Properties

Label 1008.2.q.g.529.2
Level $1008$
Weight $2$
Character 1008.529
Analytic conductor $8.049$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1008,2,Mod(529,1008)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1008, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 4, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1008.529");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1008 = 2^{4} \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1008.q (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(8.04892052375\)
Analytic rank: \(0\)
Dimension: \(6\)
Relative dimension: \(3\) over \(\Q(\zeta_{3})\)
Coefficient field: 6.0.309123.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 3x^{5} + 10x^{4} - 15x^{3} + 19x^{2} - 12x + 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 126)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 529.2
Root \(0.500000 - 2.05195i\) of defining polynomial
Character \(\chi\) \(=\) 1008.529
Dual form 1008.2.q.g.625.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.933463 + 1.45899i) q^{3} +(-0.296790 + 0.514055i) q^{5} +(-2.32383 + 1.26483i) q^{7} +(-1.25729 - 2.72382i) q^{9} +(-0.296790 - 0.514055i) q^{11} +(-1.25729 - 2.17770i) q^{13} +(-0.472958 - 0.912864i) q^{15} +(1.46050 - 2.52967i) q^{17} +(-2.69076 - 4.66053i) q^{19} +(0.323832 - 4.57112i) q^{21} +(2.23025 - 3.86291i) q^{23} +(2.32383 + 4.02499i) q^{25} +(5.14766 + 0.708209i) q^{27} +(-3.09718 + 5.36447i) q^{29} +7.86693 q^{31} +(1.02704 + 0.0468383i) q^{33} +(0.0394951 - 1.56997i) q^{35} +(0.500000 + 0.866025i) q^{37} +(4.35087 + 0.198422i) q^{39} +(-0.136673 - 0.236725i) q^{41} +(5.58113 - 9.66679i) q^{43} +(1.77335 + 0.162084i) q^{45} -12.1623 q^{47} +(3.80039 - 5.87852i) q^{49} +(2.32743 + 4.49221i) q^{51} +(4.02704 - 6.97504i) q^{53} +0.352336 q^{55} +(9.31138 + 0.424646i) q^{57} -8.64766 q^{59} -6.64766 q^{61} +(6.36693 + 4.73944i) q^{63} +1.49261 q^{65} +1.91381 q^{67} +(3.55408 + 6.85980i) q^{69} +14.4107 q^{71} +(3.95691 - 6.85356i) q^{73} +(-8.04163 - 0.366739i) q^{75} +(1.33988 + 0.819187i) q^{77} +9.24844 q^{79} +(-5.83842 + 6.84929i) q^{81} +(-3.85087 + 6.66991i) q^{83} +(0.866926 + 1.50156i) q^{85} +(-4.93560 - 9.52628i) q^{87} +(-6.21780 - 10.7695i) q^{89} +(5.67617 + 3.47033i) q^{91} +(-7.34348 + 11.4778i) q^{93} +3.19436 q^{95} +(5.86693 - 10.1618i) q^{97} +(-1.02704 + 1.45472i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 2 q^{3} + q^{5} - 2 q^{7} + 8 q^{9} + q^{11} + 8 q^{13} - 12 q^{15} - 4 q^{17} + 3 q^{19} - 10 q^{21} + 7 q^{23} + 2 q^{25} + 7 q^{27} - 5 q^{29} + 40 q^{31} - 3 q^{33} + 13 q^{35} + 3 q^{37} + 5 q^{39}+ \cdots + 3 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1008\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(577\) \(757\) \(785\)
\(\chi(n)\) \(1\) \(e\left(\frac{2}{3}\right)\) \(1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.933463 + 1.45899i −0.538935 + 0.842347i
\(4\) 0 0
\(5\) −0.296790 + 0.514055i −0.132728 + 0.229892i −0.924727 0.380630i \(-0.875707\pi\)
0.791999 + 0.610522i \(0.209040\pi\)
\(6\) 0 0
\(7\) −2.32383 + 1.26483i −0.878326 + 0.478062i
