Properties

Label 1008.2.r.c.337.1
Level $1008$
Weight $2$
Character 1008.337
Analytic conductor $8.049$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1008,2,Mod(337,1008)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1008, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 2, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1008.337");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1008 = 2^{4} \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1008.r (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(8.04892052375\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 504)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 337.1
Root \(0.500000 - 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 1008.337
Dual form 1008.2.r.c.673.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.73205i q^{3} +(0.500000 - 0.866025i) q^{5} +(0.500000 + 0.866025i) q^{7} -3.00000 q^{9} +O(q^{10})\) \(q-1.73205i q^{3} +(0.500000 - 0.866025i) q^{5} +(0.500000 + 0.866025i) q^{7} -3.00000 q^{9} +(-3.00000 - 5.19615i) q^{11} +(-3.00000 + 5.19615i) q^{13} +(-1.50000 - 0.866025i) q^{15} -2.00000 q^{17} -7.00000 q^{19} +(1.50000 - 0.866025i) q^{21} +(-0.500000 + 0.866025i) q^{23} +(2.00000 + 3.46410i) q^{25} +5.19615i q^{27} +(-1.00000 - 1.73205i) q^{29} +(5.00000 - 8.66025i) q^{31} +(-9.00000 + 5.19615i) q^{33} +1.00000 q^{35} -6.00000 q^{37} +(9.00000 + 5.19615i) q^{39} +(4.00000 - 6.92820i) q^{41} +(-5.00000 - 8.66025i) q^{43} +(-1.50000 + 2.59808i) q^{45} +(4.00000 + 6.92820i) q^{47} +(-0.500000 + 0.866025i) q^{49} +3.46410i q^{51} +2.00000 q^{53} -6.00000 q^{55} +12.1244i q^{57} +(-3.50000 - 6.06218i) q^{61} +(-1.50000 - 2.59808i) q^{63} +(3.00000 + 5.19615i) q^{65} +(-6.00000 + 10.3923i) q^{67} +(1.50000 + 0.866025i) q^{69} -15.0000 q^{71} -2.00000 q^{73} +(6.00000 - 3.46410i) q^{75} +(3.00000 - 5.19615i) q^{77} +(0.500000 + 0.866025i) q^{79} +9.00000 q^{81} +(6.00000 + 10.3923i) q^{83} +(-1.00000 + 1.73205i) q^{85} +(-3.00000 + 1.73205i) q^{87} +4.00000 q^{89} -6.00000 q^{91} +(-15.0000 - 8.66025i) q^{93} +(-3.50000 + 6.06218i) q^{95} +(1.00000 + 1.73205i) q^{97} +(9.00000 + 15.5885i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + q^{5} + q^{7} - 6 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q + q^{5} + q^{7} - 6 q^{9} - 6 q^{11} - 6 q^{13} - 3 q^{15} - 4 q^{17} - 14 q^{19} + 3 q^{21} - q^{23} + 4 q^{25} - 2 q^{29} + 10 q^{31} - 18 q^{33} + 2 q^{35} - 12 q^{37} + 18 q^{39} + 8 q^{41} - 10 q^{43} - 3 q^{45} + 8 q^{47} - q^{49} + 4 q^{53} - 12 q^{55} - 7 q^{61} - 3 q^{63} + 6 q^{65} - 12 q^{67} + 3 q^{69} - 30 q^{71} - 4 q^{73} + 12 q^{75} + 6 q^{77} + q^{79} + 18 q^{81} + 12 q^{83} - 2 q^{85} - 6 q^{87} + 8 q^{89} - 12 q^{91} - 30 q^{93} - 7 q^{95} + 2 q^{97} + 18 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1008\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(577\) \(757\) \(785\)
\(\chi(n)\) \(1\) \(1\) \(1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.73205i 1.00000i
\(4\) 0 0
\(5\) 0.500000 0.866025i 0.223607 0.387298i −0.732294 0.680989i \(-0.761550\pi\)
0.955901 + 0.293691i \(0.0948835\pi\)
\(6\) 0 0
\(7\) 0.500000 + 0.866025i 0.188982 + 0.327327i
\(8\) 0 0
\(9\) −3.00000 −1.00000
\(10\) 0 0
\(11\) −3.00000 5.19615i −0.904534 1.56670i −0.821541 0.570149i \(-0.806886\pi\)
−0.0829925 0.996550i \(-0.526448\pi\)
\(12\) 0 0
\(13\) −3.00000 + 5.19615i −0.832050 + 1.44115i 0.0643593 + 0.997927i \(0.479500\pi\)
−0.896410 + 0.443227i \(0.853834\pi\)
\(14\) 0 0
\(15\) −1.50000 0.866025i −0.387298 0.223607i
\(16\) 0 0
\(17\) −2.00000 −0.485071 −0.242536 0.970143i \(-0.577979\pi\)
−0.242536 + 0.970143i \(0.577979\pi\)
\(18\) 0 0
\(19\) −7.00000 −1.60591 −0.802955 0.596040i \(-0.796740\pi\)
−0.802955 + 0.596040i \(0.796740\pi\)
\(20\) 0 0
\(21\) 1.50000 0.866025i 0.327327 0.188982i
\(22\) 0 0
\(23\) −0.500000 + 0.866025i −0.104257 + 0.180579i −0.913434 0.406986i \(-0.866580\pi\)
0.809177 + 0.587565i \(0.199913\pi\)
\(24\) 0 0
\(25\) 2.00000 + 3.46410i 0.400000 + 0.692820i
\(26\) 0 0
\(27\) 5.19615i 1.00000i
\(28\) 0 0
\(29\) −1.00000 1.73205i −0.185695 0.321634i 0.758115 0.652121i \(-0.226120\pi\)
−0.943811 + 0.330487i \(0.892787\pi\)
\(30\) 0 0
\(31\) 5.00000 8.66025i 0.898027 1.55543i 0.0680129 0.997684i \(-0.478334\pi\)
0.830014 0.557743i \(-0.188333\pi\)
\(32\) 0 0
\(33\) −9.00000 + 5.19615i −1.56670 + 0.904534i
\(34\) 0 0
\(35\) 1.00000 0.169031
\(36\) 0 0
\(37\) −6.00000 −0.986394 −0.493197 0.869918i \(-0.664172\pi\)
−0.493197 + 0.869918i \(0.664172\pi\)
\(38\) 0 0
\(39\) 9.00000 + 5.19615i 1.44115 + 0.832050i
\(40\) 0 0
\(41\) 4.00000 6.92820i 0.624695 1.08200i −0.363905 0.931436i \(-0.618557\pi\)
0.988600 0.150567i \(-0.0481100\pi\)
\(42\) 0 0
\(43\) −5.00000 8.66025i −0.762493 1.32068i −0.941562 0.336840i \(-0.890642\pi\)
0.179069 0.983836i \(-0.442691\pi\)
\(44\) 0 0
\(45\) −1.50000 + 2.59808i −0.223607 + 0.387298i
\(46\) 0 0
\(47\) 4.00000 + 6.92820i 0.583460 + 1.01058i 0.995066 + 0.0992202i \(0.0316348\pi\)
−0.411606 + 0.911362i \(0.635032\pi\)
\(48\) 0 0
\(49\) −0.500000 + 0.866025i −0.0714286 + 0.123718i
\(50\) 0 0
\(51\) 3.46410i 0.485071i
\(52\) 0 0
\(53\) 2.00000 0.274721 0.137361 0.990521i \(-0.456138\pi\)
