0.314054
\(366\) 0 0
\(367\) −18.5000 + 32.0429i −0.965692 + 1.67263i −0.257948 + 0.966159i \(0.583046\pi\)
−0.707744 + 0.706469i \(0.750287\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 7.50000 + 2.59808i 0.389381 + 0.134885i
\(372\) 0 0
\(373\) 2.00000 + 3.46410i 0.103556 + 0.179364i 0.913147 0.407630i \(-0.133645\pi\)
−0.809591 + 0.586994i \(0.800311\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 18.0000 0.927047
\(378\) 0 0
\(379\) 28.0000 1.43826 0.719132 0.694874i \(-0.244540\pi\)
0.719132 + 0.694874i \(0.244540\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 15.0000 + 25.9808i 0.766464 + 1.32755i 0.939469 + 0.342634i \(0.111319\pi\)
−0.173005 + 0.984921i \(0.555348\pi\)
\(384\) 0 0
\(385\) 4.50000 + 23.3827i 0.229341 + 1.19169i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 15.0000 25.9808i 0.760530 1.31728i −0.182047 0.983290i \(-0.558272\pi\)
0.942578 0.333987i \(-0.108394\pi\)
\(390\) 0 0
\(391\) 36.0000 1.82060
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 7.50000 12.9904i 0.377366 0.653617i
\(396\) 0 0
\(397\) −4.00000 6.92820i −0.200754 0.347717i 0.748017 0.663679i \(-0.231006\pi\)
−0.948772 + 0.315963i \(0.897673\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 12.0000 + 20.7846i 0.599251 + 1.03793i 0.992932 + 0.118686i \(0.0378683\pi\)
−0.393680 + 0.919247i \(0.628798\pi\)
\(402\) 0 0
\(403\) −7.00000 + 12.1244i −0.348695 + 0.603957i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −30.0000 −1.48704
\(408\) 0 0
\(409\) −5.50000 + 9.52628i −0.271957 + 0.471044i −0.969363 0.245633i \(-0.921004\pi\)
0.697406 + 0.716677i \(0.254338\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −7.50000 2.59808i −0.369051 0.127843i
\(414\) 0 0
\(415\) 13.5000 + 23.3827i 0.662689 + 1.14781i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 36.0000 1.75872 0.879358 0.476162i \(-0.157972\pi\)
0.879358 + 0.476162i \(0.157972\pi\)
\(420\) 0 0
\(421\) 8.00000 0.389896 0.194948 0.980814i \(-0.437546\pi\)
0.194948 + 0.980814i \(0.437546\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −12.0000 20.7846i −0.582086 1.00820i
\(426\) 0 0
\(427\) −8.00000 + 6.92820i −0.387147 + 0.335279i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 12.0000 20.7846i 0.578020 1.00116i −0.417687 0.908591i \(-0.637159\pi\)
0.995706 0.0925683i \(-0.0295076\pi\)
\(432\) 0 0
\(433\) 26.0000 1.24948 0.624740 0.780833i \(-0.285205\pi\)
0.624740 + 0.780833i \(0.285205\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 6.00000 10.3923i 0.287019 0.497131i
\(438\) 0 0
\(439\) −9.50000 16.4545i −0.453410 0.785330i 0.545185 0.838316i \(-0.316459\pi\)
−0.998595 + 0.0529862i \(0.983126\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −7.50000 12.9904i −0.356336 0.617192i 0.631010 0.775775i \(-0.282641\pi\)
−0.987346 + 0.158583i \(0.949307\pi\)
\(444\) 0 0
\(445\) 9.00000 15.5885i 0.426641 0.738964i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 18.0000 0.849473 0.424736 0.905317i \(-0.360367\pi\)
0.424736 + 0.905317i \(0.360367\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 12.0000 10.3923i 0.562569 0.487199i
\(456\) 0 0
\(457\) 6.50000 + 11.2583i 0.304057 + 0.526642i 0.977051 0.213006i \(-0.0683253\pi\)