\(8\) 0 0
\(9\) −1.25729 2.72382i −0.419098 0.907941i
\(10\) 0 0
\(11\) −0.296790 0.514055i −0.0894855 0.154993i 0.817808 0.575491i \(-0.195189\pi\)
−0.907294 + 0.420497i \(0.861856\pi\)
\(12\) 0 0
\(13\) −1.25729 2.17770i −0.348711 0.603985i 0.637310 0.770608i \(-0.280047\pi\)
−0.986021 + 0.166623i \(0.946714\pi\)
\(14\) 0 0
\(15\) −0.472958 0.912864i −0.122117 0.235700i
\(16\) 0 0
\(17\) 1.46050 2.52967i 0.354224 0.613535i −0.632760 0.774348i \(-0.718078\pi\)
0.986985 + 0.160813i \(0.0514116\pi\)
\(18\) 0 0
\(19\) −2.69076 4.66053i −0.617302 1.06920i −0.989976 0.141236i \(-0.954892\pi\)
0.372674 0.927962i \(-0.378441\pi\)
\(20\) 0 0
\(21\) 0.323832 4.57112i 0.0706659 0.997500i
\(22\) 0 0
\(23\) 2.23025 3.86291i 0.465040 0.805473i −0.534164 0.845381i \(-0.679373\pi\)
0.999203 + 0.0399086i \(0.0127067\pi\)
\(24\) 0 0
\(25\) 2.32383 + 4.02499i 0.464766 + 0.804999i
\(26\) 0 0
\(27\) 5.14766 + 0.708209i 0.990668 + 0.136295i
\(28\) 0 0
\(29\) −3.09718 + 5.36447i −0.575132 + 0.996157i 0.420896 + 0.907109i \(0.361716\pi\)
−0.996027 + 0.0890480i \(0.971618\pi\)
\(30\) 0 0
\(31\) 7.86693 1.41294 0.706471 0.707742i \(-0.250286\pi\)
0.706471 + 0.707742i \(0.250286\pi\)
\(32\) 0 0
\(33\) 1.02704 + 0.0468383i 0.178785 + 0.00815350i
\(34\) 0 0
\(35\) 0.0394951 1.56997i 0.00667590 0.265373i
\(36\) 0 0
\(37\) 0.500000 + 0.866025i 0.0821995 + 0.142374i 0.904194 0.427121i \(-0.140472\pi\)
−0.821995 + 0.569495i \(0.807139\pi\)
\(38\) 0 0
\(39\) 4.35087 + 0.198422i 0.696697 + 0.0317729i
\(40\) 0 0
\(41\) −0.136673 0.236725i −0.0213448 0.0369702i 0.855156 0.518371i \(-0.173461\pi\)
−0.876500 + 0.481401i \(0.840128\pi\)
\(42\) 0 0
\(43\) 5.58113 9.66679i 0.851114 1.47417i −0.0290902 0.999577i \(-0.509261\pi\)
0.880204 0.474596i \(-0.157406\pi\)
\(44\) 0 0
\(45\) 1.77335 + 0.162084i 0.264355 + 0.0241621i
\(46\) 0 0
\(47\) −12.1623 −1.77405 −0.887023 0.461724i \(-0.847231\pi\)
−0.887023 + 0.461724i \(0.847231\pi\)
\(48\) 0 0
\(49\) 3.80039 5.87852i 0.542913 0.839789i
\(50\) 0 0
\(51\) 2.32743 + 4.49221i 0.325905 + 0.629035i
\(52\) 0 0
\(53\) 4.02704 6.97504i 0.553157 0.958096i −0.444888 0.895586i \(-0.646756\pi\)
0.998044 0.0625092i \(-0.0199103\pi\)
\(54\) 0 0
\(55\) 0.352336 0.0475090
\(56\) 0 0
\(57\) 9.31138 + 0.424646i 1.23332 + 0.0562457i
\(58\) 0 0
\(59\) −8.64766 −1.12583 −0.562915 0.826515i \(-0.690320\pi\)
−0.562915 + 0.826515i \(0.690320\pi\)
\(60\) 0 0
\(61\) −6.64766 −0.851146 −0.425573 0.904924i \(-0.639927\pi\)
−0.425573 + 0.904924i \(0.639927\pi\)
\(62\) 0 0
\(63\) 6.36693 + 4.73944i 0.802157 + 0.597113i
\(64\) 0 0
\(65\) 1.49261 0.185135
\(66\) 0 0
\(67\) 1.91381 0.233809 0.116905 0.993143i \(-0.462703\pi\)
0.116905 + 0.993143i \(0.462703\pi\)
\(68\) 0 0
\(69\) 3.55408 + 6.85980i 0.427861 + 0.825822i
\(70\) 0 0
\(71\) 14.4107 1.71023 0.855117 0.518435i \(-0.173485\pi\)
0.855117 + 0.518435i \(0.173485\pi\)
\(72\) 0 0
\(73\) 3.95691 6.85356i 0.463121 0.802149i −0.535994 0.844222i \(-0.680063\pi\)
0.999115 + 0.0420732i \(0.0133963\pi\)
\(74\) 0 0
\(75\) −8.04163 0.366739i −0.928568 0.0423474i
\(76\) 0 0
\(77\) 1.33988 + 0.819187i 0.152694 + 0.0933550i