0.137361 + 0.990521i \(0.456138\pi\)
\(54\) 0 0
\(55\) −6.00000 −0.809040
\(56\) 0 0
\(57\) 12.1244i 1.60591i
\(58\) 0 0
\(59\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(60\) 0 0
\(61\) −3.50000 6.06218i −0.448129 0.776182i 0.550135 0.835076i \(-0.314576\pi\)
−0.998264 + 0.0588933i \(0.981243\pi\)
\(62\) 0 0
\(63\) −1.50000 2.59808i −0.188982 0.327327i
\(64\) 0 0
\(65\) 3.00000 + 5.19615i 0.372104 + 0.644503i
\(66\) 0 0
\(67\) −6.00000 + 10.3923i −0.733017 + 1.26962i 0.222571 + 0.974916i \(0.428555\pi\)
−0.955588 + 0.294706i \(0.904778\pi\)
\(68\) 0 0
\(69\) 1.50000 + 0.866025i 0.180579 + 0.104257i
\(70\) 0 0
\(71\) −15.0000 −1.78017 −0.890086 0.455792i \(-0.849356\pi\)
−0.890086 + 0.455792i \(0.849356\pi\)
\(72\) 0 0
\(73\) −2.00000 −0.234082 −0.117041 0.993127i \(-0.537341\pi\)
−0.117041 + 0.993127i \(0.537341\pi\)
\(74\) 0 0
\(75\) 6.00000 3.46410i 0.692820 0.400000i
\(76\) 0 0
\(77\) 3.00000 5.19615i 0.341882 0.592157i
\(78\) 0 0
\(79\) 0.500000 + 0.866025i 0.0562544 + 0.0974355i 0.892781 0.450490i \(-0.148751\pi\)
−0.836527 + 0.547926i \(0.815418\pi\)
\(80\) 0 0
\(81\) 9.00000 1.00000
\(82\) 0 0
\(83\) 6.00000 + 10.3923i 0.658586 + 1.14070i 0.980982 + 0.194099i \(0.0621783\pi\)
−0.322396 + 0.946605i \(0.604488\pi\)
\(84\) 0 0
\(85\) −1.00000 + 1.73205i −0.108465 + 0.187867i
\(86\) 0 0
\(87\) −3.00000 + 1.73205i −0.321634 + 0.185695i
\(88\) 0 0
\(89\) 4.00000 0.423999 0.212000 0.977270i \(-0.432002\pi\)
0.212000 + 0.977270i \(0.432002\pi\)
\(90\) 0 0
\(91\) −6.00000 −0.628971
\(92\) 0 0
\(93\) −15.0000 8.66025i −1.55543 0.898027i
\(94\) 0 0
\(95\) −3.50000 + 6.06218i −0.359092 + 0.621966i
\(96\) 0 0
\(97\) 1.00000 + 1.73205i 0.101535 + 0.175863i 0.912317 0.409484i \(-0.134291\pi\)
−0.810782 + 0.585348i \(0.800958\pi\)
\(98\) 0 0
\(99\) 9.00000 + 15.5885i 0.904534 + 1.56670i
\(100\) 0 0
\(101\) −1.50000 2.59808i −0.149256 0.258518i 0.781697 0.623658i \(-0.214354\pi\)
−0.930953 + 0.365140i \(0.881021\pi\)
\(102\) 0 0
\(103\) 3.00000 5.19615i 0.295599 0.511992i −0.679525 0.733652i \(-0.737814\pi\)
0.975124 + 0.221660i \(0.0711475\pi\)
\(104\) 0 0
\(105\) 1.73205i 0.169031i
\(106\) 0 0
\(107\) −12.0000 −1.16008 −0.580042 0.814587i \(-0.696964\pi\)
−0.580042 + 0.814587i \(0.696964\pi\)
\(108\) 0 0
\(109\) 10.0000 0.957826 0.478913 0.877862i \(-0.341031\pi\)
0.478913 + 0.877862i \(0.341031\pi\)
\(110\) 0 0
\(111\) 10.3923i 0.986394i
\(112\) 0 0
\(113\) 4.50000 7.79423i 0.423324 0.733219i −0.572938 0.819599i \(-0.694196\pi\)
0.996262 + 0.0863794i \(0.0275297\pi\)
\(114\) 0 0
\(115\) 0.500000 + 0.866025i 0.0466252 + 0.0807573i
\(116\) 0 0
\(117\) 9.00000 15.5885i 0.832050 1.44115i
\(118\) 0 0
\(119\) −1.00000 1.73205i −0.0916698 0.158777i
\(120\) 0 0
\(121\) −12.5000 + 21.6506i −1.13636 + 1.96824i
\(122\) 0 0
\(123\) −12.0000 6.92820i −1.08200 0.624695i
\(124\) 0 0
\(125\) 9.00000 0.804984
\(126\) 0 0
\(127\) −5.00000 −0.443678 −0.221839 0.975083i \(-0.571206\pi\)
−0.221839 + 0.975083i \(0.571206\pi\)
\(128\) 0 0
\(129\) −15.0000 + 8.66025i −1.32068 + 0.762493i
\(130\) 0 0
\(131\) 8.50000 14.7224i 0.742648 1.28630i −0.208637 0.977993i \(-0.566903\pi\)
0.951285 0.308312i \(-0.0997640\pi\)
\(132\) 0 0
\(133\) −3.50000 6.06218i −0.303488 0.525657i
\(134\) 0 0
\(135\) 4.50000 + 2.59808i 0.387298 + 0.223607i
\(136\) 0 0
\(137\) −7.00000 12.1244i −0.598050 1.03585i −0.993109 0.117198i \(-0.962609\pi\)
0.395058 0.918656i \(-0.370724\pi\)
\(138\) 0 0
\(139\) 1.50000 2.59808i 0.127228 0.220366i −0.795373 0.606120i \(-0.792725\pi\)
0.922602 + 0.385754i \(0.126059\pi\)
\(140\) 0 0
\(141\) 12.0000 6.92820i 1.01058 0.583460i
\(142\) 0 0
\(143\) 36.0000 3.01047
\(144\) 0 0
\(145\) −2.00000 −0.166091
\(146\) 0 0
\(147\) 1.50000 + 0.866025i 0.123718 + 0.0714286i
\(148\) 0 0
\(149\) 7.00000 12.1244i 0.573462 0.993266i −0.422744 0.906249i \(-0.638933\pi\)
0.996207 0.0870170i \(-0.0277334\pi\)
\(150\) 0 0
\(151\) −2.50000 4.33013i −0.203447 0.352381i 0.746190 0.665733i \(-0.231881\pi\)
−0.949637 + 0.313353i \(0.898548\pi\)
\(152\) 0 0
\(153\) 6.00000 0.485071
\(154\) 0 0
\(155\) −5.00000 8.66025i −0.401610 0.695608i
\(156\) 0 0
\(157\) 7.50000 12.9904i 0.598565 1.03675i −0.394468 0.918910i \(-0.629071\pi\)
0.993033 0.117836i \(-0.0375956\pi\)
\(158\) 0 0
\(159\) 3.46410i 0.274721i
\(160\) 0 0
\(161\) −1.00000 −0.0788110
\(162\) 0 0
\(163\) −10.0000 −0.783260 −0.391630 0.920123i \(-0.628089\pi\)
−0.391630 + 0.920123i \(0.628089\pi\)
\(164\) 0 0
\(165\) 10.3923i 0.809040i
\(166\) 0 0
\(167\) 6.00000 10.3923i 0.464294 0.804181i −0.534875 0.844931i \(-0.679641\pi\)
0.999169 + 0.0407502i \(0.0129748\pi\)
\(168\) 0 0
\(169\) −11.5000 19.9186i −0.884615 1.53220i
\(170\) 0 0
\(171\) 21.0000 1.60591
\(172\) 0 0
\(173\) −7.00000 12.1244i −0.532200 0.921798i −0.999293 0.0375896i \(-0.988032\pi\)
0.467093 0.884208i \(-0.345301\pi\)
\(174\) 0 0
\(175\) −2.00000 + 3.46410i −0.151186 + 0.261861i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 10.0000 0.747435 0.373718 0.927543i \(-0.378083\pi\)
0.373718 + 0.927543i \(0.378083\pi\)
\(180\) 0 0
\(181\) 5.00000 0.371647 0.185824 0.982583i \(-0.440505\pi\)
0.185824 + 0.982583i \(0.440505\pi\)
\(182\) 0 0