−0.672994 + 0.739648i \(0.734992\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 18.0000 0.838344 0.419172 0.907907i \(-0.362320\pi\)
0.419172 + 0.907907i \(0.362320\pi\)
\(462\) 0 0
\(463\) 4.00000 0.185896 0.0929479 0.995671i \(-0.470371\pi\)
0.0929479 + 0.995671i \(0.470371\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 6.00000 + 10.3923i 0.277647 + 0.480899i 0.970799 0.239892i \(-0.0771121\pi\)
−0.693153 + 0.720791i \(0.743779\pi\)
\(468\) 0 0
\(469\) 5.00000 + 1.73205i 0.230879 + 0.0799787i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −6.00000 + 10.3923i −0.275880 + 0.477839i
\(474\) 0 0
\(475\) −8.00000 −0.367065
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 12.0000 20.7846i 0.548294 0.949673i −0.450098 0.892979i \(-0.648611\pi\)
0.998392 0.0566937i \(-0.0180558\pi\)
\(480\) 0 0
\(481\) 10.0000 + 17.3205i 0.455961 + 0.789747i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 19.5000 + 33.7750i 0.885449 + 1.53364i
\(486\) 0 0
\(487\) 5.50000 9.52628i 0.249229 0.431677i −0.714083 0.700061i \(-0.753156\pi\)
0.963312 + 0.268384i \(0.0864896\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −9.00000 −0.406164 −0.203082 0.979162i \(-0.565096\pi\)
−0.203082 + 0.979162i \(0.565096\pi\)
\(492\) 0 0
\(493\) −27.0000 + 46.7654i −1.21602 + 2.10621i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 19.0000 + 32.9090i 0.850557 + 1.47321i 0.880707 + 0.473662i \(0.157068\pi\)
−0.0301498 + 0.999545i \(0.509598\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −18.0000 −0.802580 −0.401290 0.915951i \(-0.631438\pi\)
−0.401290 + 0.915951i \(0.631438\pi\)
\(504\) 0 0
\(505\) 18.0000 0.800989
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 7.50000 + 12.9904i 0.332432 + 0.575789i 0.982988 0.183669i \(-0.0587976\pi\)
−0.650556 + 0.759458i \(0.725464\pi\)
\(510\) 0 0
\(511\) −5.00000 1.73205i −0.221187 0.0766214i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −24.0000 + 41.5692i −1.05757 + 1.83176i
\(516\) 0 0
\(517\) −36.0000 −1.58328
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −12.0000 + 20.7846i −0.525730 + 0.910590i 0.473821 + 0.880621i \(0.342874\pi\)
−0.999551 + 0.0299693i \(0.990459\pi\)
\(522\) 0 0
\(523\) 13.0000 + 22.5167i 0.568450 + 0.984585i 0.996719 + 0.0809336i \(0.0257902\pi\)
−0.428269 + 0.903651i \(0.640876\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −21.0000 36.3731i −0.914774 1.58444i
\(528\) 0 0
\(529\) −6.50000 + 11.2583i −0.282609 + 0.489493i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) 4.50000 7.79423i 0.194552 0.336974i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 3.00000 20.7846i 0.129219 0.895257i
\(540\) 0 0
\(541\) 8.00000 + 13.8564i 0.343947 + 0.595733i 0.985162 0.171628i \(-0.0549027\pi\)
−0.641215 + 0.767361i \(0.721569\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −30.0000 −1.28506
\(546\) 0 0
\(547\) −14.0000 −0.598597 −0.299298 0.954160i \(-0.596753\pi\)
−0.299298 + 0.954160i \(0.596753\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 9.00000 + 15.5885i 0.383413 + 0.664091i
\(552\) 0 0
\(553\) −10.0000 + 8.66025i −0.425243 + 0.368271i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −7.50000 + 12.9904i −0.317785 + 0.550420i −0.980026 0.198871i \(-0.936272\pi\)
0.662240 + 0.749291i \(0.269606\pi\)
\(558\) 0 0
