Properties

Label 1008.2.r.h
Level $1008$
Weight $2$
Character orbit 1008.r
Analytic conductor $8.049$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1008,2,Mod(337,1008)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1008, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 2, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1008.337");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1008 = 2^{4} \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1008.r (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(8.04892052375\)
Analytic rank: \(0\)
Dimension: \(6\)
Relative dimension: \(3\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\zeta_{18})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{3} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 3 \)
Twist minimal: no (minimal twist has level 63)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{5}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\beta_{4} + \beta_{2}) q^{3} + (\beta_{5} + \beta_1 - 1) q^{5} + \beta_1 q^{7} + ( - \beta_{5} - \beta_{4} + \beta_{2}) q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q + (\beta_{4} + \beta_{2}) q^{3} + (\beta_{5} + \beta_1 - 1) q^{5} + \beta_1 q^{7} + ( - \beta_{5} - \beta_{4} + \beta_{2}) q^{9} + ( - \beta_{5} + \beta_{4} + \cdots + 2 \beta_1) q^{11}+ \cdots + ( - 3 \beta_{4} - 6 \beta_{3} + \cdots - 3) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 3 q^{5} + 3 q^{7}+O(q^{10}) \) Copy content Toggle raw display \( 6 q - 3 q^{5} + 3 q^{7} + 6 q^{11} + 3 q^{13} + 9 q^{15} + 12 q^{17} + 6 q^{19} + 12 q^{23} + 6 q^{25} - 27 q^{27} - 9 q^{29} - 3 q^{31} - 6 q^{35} - 6 q^{37} + 18 q^{39} - 3 q^{43} + 9 q^{45} + 3 q^{47} - 3 q^{49} - 9 q^{51} + 12 q^{53} - 9 q^{57} - 3 q^{59} - 6 q^{61} - 15 q^{65} - 12 q^{67} - 9 q^{69} - 18 q^{71} - 42 q^{73} + 9 q^{75} - 6 q^{77} - 21 q^{79} - 18 q^{83} - 9 q^{85} - 9 q^{87} + 24 q^{89} + 6 q^{91} - 27 q^{93} - 12 q^{95} + 3 q^{97} - 18 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring

\(\beta_{1}\)\(=\) \( \zeta_{18}^{3} \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \zeta_{18}^{5} + \zeta_{18} \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( -\zeta_{18}^{4} + \zeta_{18}^{2} + \zeta_{18} \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( -\zeta_{18}^{5} + \zeta_{18}^{4} \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( -\zeta_{18}^{5} - \zeta_{18}^{4} + \zeta_{18} \) Copy content Toggle raw display
\(\zeta_{18}\)\(=\) \( ( \beta_{5} + \beta_{4} + 2\beta_{2} ) / 3 \) Copy content Toggle raw display
\(\zeta_{18}^{2}\)\(=\) \( ( -2\beta_{5} + \beta_{4} + 3\beta_{3} - \beta_{2} ) / 3 \) Copy content Toggle raw display
\(\zeta_{18}^{3}\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\zeta_{18}^{4}\)\(=\) \( ( -\beta_{5} + 2\beta_{4} + \beta_{2} ) / 3 \) Copy content Toggle raw display
\(\zeta_{18}^{5}\)\(=\) \( ( -\beta_{5} - \beta_{4} + \beta_{2} ) / 3 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1008\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(577\) \(757\) \(785\)
\(\chi(n)\) \(1\) \(1\) \(1\) \(-1 + \beta_{1}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
337.1
−0.766044 + 0.642788i
−0.173648 0.984808i
0.939693 + 0.342020i
−0.766044 0.642788i
−0.173648 + 0.984808i
0.939693 0.342020i
0 −1.70574 + 0.300767i 0 −1.26604 + 2.19285i 0 0.500000 + 0.866025i 0 2.81908 1.02606i 0
337.2 0 0.592396 1.62760i 0 −0.673648 + 1.16679i 0 0.500000 + 0.866025i 0 −2.29813 1.92836i 0
337.3 0 1.11334 + 1.32683i 0 0.439693 0.761570i 0 0.500000 + 0.866025i 0 −0.520945 + 2.95442i 0
673.1 0 −1.70574 0.300767i 0 −1.26604 2.19285i 0 0.500000 0.866025i 0 2.81908 + 1.02606i 0
673.2 0 0.592396 + 1.62760i 0 −0.673648 1.16679i 0 0.500000 0.866025i 0 −2.29813 + 1.92836i 0
673.3 0 1.11334 1.32683i 0 0.439693 + 0.761570i 0 0.500000 0.866025i 0 −0.520945 2.95442i 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 337.3
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
9.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1008.2.r.h 6
3.b odd 2 1 3024.2.r.k 6
4.b odd 2 1 63.2.f.a 6
9.c even 3 1 inner 1008.2.r.h 6
9.c even 3 1 9072.2.a.ca 3
9.d odd 6 1 3024.2.r.k 6
9.d odd 6 1 9072.2.a.bs 3
12.b even 2 1 189.2.f.b 6
28.d even 2 1 441.2.f.c 6
28.f even 6 1 441.2.g.b 6
28.f even 6 1 441.2.h.e 6
28.g odd 6 1 441.2.g.c 6
28.g odd 6 1 441.2.h.d 6
36.f odd 6 1 63.2.f.a 6
36.f odd 6 1 567.2.a.h 3
36.h even 6 1 189.2.f.b 6
36.h even 6 1 567.2.a.c 3
84.h odd 2 1 1323.2.f.d 6
84.j odd 6 1 1323.2.g.e 6
84.j odd 6 1 1323.2.h.b 6
84.n even 6 1 1323.2.g.d 6
84.n even 6 1 1323.2.h.c 6
252.n even 6 1 441.2.h.e 6
252.o even 6 1 1323.2.h.c 6
252.r odd 6 1 1323.2.g.e 6
252.s odd 6 1 1323.2.f.d 6
252.s odd 6 1 3969.2.a.l 3
252.u odd 6 1 441.2.g.c 6
252.bb even 6 1 1323.2.g.d 6
252.bi even 6 1 441.2.f.c 6
252.bi even 6 1 3969.2.a.q 3
252.bj even 6 1 441.2.g.b 6
252.bl odd 6 1 441.2.h.d 6
252.bn odd 6 1 1323.2.h.b 6
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
63.2.f.a 6 4.b odd 2 1
63.2.f.a 6 36.f odd 6 1
189.2.f.b 6 12.b even 2 1
189.2.f.b 6 36.h even 6 1
441.2.f.c 6 28.d even 2 1
441.2.f.c 6 252.bi even 6 1
441.2.g.b 6 28.f even 6 1
441.2.g.b 6 252.bj even 6 1
441.2.g.c 6 28.g odd 6 1
441.2.g.c 6 252.u odd 6 1
441.2.h.d 6 28.g odd 6 1
441.2.h.d 6 252.bl odd 6 1
441.2.h.e 6 28.f even 6 1
441.2.h.e 6 252.n even 6 1
567.2.a.c 3 36.h even 6 1
567.2.a.h 3 36.f odd 6 1
1008.2.r.h 6 1.a even 1 1 trivial
1008.2.r.h 6 9.c even 3 1 inner
1323.2.f.d 6 84.h odd 2 1
1323.2.f.d 6 252.s odd 6 1
1323.2.g.d 6 84.n even 6 1
1323.2.g.d 6 252.bb even 6 1
1323.2.g.e 6 84.j odd 6 1
1323.2.g.e 6 252.r odd 6 1
1323.2.h.b 6 84.j odd 6 1
1323.2.h.b 6 252.bn odd 6 1
1323.2.h.c 6 84.n even 6 1
1323.2.h.c 6 252.o even 6 1
3024.2.r.k 6 3.b odd 2 1
3024.2.r.k 6 9.d odd 6 1
3969.2.a.l 3 252.s odd 6 1
3969.2.a.q 3 252.bi even 6 1
9072.2.a.bs 3 9.d odd 6 1
9072.2.a.ca 3 9.c even 3 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(1008, [\chi])\):