\(183\) −10.5000 + 6.06218i −0.776182 + 0.448129i
\(184\) 0 0
\(185\) −3.00000 + 5.19615i −0.220564 + 0.382029i
\(186\) 0 0
\(187\) 6.00000 + 10.3923i 0.438763 + 0.759961i
\(188\) 0 0
\(189\) −4.50000 + 2.59808i −0.327327 + 0.188982i
\(190\) 0 0
\(191\) −2.50000 4.33013i −0.180894 0.313317i 0.761291 0.648410i \(-0.224566\pi\)
−0.942185 + 0.335093i \(0.891232\pi\)
\(192\) 0 0
\(193\) −4.50000 + 7.79423i −0.323917 + 0.561041i −0.981293 0.192522i \(-0.938333\pi\)
0.657376 + 0.753563i \(0.271667\pi\)
\(194\) 0 0
\(195\) 9.00000 5.19615i 0.644503 0.372104i
\(196\) 0 0
\(197\) 6.00000 0.427482 0.213741 0.976890i \(-0.431435\pi\)
0.213741 + 0.976890i \(0.431435\pi\)
\(198\) 0 0
\(199\) −2.00000 −0.141776 −0.0708881 0.997484i \(-0.522583\pi\)
−0.0708881 + 0.997484i \(0.522583\pi\)
\(200\) 0 0
\(201\) 18.0000 + 10.3923i 1.26962 + 0.733017i
\(202\) 0 0
\(203\) 1.00000 1.73205i 0.0701862 0.121566i
\(204\) 0 0
\(205\) −4.00000 6.92820i −0.279372 0.483887i
\(206\) 0 0
\(207\) 1.50000 2.59808i 0.104257 0.180579i
\(208\) 0 0
\(209\) 21.0000 + 36.3731i 1.45260 + 2.51598i
\(210\) 0 0
\(211\) −2.00000 + 3.46410i −0.137686 + 0.238479i −0.926620 0.375999i \(-0.877300\pi\)
0.788935 + 0.614477i \(0.210633\pi\)
\(212\) 0 0
\(213\) 25.9808i 1.78017i
\(214\) 0 0
\(215\) −10.0000 −0.681994
\(216\) 0 0
\(217\) 10.0000 0.678844
\(218\) 0 0
\(219\) 3.46410i 0.234082i
\(220\) 0 0
\(221\) 6.00000 10.3923i 0.403604 0.699062i
\(222\) 0 0
\(223\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(224\) 0 0
\(225\) −6.00000 10.3923i −0.400000 0.692820i
\(226\) 0 0
\(227\) −0.500000 0.866025i −0.0331862 0.0574801i 0.848955 0.528465i \(-0.177232\pi\)
−0.882141 + 0.470985i \(0.843899\pi\)
\(228\) 0 0
\(229\) −2.50000 + 4.33013i −0.165205 + 0.286143i −0.936728 0.350058i \(-0.886162\pi\)
0.771523 + 0.636201i \(0.219495\pi\)
\(230\) 0 0
\(231\) −9.00000 5.19615i −0.592157 0.341882i
\(232\) 0 0
\(233\) −7.00000 −0.458585 −0.229293 0.973358i \(-0.573641\pi\)
−0.229293 + 0.973358i \(0.573641\pi\)
\(234\) 0 0
\(235\) 8.00000 0.521862
\(236\) 0 0
\(237\) 1.50000 0.866025i 0.0974355 0.0562544i
\(238\) 0 0
\(239\) 2.50000 4.33013i 0.161712 0.280093i −0.773771 0.633465i \(-0.781632\pi\)
0.935483 + 0.353373i \(0.114965\pi\)
\(240\) 0 0
\(241\) −2.00000 3.46410i −0.128831 0.223142i 0.794393 0.607404i \(-0.207789\pi\)
−0.923224 + 0.384262i \(0.874456\pi\)
\(242\) 0 0
\(243\) 15.5885i 1.00000i
\(244\) 0 0
\(245\) 0.500000 + 0.866025i 0.0319438 + 0.0553283i
\(246\) 0 0
\(247\) 21.0000 36.3731i 1.33620 2.31436i
\(248\) 0 0
\(249\) 18.0000 10.3923i 1.14070 0.658586i
\(250\) 0 0
\(251\) −13.0000 −0.820553 −0.410276 0.911961i \(-0.634568\pi\)
−0.410276 + 0.911961i \(0.634568\pi\)
\(252\) 0 0
\(253\) 6.00000 0.377217
\(254\) 0 0
\(255\) 3.00000 + 1.73205i 0.187867 + 0.108465i
\(256\) 0 0
\(257\) −9.00000 + 15.5885i −0.561405 + 0.972381i 0.435970 + 0.899961i \(0.356405\pi\)
−0.997374 + 0.0724199i \(0.976928\pi\)
\(258\) 0 0
\(259\) −3.00000 5.19615i −0.186411 0.322873i
\(260\) 0 0
\(261\) 3.00000 + 5.19615i 0.185695 + 0.321634i
\(262\) 0 0
\(263\) 7.50000 + 12.9904i 0.462470 + 0.801021i 0.999083 0.0428069i \(-0.0136300\pi\)
−0.536614 + 0.843828i \(0.680297\pi\)
\(264\) 0 0
\(265\) 1.00000 1.73205i 0.0614295 0.106399i
\(266\) 0 0
\(267\) 6.92820i 0.423999i
\(268\) 0 0
\(269\) −3.00000 −0.182913 −0.0914566 0.995809i \(-0.529152\pi\)
−0.0914566 + 0.995809i \(0.529152\pi\)
\(270\) 0 0
\(271\) −8.00000 −0.485965 −0.242983 0.970031i \(-0.578126\pi\)
−0.242983 + 0.970031i \(0.578126\pi\)
\(272\) 0 0
\(273\) 10.3923i 0.628971i
\(274\) 0 0
\(275\) 12.0000 20.7846i 0.723627 1.25336i
\(276\) 0 0
\(277\) −2.00000 3.46410i −0.120168 0.208138i 0.799666 0.600446i \(-0.205010\pi\)
−0.919834 + 0.392308i \(0.871677\pi\)
\(278\) 0 0
\(279\) −15.0000 + 25.9808i −0.898027 + 1.55543i
\(280\) 0 0
\(281\) 1.50000 + 2.59808i 0.0894825 + 0.154988i 0.907293 0.420500i \(-0.138145\pi\)
−0.817810 + 0.575488i \(0.804812\pi\)
\(282\) 0 0
\(283\) −6.50000 + 11.2583i −0.386385 + 0.669238i −0.991960 0.126550i \(-0.959610\pi\)
0.605575 + 0.795788i \(0.292943\pi\)
\(284\) 0 0
\(285\) 10.5000 + 6.06218i 0.621966 + 0.359092i
\(286\) 0 0
\(287\) 8.00000 0.472225
\(288\) 0 0
\(289\) −13.0000 −0.764706
\(290\) 0 0
\(291\) 3.00000 1.73205i 0.175863 0.101535i
\(292\) 0 0
\(293\) 4.50000 7.79423i 0.262893 0.455344i −0.704117 0.710084i \(-0.748657\pi\)
0.967009 + 0.254741i \(0.0819901\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 27.0000 15.5885i 1.56670 0.904534i
\(298\) 0 0
\(299\) −3.00000 5.19615i −0.173494 0.300501i
\(300\) 0 0
\(301\) 5.00000 8.66025i 0.288195 0.499169i
\(302\) 0 0
\(303\) −4.50000 + 2.59808i −0.258518 + 0.149256i
\(304\) 0 0
\(305\) −7.00000 −0.400819
\(306\) 0 0
\(307\) 23.0000 1.31268 0.656340 0.754466i \(-0.272104\pi\)
0.656340 + 0.754466i \(0.272104\pi\)
\(308\) 0 0
\(309\) −9.00000 5.19615i −0.511992 0.295599i
\(310\) 0 0
\(311\) 12.0000 20.7846i 0.680458 1.17859i −0.294384 0.955687i \(-0.595114\pi\)
0.974841 0.222900i \(-0.0715523\pi\)
\(312\) 0 0
\(313\) −1.00000 1.73205i −0.0565233 0.0979013i 0.836379 0.548151i \(-0.184668\pi\)
−0.892903 + 0.450250i \(0.851335\pi\)
\(314\) 0 0
\(315\) −3.00000 −0.169031
\(316\) 0 0