\(559\) 8.00000 0.338364
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −1.50000 + 2.59808i −0.0632175 + 0.109496i −0.895902 0.444252i \(-0.853470\pi\)
0.832684 + 0.553748i \(0.186803\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −15.0000 25.9808i −0.628833 1.08917i −0.987786 0.155815i \(-0.950200\pi\)
0.358954 0.933355i \(-0.383134\pi\)
\(570\) 0 0
\(571\) 16.0000 27.7128i 0.669579 1.15975i −0.308443 0.951243i \(-0.599808\pi\)
0.978022 0.208502i \(-0.0668588\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 24.0000 1.00087
\(576\) 0 0
\(577\) 0.500000 0.866025i 0.0208153 0.0360531i −0.855430 0.517918i \(-0.826707\pi\)
0.876245 + 0.481865i \(0.160040\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −4.50000 23.3827i −0.186691 0.970077i
\(582\) 0 0
\(583\) 4.50000 + 7.79423i 0.186371 + 0.322804i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −27.0000 −1.11441 −0.557205 0.830375i \(-0.688126\pi\)
−0.557205 + 0.830375i \(0.688126\pi\)
\(588\) 0 0
\(589\) −14.0000 −0.576860
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −15.0000 25.9808i −0.615976 1.06690i −0.990212 0.139569i \(-0.955428\pi\)
0.374236 0.927333i \(-0.377905\pi\)
\(594\) 0 0
\(595\) 9.00000 + 46.7654i 0.368964 + 1.91719i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −15.0000 + 25.9808i −0.612883 + 1.06155i 0.377869 + 0.925859i \(0.376657\pi\)
−0.990752 + 0.135686i \(0.956676\pi\)
\(600\) 0 0
\(601\) 23.0000 0.938190 0.469095 0.883148i \(-0.344580\pi\)
0.469095 + 0.883148i \(0.344580\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 3.00000 5.19615i 0.121967 0.211254i
\(606\) 0 0
\(607\) −6.50000 11.2583i −0.263827 0.456962i 0.703429 0.710766i \(-0.251651\pi\)
−0.967256 + 0.253804i \(0.918318\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 12.0000 + 20.7846i 0.485468 + 0.840855i
\(612\) 0 0
\(613\) −13.0000 + 22.5167i −0.525065 + 0.909439i 0.474509 + 0.880251i \(0.342626\pi\)
−0.999574 + 0.0291886i \(0.990708\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 36.0000 1.44931 0.724653 0.689114i \(-0.242000\pi\)
0.724653 + 0.689114i \(0.242000\pi\)
\(618\) 0 0
\(619\) −2.00000 + 3.46410i −0.0803868 + 0.139234i −0.903416 0.428765i \(-0.858949\pi\)
0.823029 + 0.567999i \(0.192282\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −12.0000 + 10.3923i −0.480770 + 0.416359i
\(624\) 0 0
\(625\) 14.5000 + 25.1147i 0.580000 + 1.00459i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −60.0000 −2.39236
\(630\) 0 0
\(631\) 37.0000 1.47295 0.736473 0.676467i \(-0.236490\pi\)
0.736473 + 0.676467i \(0.236490\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −1.50000 2.59808i −0.0595257 0.103102i
\(636\) 0 0
\(637\) −13.0000 + 5.19615i −0.515079 + 0.205879i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 6.00000 10.3923i 0.236986 0.410471i −0.722862 0.690992i \(-0.757174\pi\)
0.959848 + 0.280521i \(0.0905072\pi\)
\(642\) 0 0
\(643\) −38.0000 −1.49857 −0.749287 0.662246i \(-0.769604\pi\)
−0.749287 + 0.662246i \(0.769604\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −6.00000 + 10.3923i −0.235884 + 0.408564i −0.959529 0.281609i \(-0.909132\pi\)
0.723645 + 0.690172i \(0.242465\pi\)
\(648\) 0 0