\( T_{5}^{6} + 3T_{5}^{5} + 9T_{5}^{4} + 6T_{5}^{3} + 9T_{5}^{2} + 9 \) Copy content Toggle raw display
\( T_{11}^{6} - 6T_{11}^{5} + 27T_{11}^{4} - 48T_{11}^{3} + 63T_{11}^{2} - 27T_{11} + 9 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{6} \) Copy content Toggle raw display
$3$ \( T^{6} + 9T^{3} + 27 \) Copy content Toggle raw display
$5$ \( T^{6} + 3 T^{5} + \cdots + 9 \) Copy content Toggle raw display
$7$ \( (T^{2} - T + 1)^{3} \) Copy content Toggle raw display
$11$ \( T^{6} - 6 T^{5} + \cdots + 9 \) Copy content Toggle raw display
$13$ \( T^{6} - 3 T^{5} + \cdots + 11449 \) Copy content Toggle raw display
$17$ \( (T^{3} - 6 T^{2} + 9 T - 3)^{2} \) Copy content Toggle raw display
$19$ \( (T^{3} - 3 T^{2} - 6 T + 17)^{2} \) Copy content Toggle raw display
$23$ \( T^{6} - 12 T^{5} + \cdots + 9 \) Copy content Toggle raw display
$29$ \( T^{6} + 9 T^{5} + \cdots + 110889 \) Copy content Toggle raw display
$31$ \( T^{6} + 3 T^{5} + \cdots + 104329 \) Copy content Toggle raw display
$37$ \( (T^{3} + 3 T^{2} + \cdots - 323)^{2} \) Copy content Toggle raw display
$41$ \( T^{6} + 9 T^{4} + \cdots + 81 \) Copy content Toggle raw display
$43$ \( T^{6} + 3 T^{5} + \cdots + 1 \) Copy content Toggle raw display
$47$ \( T^{6} - 3 T^{5} + \cdots + 2601 \) Copy content Toggle raw display
$53$ \( (T^{3} - 6 T^{2} - 9 T - 3)^{2} \) Copy content Toggle raw display
$59$ \( T^{6} + 3 T^{5} + \cdots + 2601 \) Copy content Toggle raw display
$61$ \( T^{6} + 6 T^{5} + \cdots + 361 \) Copy content Toggle raw display
$67$ \( T^{6} + 12 T^{5} + \cdots + 289 \) Copy content Toggle raw display
$71$ \( (T^{3} + 9 T^{2} - 54 T + 27)^{2} \) Copy content Toggle raw display
$73$ \( (T^{3} + 21 T^{2} + \cdots - 269)^{2} \) Copy content Toggle raw display
$79$ \( T^{6} + 21 T^{5} + \cdots + 32761 \) Copy content Toggle raw display
$83$ \( T^{6} + 18 T^{5} + \cdots + 81 \) Copy content Toggle raw display
$89$ \( (T^{3} - 12 T^{2} + \cdots + 813)^{2} \) Copy content Toggle raw display
$97$ \( T^{6} - 3 T^{5} + \cdots + 104329 \) Copy content Toggle raw display
show more
show less