\(317\) 9.00000 + 15.5885i 0.505490 + 0.875535i 0.999980 + 0.00635137i \(0.00202172\pi\)
−0.494489 + 0.869184i \(0.664645\pi\)
\(318\) 0 0
\(319\) −6.00000 + 10.3923i −0.335936 + 0.581857i
\(320\) 0 0
\(321\) 20.7846i 1.16008i
\(322\) 0 0
\(323\) 14.0000 0.778981
\(324\) 0 0
\(325\) −24.0000 −1.33128
\(326\) 0 0
\(327\) 17.3205i 0.957826i
\(328\) 0 0
\(329\) −4.00000 + 6.92820i −0.220527 + 0.381964i
\(330\) 0 0
\(331\) 7.00000 + 12.1244i 0.384755 + 0.666415i 0.991735 0.128302i \(-0.0409527\pi\)
−0.606980 + 0.794717i \(0.707619\pi\)
\(332\) 0 0
\(333\) 18.0000 0.986394
\(334\) 0 0
\(335\) 6.00000 + 10.3923i 0.327815 + 0.567792i
\(336\) 0 0
\(337\) −1.00000 + 1.73205i −0.0544735 + 0.0943508i −0.891976 0.452082i \(-0.850681\pi\)
0.837503 + 0.546433i \(0.184015\pi\)
\(338\) 0 0
\(339\) −13.5000 7.79423i −0.733219 0.423324i
\(340\) 0 0
\(341\) −60.0000 −3.24918
\(342\) 0 0
\(343\) −1.00000 −0.0539949
\(344\) 0 0
\(345\) 1.50000 0.866025i 0.0807573 0.0466252i
\(346\) 0 0
\(347\) 12.0000 20.7846i 0.644194 1.11578i −0.340293 0.940319i \(-0.610526\pi\)
0.984487 0.175457i \(-0.0561403\pi\)
\(348\) 0 0
\(349\) 5.00000 + 8.66025i 0.267644 + 0.463573i 0.968253 0.249973i \(-0.0804216\pi\)
−0.700609 + 0.713545i \(0.747088\pi\)
\(350\) 0 0
\(351\) −27.0000 15.5885i −1.44115 0.832050i
\(352\) 0 0
\(353\) −3.00000 5.19615i −0.159674 0.276563i 0.775077 0.631867i \(-0.217711\pi\)
−0.934751 + 0.355303i \(0.884378\pi\)
\(354\) 0 0
\(355\) −7.50000 + 12.9904i −0.398059 + 0.689458i
\(356\) 0 0
\(357\) −3.00000 + 1.73205i −0.158777 + 0.0916698i
\(358\) 0 0
\(359\) −33.0000 −1.74167 −0.870837 0.491572i \(-0.836422\pi\)
−0.870837 + 0.491572i \(0.836422\pi\)
\(360\) 0 0
\(361\) 30.0000 1.57895
\(362\) 0 0
\(363\) 37.5000 + 21.6506i 1.96824 + 1.13636i
\(364\) 0 0
\(365\) −1.00000 + 1.73205i −0.0523424 + 0.0906597i
\(366\) 0 0
\(367\) 16.0000 + 27.7128i 0.835193 + 1.44660i 0.893873 + 0.448320i \(0.147978\pi\)
−0.0586798 + 0.998277i \(0.518689\pi\)
\(368\) 0 0
\(369\) −12.0000 + 20.7846i −0.624695 + 1.08200i
\(370\) 0 0
\(371\) 1.00000 + 1.73205i 0.0519174 + 0.0899236i
\(372\) 0 0
\(373\) −1.00000 + 1.73205i −0.0517780 + 0.0896822i −0.890753 0.454488i \(-0.849822\pi\)
0.838975 + 0.544170i \(0.183156\pi\)
\(374\) 0 0
\(375\) 15.5885i 0.804984i
\(376\) 0 0
\(377\) 12.0000 0.618031
\(378\) 0 0
\(379\) −6.00000 −0.308199 −0.154100 0.988055i \(-0.549248\pi\)
−0.154100 + 0.988055i \(0.549248\pi\)
\(380\) 0 0
\(381\) 8.66025i 0.443678i
\(382\) 0 0
\(383\) −3.00000 + 5.19615i −0.153293 + 0.265511i −0.932436 0.361335i \(-0.882321\pi\)
0.779143 + 0.626846i \(0.215654\pi\)
\(384\) 0 0
\(385\) −3.00000 5.19615i −0.152894 0.264820i
\(386\) 0 0
\(387\) 15.0000 + 25.9808i 0.762493 + 1.32068i
\(388\) 0 0
\(389\) 10.0000 + 17.3205i 0.507020 + 0.878185i 0.999967 + 0.00812520i \(0.00258636\pi\)
−0.492947 + 0.870059i \(0.664080\pi\)
\(390\) 0 0
\(391\) 1.00000 1.73205i 0.0505722 0.0875936i
\(392\) 0 0
\(393\) −25.5000 14.7224i −1.28630 0.742648i
\(394\) 0 0
\(395\) 1.00000 0.0503155
\(396\) 0 0
\(397\) 22.0000 1.10415 0.552074 0.833795i \(-0.313837\pi\)
0.552074 + 0.833795i \(0.313837\pi\)
\(398\) 0 0
\(399\) −10.5000 + 6.06218i −0.525657 + 0.303488i
\(400\) 0 0
\(401\) 10.5000 18.1865i 0.524345 0.908192i −0.475253 0.879849i \(-0.657644\pi\)
0.999598 0.0283431i \(-0.00902310\pi\)
\(402\) 0 0
\(403\) 30.0000 + 51.9615i 1.49441 + 2.58839i
\(404\) 0 0
\(405\) 4.50000 7.79423i 0.223607 0.387298i
\(406\) 0 0
\(407\) 18.0000 + 31.1769i 0.892227 + 1.54538i
\(408\) 0 0
\(409\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(410\) 0 0
\(411\) −21.0000 + 12.1244i −1.03585 + 0.598050i
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 12.0000 0.589057
\(416\) 0 0
\(417\) −4.50000 2.59808i −0.220366 0.127228i
\(418\) 0 0
\(419\) −3.50000 + 6.06218i −0.170986 + 0.296157i −0.938765 0.344558i \(-0.888029\pi\)
0.767779 + 0.640715i \(0.221362\pi\)
\(420\) 0 0
\(421\) −5.00000 8.66025i −0.243685 0.422075i 0.718076 0.695965i \(-0.245023\pi\)
−0.961761 + 0.273890i \(0.911690\pi\)
\(422\) 0 0
\(423\) −12.0000 20.7846i −0.583460 1.01058i
\(424\) 0 0
\(425\) −4.00000 6.92820i −0.194029 0.336067i
\(426\) 0 0
\(427\) 3.50000 6.06218i 0.169377 0.293369i
\(428\) 0 0
\(429\) 62.3538i 3.01047i
\(430\) 0 0
\(431\) −36.0000 −1.73406 −0.867029 0.498257i \(-0.833974\pi\)
−0.867029 + 0.498257i \(0.833974\pi\)
\(432\) 0 0
\(433\) −26.0000 −1.24948 −0.624740 0.780833i \(-0.714795\pi\)
−0.624740 + 0.780833i \(0.714795\pi\)
\(434\) 0 0
\(435\) 3.46410i 0.166091i
\(436\) 0 0
\(437\) 3.50000 6.06218i 0.167428 0.289993i
\(438\) 0 0
\(439\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(440\) 0 0
\(441\) 1.50000 2.59808i 0.0714286 0.123718i
\(442\) 0 0
\(443\) −17.0000 29.4449i −0.807694 1.39897i −0.914457 0.404683i \(-0.867382\pi\)
0.106763 0.994285i \(-0.465952\pi\)
\(444\) 0 0
\(445\) 2.00000 3.46410i 0.0948091 0.164214i
\(446\) 0 0
\(447\) −21.0000 12.1244i −0.993266 0.573462i
\(448\) 0 0
\(449\) 1.00000 0.0471929 0.0235965 0.999722i \(-0.492488\pi\)
0.0235965 + 0.999722i \(0.492488\pi\)
\(450\) 0 0
\(451\) −48.0000 −2.26023
\(452\) 0 0
\(453\) −7.50000 + 4.33013i −0.352381 + 0.203447i
\(454\) 0 0
\(455\) −3.00000 + 5.19615i −0.140642 + 0.243599i