\(649\) −4.50000 7.79423i −0.176640 0.305950i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −19.5000 33.7750i −0.763094 1.32172i −0.941248 0.337715i \(-0.890346\pi\)
0.178154 0.984003i \(-0.442987\pi\)
\(654\) 0 0
\(655\) −22.5000 + 38.9711i −0.879148 + 1.52273i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 36.0000 1.40236 0.701180 0.712984i \(-0.252657\pi\)
0.701180 + 0.712984i \(0.252657\pi\)
\(660\) 0 0
\(661\) 20.0000 34.6410i 0.777910 1.34738i −0.155235 0.987878i \(-0.549613\pi\)
0.933144 0.359502i \(-0.117053\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 15.0000 + 5.19615i 0.581675 + 0.201498i
\(666\) 0 0
\(667\) −27.0000 46.7654i −1.04544 1.81076i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −12.0000 −0.463255
\(672\) 0 0
\(673\) 17.0000 0.655302 0.327651 0.944799i \(-0.393743\pi\)
0.327651 + 0.944799i \(0.393743\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 16.5000 + 28.5788i 0.634147 + 1.09837i 0.986695 + 0.162581i \(0.0519817\pi\)
−0.352549 + 0.935793i \(0.614685\pi\)
\(678\) 0 0
\(679\) −6.50000 33.7750i −0.249447 1.29617i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 25.5000 44.1673i 0.975730 1.69001i 0.298227 0.954495i \(-0.403605\pi\)
0.677503 0.735520i \(-0.263062\pi\)
\(684\) 0 0
\(685\) 18.0000 0.687745
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 3.00000 5.19615i 0.114291 0.197958i
\(690\) 0 0
\(691\) 16.0000 + 27.7128i 0.608669 + 1.05425i 0.991460 + 0.130410i \(0.0416295\pi\)
−0.382791 + 0.923835i \(0.625037\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 3.00000 + 5.19615i 0.113796 + 0.197101i
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 9.00000 0.339925 0.169963 0.985451i \(-0.445635\pi\)
0.169963 + 0.985451i \(0.445635\pi\)
\(702\) 0 0
\(703\) −10.0000 + 17.3205i −0.377157 + 0.653255i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −15.0000 5.19615i −0.564133 0.195421i
\(708\) 0 0
\(709\) −7.00000 12.1244i −0.262891 0.455340i 0.704118 0.710083i \(-0.251342\pi\)
−0.967009 + 0.254743i \(0.918009\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 42.0000 1.57291
\(714\) 0 0
\(715\) 18.0000 0.673162
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −21.0000 36.3731i −0.783168 1.35649i −0.930087 0.367338i \(-0.880269\pi\)
0.146920 0.989148i \(-0.453064\pi\)
\(720\) 0 0
\(721\) 32.0000 27.7128i 1.19174 1.03208i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −18.0000 + 31.1769i −0.668503 + 1.15788i
\(726\) 0 0
\(727\) 31.0000 1.14973 0.574863 0.818250i \(-0.305055\pi\)
0.574863 + 0.818250i \(0.305055\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −12.0000 + 20.7846i −0.443836 + 0.768747i
\(732\) 0 0
\(733\) −10.0000 17.3205i −0.369358 0.639748i 0.620107 0.784517i \(-0.287089\pi\)
−0.989465 + 0.144770i \(0.953756\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 3.00000 + 5.19615i 0.110506 + 0.191403i
\(738\) 0 0
\(739\) 13.0000 22.5167i 0.478213 0.828289i −0.521475 0.853266i \(-0.674618\pi\)
0.999688 + 0.0249776i \(0.00795146\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 54.0000 1.98107 0.990534 0.137268i \(-0.0438322\pi\)
0.990534 + 0.137268i \(0.0438322\pi\)
\(744\) 0 0
\(745\) 9.00000 15.5885i 0.329734 0.571117i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −6.00000 + 5.19615i −0.219235 + 0.189863i
\(750\) 0 0