\(456\) 0 0
\(457\) 5.50000 + 9.52628i 0.257279 + 0.445621i 0.965512 0.260358i \(-0.0838407\pi\)
−0.708233 + 0.705979i \(0.750507\pi\)
\(458\) 0 0
\(459\) 10.3923i 0.485071i
\(460\) 0 0
\(461\) 1.50000 + 2.59808i 0.0698620 + 0.121004i 0.898840 0.438276i \(-0.144411\pi\)
−0.828978 + 0.559281i \(0.811077\pi\)
\(462\) 0 0
\(463\) 11.5000 19.9186i 0.534450 0.925695i −0.464739 0.885448i \(-0.653852\pi\)
0.999190 0.0402476i \(-0.0128147\pi\)
\(464\) 0 0
\(465\) −15.0000 + 8.66025i −0.695608 + 0.401610i
\(466\) 0 0
\(467\) −12.0000 −0.555294 −0.277647 0.960683i \(-0.589555\pi\)
−0.277647 + 0.960683i \(0.589555\pi\)
\(468\) 0 0
\(469\) −12.0000 −0.554109
\(470\) 0 0
\(471\) −22.5000 12.9904i −1.03675 0.598565i
\(472\) 0 0
\(473\) −30.0000 + 51.9615i −1.37940 + 2.38919i
\(474\) 0 0
\(475\) −14.0000 24.2487i −0.642364 1.11261i
\(476\) 0 0
\(477\) −6.00000 −0.274721
\(478\) 0 0
\(479\) 17.0000 + 29.4449i 0.776750 + 1.34537i 0.933806 + 0.357780i \(0.116466\pi\)
−0.157056 + 0.987590i \(0.550200\pi\)
\(480\) 0 0
\(481\) 18.0000 31.1769i 0.820729 1.42154i
\(482\) 0 0
\(483\) 1.73205i 0.0788110i
\(484\) 0 0
\(485\) 2.00000 0.0908153
\(486\) 0 0
\(487\) −1.00000 −0.0453143 −0.0226572 0.999743i \(-0.507213\pi\)
−0.0226572 + 0.999743i \(0.507213\pi\)
\(488\) 0 0
\(489\) 17.3205i 0.783260i
\(490\) 0 0
\(491\) −3.00000 + 5.19615i −0.135388 + 0.234499i −0.925746 0.378147i \(-0.876561\pi\)
0.790358 + 0.612646i \(0.209895\pi\)
\(492\) 0 0
\(493\) 2.00000 + 3.46410i 0.0900755 + 0.156015i
\(494\) 0 0
\(495\) 18.0000 0.809040
\(496\) 0 0
\(497\) −7.50000 12.9904i −0.336421 0.582698i
\(498\) 0 0
\(499\) 8.00000 13.8564i 0.358129 0.620298i −0.629519 0.776985i \(-0.716748\pi\)
0.987648 + 0.156687i \(0.0500814\pi\)
\(500\) 0 0
\(501\) −18.0000 10.3923i −0.804181 0.464294i
\(502\) 0 0
\(503\) 32.0000 1.42681 0.713405 0.700752i \(-0.247152\pi\)
0.713405 + 0.700752i \(0.247152\pi\)
\(504\) 0 0
\(505\) −3.00000 −0.133498
\(506\) 0 0
\(507\) −34.5000 + 19.9186i −1.53220 + 0.884615i
\(508\) 0 0
\(509\) 15.0000 25.9808i 0.664863 1.15158i −0.314459 0.949271i \(-0.601823\pi\)
0.979322 0.202306i \(-0.0648436\pi\)
\(510\) 0 0
\(511\) −1.00000 1.73205i −0.0442374 0.0766214i
\(512\) 0 0
\(513\) 36.3731i 1.60591i
\(514\) 0 0
\(515\) −3.00000 5.19615i −0.132196 0.228970i
\(516\) 0 0
\(517\) 24.0000 41.5692i 1.05552 1.82821i
\(518\) 0 0
\(519\) −21.0000 + 12.1244i −0.921798 + 0.532200i
\(520\) 0 0
\(521\) −12.0000 −0.525730 −0.262865 0.964833i \(-0.584667\pi\)
−0.262865 + 0.964833i \(0.584667\pi\)
\(522\) 0 0
\(523\) −29.0000 −1.26808 −0.634041 0.773300i \(-0.718605\pi\)
−0.634041 + 0.773300i \(0.718605\pi\)
\(524\) 0 0
\(525\) 6.00000 + 3.46410i 0.261861 + 0.151186i
\(526\) 0 0
\(527\) −10.0000 + 17.3205i −0.435607 + 0.754493i
\(528\) 0 0
\(529\) 11.0000 + 19.0526i 0.478261 + 0.828372i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 24.0000 + 41.5692i 1.03956 + 1.80056i
\(534\) 0 0
\(535\) −6.00000 + 10.3923i −0.259403 + 0.449299i
\(536\) 0 0
\(537\) 17.3205i 0.747435i
\(538\) 0 0
\(539\) 6.00000 0.258438
\(540\) 0 0
\(541\) −14.0000 −0.601907 −0.300954 0.953639i \(-0.597305\pi\)
−0.300954 + 0.953639i \(0.597305\pi\)
\(542\) 0 0
\(543\) 8.66025i 0.371647i
\(544\) 0 0
\(545\) 5.00000 8.66025i 0.214176 0.370965i
\(546\) 0 0
\(547\) −4.00000 6.92820i −0.171028 0.296229i 0.767752 0.640747i \(-0.221375\pi\)
−0.938779 + 0.344519i \(0.888042\pi\)
\(548\) 0 0
\(549\) 10.5000 + 18.1865i 0.448129 + 0.776182i
\(550\) 0 0
\(551\) 7.00000 + 12.1244i 0.298210 + 0.516515i
\(552\) 0 0
\(553\) −0.500000 + 0.866025i −0.0212622 + 0.0368271i
\(554\) 0 0
\(555\) 9.00000 + 5.19615i 0.382029 + 0.220564i
\(556\) 0 0
\(557\) −44.0000 −1.86434 −0.932170 0.362021i \(-0.882087\pi\)
−0.932170 + 0.362021i \(0.882087\pi\)
\(558\) 0 0
\(559\) 60.0000 2.53773
\(560\) 0 0
\(561\) 18.0000 10.3923i 0.759961 0.438763i
\(562\) 0 0
\(563\) −11.5000 + 19.9186i −0.484667 + 0.839468i −0.999845 0.0176152i \(-0.994393\pi\)
0.515178 + 0.857083i \(0.327726\pi\)
\(564\) 0 0
\(565\) −4.50000 7.79423i −0.189316 0.327906i
\(566\) 0 0
\(567\) 4.50000 + 7.79423i 0.188982 + 0.327327i
\(568\) 0 0
\(569\) −15.0000 25.9808i −0.628833 1.08917i −0.987786 0.155815i \(-0.950200\pi\)
0.358954 0.933355i \(-0.383134\pi\)
\(570\) 0 0
\(571\) −20.0000 + 34.6410i −0.836974 + 1.44968i 0.0554391 + 0.998462i \(0.482344\pi\)
−0.892413 + 0.451219i \(0.850989\pi\)
\(572\) 0 0
\(573\) −7.50000 + 4.33013i −0.313317 + 0.180894i
\(574\) 0 0
\(575\) −4.00000 −0.166812
\(576\) 0 0
\(577\) 36.0000 1.49870 0.749350 0.662174i \(-0.230366\pi\)
0.749350 + 0.662174i \(0.230366\pi\)
\(578\) 0 0
\(579\) 13.5000 + 7.79423i 0.561041 + 0.323917i
\(580\) 0 0
\(581\) −6.00000 + 10.3923i −0.248922 + 0.431145i
\(582\) 0 0
\(583\) −6.00000 10.3923i −0.248495 0.430405i
\(584\) 0 0
\(585\) −9.00000 15.5885i −0.372104 0.644503i
\(586\) 0 0
\(587\) −2.50000 4.33013i −0.103186 0.178723i 0.809810 0.586693i \(-0.199570\pi\)
−0.912996 + 0.407969i \(0.866237\pi\)
\(588\) 0 0
\(589\) −35.0000 + 60.6218i −1.44215 + 2.49788i
\(590\) 0 0
\(591\) 10.3923i 0.427482i
\(592\) 0 0
\(593\) −12.0000 −0.492781 −0.246390 0.969171i \(-0.579245\pi\)
−0.246390 + 0.969171i \(0.579245\pi\)
\(594\) 0 0