\(751\) 11.5000 + 19.9186i 0.419641 + 0.726839i 0.995903 0.0904254i \(-0.0288227\pi\)
−0.576262 + 0.817265i \(0.695489\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −15.0000 −0.545906
\(756\) 0 0
\(757\) −28.0000 −1.01768 −0.508839 0.860862i \(-0.669925\pi\)
−0.508839 + 0.860862i \(0.669925\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 21.0000 + 36.3731i 0.761249 + 1.31852i 0.942207 + 0.335032i \(0.108747\pi\)
−0.180957 + 0.983491i \(0.557920\pi\)
\(762\) 0 0
\(763\) 25.0000 + 8.66025i 0.905061 + 0.313522i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −3.00000 + 5.19615i −0.108324 + 0.187622i
\(768\) 0 0
\(769\) 5.00000 0.180305 0.0901523 0.995928i \(-0.471265\pi\)
0.0901523 + 0.995928i \(0.471265\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −3.00000 + 5.19615i −0.107903 + 0.186893i −0.914920 0.403634i \(-0.867747\pi\)
0.807018 + 0.590527i \(0.201080\pi\)
\(774\) 0 0
\(775\) −14.0000 24.2487i −0.502895 0.871039i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −12.0000 −0.428298
\(786\) 0 0
\(787\) −8.00000 + 13.8564i −0.285169 + 0.493928i −0.972650 0.232275i \(-0.925383\pi\)
0.687481 + 0.726202i \(0.258716\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 4.00000 + 6.92820i 0.142044 + 0.246028i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 27.0000 0.956389 0.478195 0.878254i \(-0.341291\pi\)
0.478195 + 0.878254i \(0.341291\pi\)
\(798\) 0 0
\(799\) −72.0000 −2.54718
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −3.00000 5.19615i −0.105868 0.183368i
\(804\) 0 0
\(805\) −45.0000 15.5885i −1.58604 0.549421i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 6.00000 10.3923i 0.210949 0.365374i −0.741063 0.671436i \(-0.765678\pi\)
0.952012 + 0.306062i \(0.0990113\pi\)
\(810\) 0 0
\(811\) −2.00000 −0.0702295 −0.0351147 0.999383i \(-0.511180\pi\)
−0.0351147 + 0.999383i \(0.511180\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −15.0000 + 25.9808i −0.525427 + 0.910066i
\(816\) 0 0
\(817\) 4.00000 + 6.92820i 0.139942 + 0.242387i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 7.50000 + 12.9904i 0.261752 + 0.453367i 0.966708 0.255884i \(-0.0823665\pi\)
−0.704956 + 0.709251i \(0.749033\pi\)
\(822\) 0 0
\(823\) −8.00000 + 13.8564i −0.278862 + 0.483004i −0.971102 0.238664i \(-0.923291\pi\)
0.692240 + 0.721668i \(0.256624\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −9.00000 −0.312961 −0.156480 0.987681i \(-0.550015\pi\)
−0.156480 + 0.987681i \(0.550015\pi\)
\(828\) 0 0
\(829\) −1.00000 + 1.73205i −0.0347314 + 0.0601566i −0.882869 0.469620i \(-0.844391\pi\)
0.848137 + 0.529777i \(0.177724\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 6.00000 41.5692i 0.207888 1.44029i
\(834\) 0 0
\(835\) −27.0000 46.7654i −0.934374 1.61838i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 54.0000 1.86429 0.932144 0.362089i \(-0.117936\pi\)
0.932144 + 0.362089i \(0.117936\pi\)
\(840\) 0 0
\(841\) 52.0000 1.79310
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 13.5000 + 23.3827i 0.464414 + 0.804389i
\(846\) 0 0
\(847\) −4.00000 + 3.46410i −0.137442 + 0.119028i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 30.0000 51.9615i 1.02839 1.78122i
\(852\) 0 0
\(853\) −46.0000 −1.57501 −0.787505 0.616308i \(-0.788628\pi\)