\(595\) −2.00000 −0.0819920
\(596\) 0 0
\(597\) 3.46410i 0.141776i
\(598\) 0 0
\(599\) −16.0000 + 27.7128i −0.653742 + 1.13231i 0.328465 + 0.944516i \(0.393469\pi\)
−0.982208 + 0.187799i \(0.939865\pi\)
\(600\) 0 0
\(601\) 7.00000 + 12.1244i 0.285536 + 0.494563i 0.972739 0.231903i \(-0.0744951\pi\)
−0.687203 + 0.726465i \(0.741162\pi\)
\(602\) 0 0
\(603\) 18.0000 31.1769i 0.733017 1.26962i
\(604\) 0 0
\(605\) 12.5000 + 21.6506i 0.508197 + 0.880223i
\(606\) 0 0
\(607\) −1.00000 + 1.73205i −0.0405887 + 0.0703018i −0.885606 0.464437i \(-0.846257\pi\)
0.845017 + 0.534739i \(0.179590\pi\)
\(608\) 0 0
\(609\) −3.00000 1.73205i −0.121566 0.0701862i
\(610\) 0 0
\(611\) −48.0000 −1.94187
\(612\) 0 0
\(613\) −20.0000 −0.807792 −0.403896 0.914805i \(-0.632344\pi\)
−0.403896 + 0.914805i \(0.632344\pi\)
\(614\) 0 0
\(615\) −12.0000 + 6.92820i −0.483887 + 0.279372i
\(616\) 0 0
\(617\) 15.0000 25.9808i 0.603877 1.04595i −0.388351 0.921512i \(-0.626955\pi\)
0.992228 0.124434i \(-0.0397116\pi\)
\(618\) 0 0
\(619\) −16.5000 28.5788i −0.663191 1.14868i −0.979772 0.200115i \(-0.935868\pi\)
0.316581 0.948565i \(-0.397465\pi\)
\(620\) 0 0
\(621\) −4.50000 2.59808i −0.180579 0.104257i
\(622\) 0 0
\(623\) 2.00000 + 3.46410i 0.0801283 + 0.138786i
\(624\) 0 0
\(625\) −5.50000 + 9.52628i −0.220000 + 0.381051i
\(626\) 0 0
\(627\) 63.0000 36.3731i 2.51598 1.45260i
\(628\) 0 0
\(629\) 12.0000 0.478471
\(630\) 0 0
\(631\) −5.00000 −0.199047 −0.0995234 0.995035i \(-0.531732\pi\)
−0.0995234 + 0.995035i \(0.531732\pi\)
\(632\) 0 0
\(633\) 6.00000 + 3.46410i 0.238479 + 0.137686i
\(634\) 0 0
\(635\) −2.50000 + 4.33013i −0.0992095 + 0.171836i
\(636\) 0 0
\(637\) −3.00000 5.19615i −0.118864 0.205879i
\(638\) 0 0
\(639\) 45.0000 1.78017
\(640\) 0 0
\(641\) −21.5000 37.2391i −0.849199 1.47086i −0.881924 0.471391i \(-0.843752\pi\)
0.0327252 0.999464i \(-0.489581\pi\)
\(642\) 0 0
\(643\) 2.00000 3.46410i 0.0788723 0.136611i −0.823891 0.566748i \(-0.808201\pi\)
0.902764 + 0.430137i \(0.141535\pi\)
\(644\) 0 0
\(645\) 17.3205i 0.681994i
\(646\) 0 0
\(647\) −12.0000 −0.471769 −0.235884 0.971781i \(-0.575799\pi\)
−0.235884 + 0.971781i \(0.575799\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) 17.3205i 0.678844i
\(652\) 0 0
\(653\) −22.0000 + 38.1051i −0.860927 + 1.49117i 0.0101092 + 0.999949i \(0.496782\pi\)
−0.871036 + 0.491220i \(0.836551\pi\)
\(654\) 0 0
\(655\) −8.50000 14.7224i −0.332122 0.575253i
\(656\) 0 0
\(657\) 6.00000 0.234082
\(658\) 0 0
\(659\) −17.0000 29.4449i −0.662226 1.14701i −0.980029 0.198852i \(-0.936279\pi\)
0.317803 0.948157i \(-0.397055\pi\)
\(660\) 0 0
\(661\) 12.5000 21.6506i 0.486194 0.842112i −0.513680 0.857982i \(-0.671718\pi\)
0.999874 + 0.0158695i \(0.00505163\pi\)
\(662\) 0 0
\(663\) −18.0000 10.3923i −0.699062 0.403604i
\(664\) 0 0
\(665\) −7.00000 −0.271448
\(666\) 0 0
\(667\) 2.00000 0.0774403
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −21.0000 + 36.3731i −0.810696 + 1.40417i
\(672\) 0 0
\(673\) −9.50000 16.4545i −0.366198 0.634274i 0.622770 0.782405i \(-0.286007\pi\)
−0.988968 + 0.148132i \(0.952674\pi\)
\(674\) 0 0
\(675\) −18.0000 + 10.3923i −0.692820 + 0.400000i
\(676\) 0 0
\(677\) 21.0000 + 36.3731i 0.807096 + 1.39793i 0.914867 + 0.403755i \(0.132295\pi\)
−0.107772 + 0.994176i \(0.534372\pi\)
\(678\) 0 0
\(679\) −1.00000 + 1.73205i −0.0383765 + 0.0664700i
\(680\) 0 0
\(681\) −1.50000 + 0.866025i −0.0574801 + 0.0331862i
\(682\) 0 0
\(683\) −18.0000 −0.688751 −0.344375 0.938832i \(-0.611909\pi\)
−0.344375 + 0.938832i \(0.611909\pi\)
\(684\) 0 0
\(685\) −14.0000 −0.534913
\(686\) 0 0
\(687\) 7.50000 + 4.33013i 0.286143 + 0.165205i
\(688\) 0 0
\(689\) −6.00000 + 10.3923i −0.228582 + 0.395915i
\(690\) 0 0
\(691\) 20.5000 + 35.5070i 0.779857 + 1.35075i 0.932024 + 0.362397i \(0.118041\pi\)
−0.152167 + 0.988355i \(0.548625\pi\)
\(692\) 0 0
\(693\) −9.00000 + 15.5885i −0.341882 + 0.592157i
\(694\) 0 0
\(695\) −1.50000 2.59808i −0.0568982 0.0985506i
\(696\) 0 0
\(697\) −8.00000 + 13.8564i −0.303022 + 0.524849i
\(698\) 0 0
\(699\) 12.1244i 0.458585i
\(700\) 0 0
\(701\) −26.0000 −0.982006 −0.491003 0.871158i \(-0.663370\pi\)
−0.491003 + 0.871158i \(0.663370\pi\)
\(702\) 0 0
\(703\) 42.0000 1.58406
\(704\) 0 0
\(705\) 13.8564i 0.521862i
\(706\) 0 0
\(707\) 1.50000 2.59808i 0.0564133 0.0977107i
\(708\) 0 0
\(709\) 22.0000 + 38.1051i 0.826227 + 1.43107i 0.900978 + 0.433865i \(0.142851\pi\)
−0.0747503 + 0.997202i \(0.523816\pi\)
\(710\) 0 0
\(711\) −1.50000 2.59808i −0.0562544 0.0974355i
\(712\) 0 0
\(713\) 5.00000 + 8.66025i 0.187251 + 0.324329i
\(714\) 0 0
\(715\) 18.0000 31.1769i 0.673162 1.16595i
\(716\) 0 0
\(717\) −7.50000 4.33013i −0.280093 0.161712i
\(718\) 0 0
\(719\) 12.0000 0.447524 0.223762 0.974644i \(-0.428166\pi\)
0.223762 + 0.974644i \(0.428166\pi\)
\(720\) 0 0
\(721\) 6.00000 0.223452
\(722\) 0 0
\(723\) −6.00000 + 3.46410i −0.223142 + 0.128831i
\(724\) 0 0
\(725\) 4.00000 6.92820i 0.148556 0.257307i
\(726\) 0 0
\(727\) −14.0000 24.2487i −0.519231 0.899335i −0.999750 0.0223506i \(-0.992885\pi\)
0.480519 0.876984i \(-0.340448\pi\)
\(728\) 0 0
\(729\) −27.0000 −1.00000
\(730\) 0 0
\(731\) 10.0000 + 17.3205i 0.369863 + 0.640622i
\(732\) 0 0
\(733\) −15.5000 + 26.8468i −0.572506 + 0.991609i 0.423802 + 0.905755i \(0.360695\pi\)
−0.996308 + 0.0858539i \(0.972638\pi\)
\(734\) 0 0
\(735\) 1.50000 0.866025i 0.0553283 0.0319438i
\(736\) 0 0
\(737\) 72.0000 2.65215
\(738\) 0 0
\(739\) 38.0000 1.39785 0.698926 0.715194i \(-0.253662\pi\)
0.698926 + 0.715194i \(0.253662\pi\)
\(740\) 0 0
\(741\) −63.0000 36.3731i −2.31436 1.33620i
\(742\) 0 0
\(743\) 22.0000 38.1051i 0.807102 1.39794i −0.107761 0.994177i \(-0.534368\pi\)
0.914863 0.403764i \(-0.132298\pi\)
\(744\) 0 0
\(745\) −7.00000 12.1244i −0.256460 0.444202i
\(746\) 0 0
\(747\) −18.0000 31.1769i −0.658586 1.14070i
\(748\) 0 0
\(749\) −6.00000 10.3923i −0.219235 0.379727i
\(750\) 0 0
\(751\) 2.50000 4.33013i 0.0912263 0.158009i −0.816801 0.576919i \(-0.804255\pi\)
0.908027 + 0.418911i \(0.137588\pi\)
\(752\) 0 0
\(753\) 22.5167i 0.820553i
\(754\) 0 0
\(755\) −5.00000 −0.181969
\(756\) 0 0
\(757\) 34.0000 1.23575 0.617876 0.786276i \(-0.287994\pi\)
0.617876 + 0.786276i \(0.287994\pi\)
\(758\) 0 0
\(759\) 10.3923i 0.377217i
\(760\) 0 0
\(761\) −3.00000 + 5.19615i −0.108750 + 0.188360i −0.915264 0.402854i \(-0.868018\pi\)
0.806514 + 0.591215i \(0.201351\pi\)
\(762\) 0 0
\(763\) 5.00000 + 8.66025i 0.181012 + 0.313522i
\(764\) 0 0
\(765\) 3.00000 5.19615i 0.108465 0.187867i
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) −5.00000 + 8.66025i −0.180305 + 0.312297i −0.941984 0.335657i \(-0.891042\pi\)
0.761680 + 0.647954i \(0.224375\pi\)
\(770\) 0 0
\(771\) 27.0000 + 15.5885i 0.972381 + 0.561405i
\(772\) 0 0
\(773\) 31.0000 1.11499 0.557496 0.830179i \(-0.311762\pi\)
0.557496 + 0.830179i \(0.311762\pi\)
\(774\) 0 0
\(775\) 40.0000 1.43684
\(776\) 0 0
\(777\) −9.00000 + 5.19615i −0.322873 + 0.186411i
\(778\) 0 0
\(779\) −28.0000 + 48.4974i −1.00320 + 1.73760i
\(780\) 0 0
\(781\) 45.0000 + 77.9423i 1.61023 + 2.78899i
\(782\) 0 0
\(783\) 9.00000 5.19615i 0.321634 0.185695i
\(784\) 0 0
\(785\) −7.50000 12.9904i −0.267686 0.463647i
\(786\) 0 0
\(787\) −10.0000 + 17.3205i −0.356462 + 0.617409i −0.987367 0.158450i \(-0.949350\pi\)
0.630905 + 0.775860i \(0.282684\pi\)
\(788\) 0 0
\(789\) 22.5000 12.9904i 0.801021 0.462470i
\(790\) 0 0
\(791\) 9.00000 0.320003
\(792\) 0 0
\(793\) 42.0000 1.49146
\(794\) 0 0
\(795\) −3.00000 1.73205i −0.106399 0.0614295i
\(796\) 0 0
\(797\) −4.50000 + 7.79423i −0.159398 + 0.276086i −0.934652 0.355564i \(-0.884289\pi\)
0.775254 + 0.631650i \(0.217622\pi\)
\(798\) 0 0
\(799\) −8.00000 13.8564i −0.283020 0.490204i
\(800\) 0 0
\(801\) −12.0000 −0.423999
\(802\) 0 0
\(803\) 6.00000 + 10.3923i 0.211735 + 0.366736i
\(804\) 0 0
\(805\) −0.500000 + 0.866025i −0.0176227 + 0.0305234i
\(806\) 0 0
\(807\) 5.19615i 0.182913i
\(808\) 0 0
\(809\) −6.00000 −0.210949 −0.105474 0.994422i \(-0.533636\pi\)
−0.105474 + 0.994422i \(0.533636\pi\)
\(810\) 0 0
\(811\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(812\) 0 0
\(813\) 13.8564i 0.485965i
\(814\) 0 0
\(815\) −5.00000 + 8.66025i −0.175142 + 0.303355i
\(816\) 0 0
\(817\) 35.0000 + 60.6218i 1.22449 + 2.12089i
\(818\) 0 0
\(819\) 18.0000 0.628971
\(820\) 0 0
\(821\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(822\) 0 0
\(823\) −8.00000 + 13.8564i −0.278862 + 0.483004i −0.971102 0.238664i \(-0.923291\pi\)
0.692240 + 0.721668i \(0.256624\pi\)
\(824\) 0 0
\(825\) −36.0000 20.7846i −1.25336 0.723627i
\(826\) 0 0
\(827\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(828\) 0 0
\(829\) 50.0000 1.73657 0.868286 0.496064i \(-0.165222\pi\)
0.868286 + 0.496064i \(0.165222\pi\)
\(830\) 0 0
\(831\) −6.00000 + 3.46410i −0.208138 + 0.120168i
\(832\) 0 0
\(833\) 1.00000 1.73205i 0.0346479 0.0600120i
\(834\) 0 0
\(835\) −6.00000 10.3923i −0.207639 0.359641i
\(836\) 0 0
\(837\) 45.0000 + 25.9808i 1.55543 + 0.898027i
\(838\) 0 0
\(839\) −6.00000 10.3923i −0.207143 0.358782i 0.743670 0.668546i \(-0.233083\pi\)
−0.950813 + 0.309764i \(0.899750\pi\)
\(840\) 0 0
\(841\) 12.5000 21.6506i 0.431034 0.746574i
\(842\) 0 0
\(843\) 4.50000 2.59808i 0.154988 0.0894825i
\(844\) 0 0
\(845\) −23.0000 −0.791224
\(846\) 0 0
\(847\) −25.0000 −0.859010
\(848\) 0 0
\(849\) 19.5000 + 11.2583i 0.669238 + 0.386385i
\(850\) 0 0
\(851\) 3.00000 5.19615i 0.102839 0.178122i
\(852\) 0 0
\(853\) 11.5000 + 19.9186i 0.393753 + 0.681999i 0.992941 0.118609i \(-0.0378434\pi\)
−0.599189 + 0.800608i \(0.704510\pi\)
\(854\) 0 0
\(855\) 10.5000 18.1865i 0.359092 0.621966i
\(856\) 0 0
\(857\) 3.00000 + 5.19615i 0.102478 + 0.177497i 0.912705 0.408619i \(-0.133990\pi\)
−0.810227 + 0.586116i \(0.800656\pi\)
\(858\) 0 0
\(859\) −10.0000 + 17.3205i −0.341196 + 0.590968i −0.984655 0.174512i \(-0.944165\pi\)
0.643459 + 0.765480i \(0.277499\pi\)
\(860\) 0 0
\(861\) 13.8564i 0.472225i
\(862\) 0 0
\(863\) 43.0000 1.46374 0.731869 0.681446i \(-0.238649\pi\)
0.731869 + 0.681446i \(0.238649\pi\)
\(864\) 0 0
\(865\) −14.0000 −0.476014
\(866\) 0 0
\(867\) 22.5167i 0.764706i
\(868\) 0 0
\(869\) 3.00000 5.19615i 0.101768 0.176267i
\(870\) 0 0
\(871\) −36.0000 62.3538i −1.21981 2.11278i
\(872\) 0 0
\(873\) −3.00000 5.19615i −0.101535 0.175863i
\(874\) 0 0
\(875\) 4.50000 + 7.79423i 0.152128 + 0.263493i
\(876\) 0 0