−0.787505 + 0.616308i \(0.788628\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 6.00000 10.3923i 0.204956 0.354994i −0.745163 0.666883i \(-0.767628\pi\)
0.950119 + 0.311888i \(0.100962\pi\)
\(858\) 0 0
\(859\) −8.00000 13.8564i −0.272956 0.472774i 0.696661 0.717400i \(-0.254668\pi\)
−0.969618 + 0.244626i \(0.921335\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −3.00000 5.19615i −0.102121 0.176879i 0.810437 0.585826i \(-0.199230\pi\)
−0.912558 + 0.408946i \(0.865896\pi\)
\(864\) 0 0
\(865\) 9.00000 15.5885i 0.306009 0.530023i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −15.0000 −0.508840
\(870\) 0 0
\(871\) 2.00000 3.46410i 0.0677674 0.117377i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −1.50000 7.79423i −0.0507093 0.263493i
\(876\) 0 0
\(877\) −28.0000 48.4974i −0.945493 1.63764i −0.754761 0.655999i \(-0.772247\pi\)
−0.190731 0.981642i \(-0.561086\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −18.0000 −0.606435 −0.303218 0.952921i \(-0.598061\pi\)
−0.303218 + 0.952921i \(0.598061\pi\)
\(882\) 0 0
\(883\) −20.0000 −0.673054 −0.336527 0.941674i \(-0.609252\pi\)
−0.336527 + 0.941674i \(0.609252\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −3.00000 5.19615i −0.100730 0.174470i 0.811256 0.584692i \(-0.198785\pi\)
−0.911986 + 0.410222i \(0.865451\pi\)
\(888\) 0 0
\(889\) 0.500000 + 2.59808i 0.0167695 + 0.0871367i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −12.0000 + 20.7846i −0.401565 + 0.695530i
\(894\) 0 0
\(895\) 36.0000 1.20335
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −31.5000 + 54.5596i −1.05058 + 1.81966i
\(900\) 0 0
\(901\) 9.00000 + 15.5885i 0.299833 + 0.519327i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −30.0000 51.9615i −0.997234 1.72726i
\(906\) 0 0
\(907\) 25.0000 43.3013i 0.830111 1.43780i −0.0678380 0.997696i \(-0.521610\pi\)
0.897949 0.440099i \(-0.145057\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(912\) 0 0
\(913\) 13.5000 23.3827i 0.446785 0.773854i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 30.0000 25.9808i 0.990687 0.857960i
\(918\) 0 0
\(919\) −14.0000 24.2487i −0.461817 0.799891i 0.537234 0.843433i \(-0.319469\pi\)
−0.999052 + 0.0435419i \(0.986136\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) −40.0000 −1.31519
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 12.0000 + 20.7846i 0.393707 + 0.681921i 0.992935 0.118657i \(-0.0378590\pi\)
−0.599228 + 0.800578i \(0.704526\pi\)
\(930\) 0 0
\(931\) −11.0000 8.66025i −0.360510 0.283828i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −27.0000 + 46.7654i −0.882994 + 1.52939i
\(936\) 0 0
\(937\) −37.0000 −1.20874 −0.604369 0.796705i \(-0.706575\pi\)
−0.604369 + 0.796705i \(0.706575\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −7.50000 + 12.9904i −0.244493 + 0.423474i −0.961989 0.273088i \(-0.911955\pi\)
0.717496 + 0.696563i \(0.245288\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 6.00000 + 10.3923i 0.194974 + 0.337705i 0.946892 0.321552i \(-0.104204\pi\)
−0.751918 + 0.659256i \(0.770871\pi\)
\(948\) 0 0
\(949\) −2.00000 + 3.46410i −0.0649227 + 0.112449i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −36.0000 −1.16615 −0.583077 0.812417i \(-0.698151\pi\)
−0.583077 + 0.812417i \(0.698151\pi\)
\(954\) 0 0