\(877\) −7.00000 + 12.1244i −0.236373 + 0.409410i −0.959671 0.281126i \(-0.909292\pi\)
0.723298 + 0.690536i \(0.242625\pi\)
\(878\) 0 0
\(879\) −13.5000 7.79423i −0.455344 0.262893i
\(880\) 0 0
\(881\) 40.0000 1.34763 0.673817 0.738898i \(-0.264654\pi\)
0.673817 + 0.738898i \(0.264654\pi\)
\(882\) 0 0
\(883\) 26.0000 0.874970 0.437485 0.899226i \(-0.355869\pi\)
0.437485 + 0.899226i \(0.355869\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(888\) 0 0
\(889\) −2.50000 4.33013i −0.0838473 0.145228i
\(890\) 0 0
\(891\) −27.0000 46.7654i −0.904534 1.56670i
\(892\) 0 0
\(893\) −28.0000 48.4974i −0.936984 1.62290i
\(894\) 0 0
\(895\) 5.00000 8.66025i 0.167132 0.289480i
\(896\) 0 0
\(897\) −9.00000 + 5.19615i −0.300501 + 0.173494i
\(898\) 0 0
\(899\) −20.0000 −0.667037
\(900\) 0 0
\(901\) −4.00000 −0.133259
\(902\) 0 0
\(903\) −15.0000 8.66025i −0.499169 0.288195i
\(904\) 0 0
\(905\) 2.50000 4.33013i 0.0831028 0.143938i
\(906\) 0 0
\(907\) −14.0000 24.2487i −0.464862 0.805165i 0.534333 0.845274i \(-0.320563\pi\)
−0.999195 + 0.0401089i \(0.987230\pi\)
\(908\) 0 0
\(909\) 4.50000 + 7.79423i 0.149256 + 0.258518i
\(910\) 0 0
\(911\) 9.50000 + 16.4545i 0.314749 + 0.545161i 0.979384 0.202007i \(-0.0647463\pi\)
−0.664635 + 0.747168i \(0.731413\pi\)
\(912\) 0 0
\(913\) 36.0000 62.3538i 1.19143 2.06361i
\(914\) 0 0
\(915\) 12.1244i 0.400819i
\(916\) 0 0
\(917\) 17.0000 0.561389
\(918\) 0 0
\(919\) 17.0000 0.560778 0.280389 0.959886i \(-0.409536\pi\)
0.280389 + 0.959886i \(0.409536\pi\)
\(920\) 0 0
\(921\) 39.8372i 1.31268i
\(922\) 0 0
\(923\) 45.0000 77.9423i 1.48119 2.56550i
\(924\) 0 0
\(925\) −12.0000 20.7846i −0.394558 0.683394i
\(926\) 0 0
\(927\) −9.00000 + 15.5885i −0.295599 + 0.511992i
\(928\) 0 0
\(929\) −2.00000 3.46410i −0.0656179 0.113653i 0.831350 0.555749i \(-0.187569\pi\)
−0.896968 + 0.442096i \(0.854235\pi\)
\(930\) 0 0
\(931\) 3.50000 6.06218i 0.114708 0.198680i
\(932\) 0 0
\(933\) −36.0000 20.7846i −1.17859 0.680458i
\(934\) 0 0
\(935\) 12.0000 0.392442
\(936\) 0 0
\(937\) −42.0000 −1.37208 −0.686040 0.727564i \(-0.740653\pi\)
−0.686040 + 0.727564i \(0.740653\pi\)
\(938\) 0 0
\(939\) −3.00000 + 1.73205i −0.0979013 + 0.0565233i
\(940\) 0 0
\(941\) 16.5000 28.5788i 0.537885 0.931644i −0.461133 0.887331i \(-0.652557\pi\)
0.999018 0.0443125i \(-0.0141097\pi\)
\(942\) 0 0
\(943\) 4.00000 + 6.92820i 0.130258 + 0.225613i
\(944\) 0 0
\(945\) 5.19615i 0.169031i
\(946\) 0 0
\(947\) 14.0000 + 24.2487i 0.454939 + 0.787977i 0.998685 0.0512727i \(-0.0163278\pi\)
−0.543746 + 0.839250i \(0.682994\pi\)
\(948\) 0 0
\(949\) 6.00000 10.3923i 0.194768 0.337348i
\(950\) 0 0
\(951\) 27.0000 15.5885i 0.875535 0.505490i
\(952\) 0 0
\(953\) −14.0000 −0.453504 −0.226752 0.973952i \(-0.572811\pi\)
−0.226752 + 0.973952i \(0.572811\pi\)
\(954\) 0 0
\(955\) −5.00000 −0.161796
\(956\) 0 0
\(957\) 18.0000 + 10.3923i 0.581857 + 0.335936i
\(958\) 0 0
\(959\) 7.00000 12.1244i 0.226042 0.391516i
\(960\) 0 0
\(961\) −34.5000 59.7558i −1.11290 1.92760i
\(962\) 0 0
\(963\) 36.0000 1.16008
\(964\) 0 0
\(965\) 4.50000 + 7.79423i 0.144860 + 0.250905i
\(966\) 0 0
\(967\) −1.50000 + 2.59808i −0.0482367 + 0.0835485i −0.889136 0.457644i \(-0.848694\pi\)
0.840899 + 0.541192i \(0.182027\pi\)
\(968\) 0 0
\(969\) 24.2487i 0.778981i
\(970\) 0 0
\(971\) −55.0000 −1.76503 −0.882517 0.470281i \(-0.844153\pi\)
−0.882517 + 0.470281i \(0.844153\pi\)
\(972\) 0 0
\(973\) 3.00000 0.0961756
\(974\) 0 0
\(975\) 41.5692i 1.33128i
\(976\) 0 0
\(977\) −3.00000 + 5.19615i −0.0959785 + 0.166240i −0.910017 0.414572i \(-0.863931\pi\)
0.814038 + 0.580812i \(0.197265\pi\)
\(978\) 0 0
\(979\) −12.0000 20.7846i −0.383522 0.664279i
\(980\) 0 0
\(981\) −30.0000 −0.957826
\(982\) 0 0
\(983\) 9.00000 + 15.5885i 0.287055 + 0.497195i 0.973106 0.230360i \(-0.0739903\pi\)
−0.686050 + 0.727554i \(0.740657\pi\)
\(984\) 0 0
\(985\) 3.00000 5.19615i 0.0955879 0.165563i
\(986\) 0 0
\(987\) 12.0000 + 6.92820i 0.381964 + 0.220527i
\(988\) 0 0
\(989\) 10.0000 0.317982
\(990\) 0 0
\(991\) 48.0000 1.52477 0.762385 0.647124i \(-0.224028\pi\)
0.762385 + 0.647124i \(0.224028\pi\)
\(992\) 0 0
\(993\) 21.0000 12.1244i 0.666415 0.384755i
\(994\) 0 0
\(995\) −1.00000 + 1.73205i −0.0317021 + 0.0549097i
\(996\) 0 0
\(997\) −9.50000 16.4545i −0.300868 0.521119i 0.675465 0.737392i \(-0.263943\pi\)
−0.976333 + 0.216274i \(0.930610\pi\)
\(998\) 0 0
\(999\) 31.1769i 0.986394i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1008.2.r.c.337.1 2
3.2 odd 2 3024.2.r.b.1009.1 2
4.3 odd 2 504.2.r.a.337.1 yes 2
9.2 odd 6 3024.2.r.b.2017.1 2
9.4 even 3 9072.2.a.i.1.1 1
9.5 odd 6 9072.2.a.n.1.1 1
9.7 even 3 inner 1008.2.r.c.673.1 2
12.11 even 2 1512.2.r.a.1009.1 2
36.7 odd 6 504.2.r.a.169.1 2
36.11 even 6 1512.2.r.a.505.1 2
36.23 even 6 4536.2.a.g.1.1 1
36.31 odd 6 4536.2.a.d.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
504.2.r.a.169.1 2 36.7 odd 6
504.2.r.a.337.1 yes 2 4.3 odd 2
1008.2.r.c.337.1 2 1.1 even 1 trivial
1008.2.r.c.673.1 2 9.7 even 3 inner
1512.2.r.a.505.1 2 36.11 even 6
1512.2.r.a.1009.1 2 12.11 even 2
3024.2.r.b.1009.1 2 3.2 odd 2
3024.2.r.b.2017.1 2 9.2 odd 6
4536.2.a.d.1.1 1 36.31 odd 6
4536.2.a.g.1.1 1 36.23 even 6
9072.2.a.i.1.1 1 9.4 even 3
9072.2.a.n.1.1 1 9.5 odd 6