\(955\) 18.0000 31.1769i 0.582466 1.00886i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −15.0000 5.19615i −0.484375 0.167793i
\(960\) 0 0
\(961\) −9.00000 15.5885i −0.290323 0.502853i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −21.0000 −0.676014
\(966\) 0 0
\(967\) −29.0000 −0.932577 −0.466289 0.884633i \(-0.654409\pi\)
−0.466289 + 0.884633i \(0.654409\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 19.5000 + 33.7750i 0.625785 + 1.08389i 0.988389 + 0.151948i \(0.0485545\pi\)
−0.362604 + 0.931943i \(0.618112\pi\)
\(972\) 0 0
\(973\) −1.00000 5.19615i −0.0320585 0.166581i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 6.00000 10.3923i 0.191957 0.332479i −0.753942 0.656941i \(-0.771850\pi\)
0.945899 + 0.324462i \(0.105183\pi\)
\(978\) 0 0
\(979\) −18.0000 −0.575282
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 12.0000 20.7846i 0.382741 0.662926i −0.608712 0.793391i \(-0.708314\pi\)
0.991453 + 0.130465i \(0.0416470\pi\)
\(984\) 0 0
\(985\) 27.0000 + 46.7654i 0.860292 + 1.49007i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −12.0000 20.7846i −0.381578 0.660912i
\(990\) 0 0
\(991\) −9.50000 + 16.4545i −0.301777 + 0.522694i −0.976539 0.215342i \(-0.930913\pi\)
0.674761 + 0.738036i \(0.264247\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −24.0000 −0.760851
\(996\) 0 0
\(997\) 11.0000 19.0526i 0.348373 0.603401i −0.637587 0.770378i \(-0.720067\pi\)
0.985961 + 0.166978i \(0.0534008\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1008.2.s.b.865.1 2
3.2 odd 2 1008.2.s.o.865.1 2
4.3 odd 2 126.2.g.a.109.1 yes 2
7.2 even 3 inner 1008.2.s.b.289.1 2
7.3 odd 6 7056.2.a.h.1.1 1
7.4 even 3 7056.2.a.by.1.1 1
12.11 even 2 126.2.g.d.109.1 yes 2
21.2 odd 6 1008.2.s.o.289.1 2
21.11 odd 6 7056.2.a.e.1.1 1
21.17 even 6 7056.2.a.bx.1.1 1
28.3 even 6 882.2.a.h.1.1 1
28.11 odd 6 882.2.a.j.1.1 1
28.19 even 6 882.2.g.e.667.1 2
28.23 odd 6 126.2.g.a.37.1 2
28.27 even 2 882.2.g.e.361.1 2
36.7 odd 6 1134.2.h.f.109.1 2
36.11 even 6 1134.2.h.j.109.1 2
36.23 even 6 1134.2.e.g.865.1 2
36.31 odd 6 1134.2.e.k.865.1 2
84.11 even 6 882.2.a.a.1.1 1
84.23 even 6 126.2.g.d.37.1 yes 2
84.47 odd 6 882.2.g.g.667.1 2
84.59 odd 6 882.2.a.e.1.1 1
84.83 odd 2 882.2.g.g.361.1 2
252.23 even 6 1134.2.h.j.541.1 2
252.79 odd 6 1134.2.e.k.919.1 2
252.191 even 6 1134.2.e.g.919.1 2
252.247 odd 6 1134.2.h.f.541.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
126.2.g.a.37.1 2 28.23 odd 6
126.2.g.a.109.1 yes 2 4.3 odd 2
126.2.g.d.37.1 yes 2 84.23 even 6
126.2.g.d.109.1 yes 2 12.11 even 2
882.2.a.a.1.1 1 84.11 even 6
882.2.a.e.1.1 1 84.59 odd 6
882.2.a.h.1.1 1 28.3 even 6
882.2.a.j.1.1 1 28.11 odd 6
882.2.g.e.361.1 2 28.27 even 2
882.2.g.e.667.1 2 28.19 even 6
882.2.g.g.361.1 2 84.83 odd 2
882.2.g.g.667.1 2 84.47 odd 6
1008.2.s.b.289.1 2 7.2 even 3 inner
1008.2.s.b.865.1 2 1.1 even 1 trivial
1008.2.s.o.289.1 2 21.2 odd 6
1008.2.s.o.865.1 2 3.2 odd 2
1134.2.e.g.865.1 2 36.23 even 6
1134.2.e.g.919.1 2 252.191 even 6
1134.2.e.k.865.1 2 36.31 odd 6
1134.2.e.k.919.1 2 252.79 odd 6
1134.2.h.f.109.1 2 36.7 odd 6
1134.2.h.f.541.1 2 252.247 odd 6
1134.2.h.j.109.1 2 36.11 even 6
1134.2.h.j.541.1 2 252.23 even 6
7056.2.a.e.1.1 1 21.11 odd 6
7056.2.a.h.1.1 1 7.3 odd 6
7056.2.a.bx.1.1 1 21.17 even 6
7056.2.a.by.1.1 1 7.4 even 3