\(78\) 0 0
\(79\) 9.24844 1.04053 0.520265 0.854005i \(-0.325833\pi\)
0.520265 + 0.854005i \(0.325833\pi\)
\(80\) 0 0
\(81\) −5.83842 + 6.84929i −0.648713 + 0.761033i
\(82\) 0 0
\(83\) −3.85087 + 6.66991i −0.422688 + 0.732118i −0.996201 0.0870787i \(-0.972247\pi\)
0.573513 + 0.819196i \(0.305580\pi\)
\(84\) 0 0
\(85\) 0.866926 + 1.50156i 0.0940313 + 0.162867i
\(86\) 0 0
\(87\) −4.93560 9.52628i −0.529152 1.02132i
\(88\) 0 0
\(89\) −6.21780 10.7695i −0.659085 1.14157i −0.980853 0.194751i \(-0.937610\pi\)
0.321767 0.946819i \(-0.395723\pi\)
\(90\) 0 0
\(91\) 5.67617 + 3.47033i 0.595024 + 0.363790i
\(92\) 0 0
\(93\) −7.34348 + 11.4778i −0.761484 + 1.19019i
\(94\) 0 0
\(95\) 3.19436 0.327734
\(96\) 0 0
\(97\) 5.86693 10.1618i 0.595696 1.03178i −0.397752 0.917493i \(-0.630210\pi\)
0.993448 0.114283i \(-0.0364570\pi\)
\(98\) 0 0
\(99\) −1.02704 + 1.45472i −0.103222 + 0.146205i
\(100\) 0 0
\(101\) 0.811379 + 1.40535i 0.0807352 + 0.139837i 0.903566 0.428449i \(-0.140940\pi\)
−0.822831 + 0.568287i \(0.807607\pi\)
\(102\) 0 0
\(103\) 3.19076 5.52655i 0.314395 0.544548i −0.664914 0.746920i \(-0.731532\pi\)
0.979309 + 0.202372i \(0.0648651\pi\)
\(104\) 0 0
\(105\) 2.25370 + 1.52313i 0.219938 + 0.148642i
\(106\) 0 0
\(107\) −9.35447 16.2024i −0.904331 1.56635i −0.821813 0.569758i \(-0.807037\pi\)
−0.0825182 0.996590i \(-0.526296\pi\)
\(108\) 0 0
\(109\) −1.43346 + 2.48283i −0.137301 + 0.237812i −0.926474 0.376359i \(-0.877176\pi\)
0.789173 + 0.614171i \(0.210509\pi\)
\(110\) 0 0
\(111\) −1.73025 0.0789082i −0.164228 0.00748964i
\(112\) 0 0
\(113\) −6.16012 10.6696i −0.579495 1.00371i −0.995537 0.0943695i \(-0.969916\pi\)
0.416042 0.909345i \(-0.363417\pi\)
\(114\) 0 0
\(115\) 1.32383 + 2.29294i 0.123448 + 0.213818i
\(116\) 0 0
\(117\) −4.35087 + 6.16266i −0.402238 + 0.569738i
\(118\) 0 0
\(119\) −0.194356 + 7.72582i −0.0178166 + 0.708225i
\(120\) 0 0
\(121\) 5.32383 9.22115i 0.483985 0.838286i
\(122\) 0 0
\(123\) 0.472958 + 0.0215693i 0.0426452 + 0.00194484i
\(124\) 0 0
\(125\) −5.72665 −0.512207
\(126\) 0 0
\(127\) −12.3346 −1.09452 −0.547261 0.836962i \(-0.684329\pi\)
−0.547261 + 0.836962i \(0.684329\pi\)
\(128\) 0 0
\(129\) 8.89397 + 17.1664i 0.783070 + 1.51142i
\(130\) 0 0
\(131\) −0.593579 + 1.02811i −0.0518613 + 0.0898264i −0.890791 0.454414i \(-0.849849\pi\)
0.838929 + 0.544240i \(0.183182\pi\)
\(132\) 0 0
\(133\) 12.1477 + 7.42692i 1.05334 + 0.643996i
\(134\) 0 0
\(135\) −1.89183 + 2.43599i −0.162823 + 0.209657i
\(136\) 0 0
\(137\) −1.26089 2.18393i −0.107725 0.186586i 0.807123 0.590383i \(-0.201023\pi\)
−0.914848 + 0.403797i \(0.867690\pi\)
\(138\) 0 0
\(139\) −2.45691 4.25549i −0.208392 0.360946i 0.742816 0.669496i \(-0.233490\pi\)
−0.951208 + 0.308550i \(0.900156\pi\)
\(140\) 0 0
\(141\) 11.3530 17.7446i 0.956096 1.49436i
\(142\) 0 0
\(143\) −0.746304 + 1.29264i −0.0624091 + 0.108096i
\(144\) 0 0
\(145\) −1.83842 3.18424i −0.152673 0.264437i
\(146\) 0 0
\(147\) 5.02918 + 11.0321i 0.414800 + 0.909913i
\(148\) 0 0
\(149\) −9.02558 + 15.6328i −0.739404 + 1.28069i 0.213360 + 0.976974i \(0.431559\pi\)
−0.952764 + 0.303712i \(0.901774\pi\)
\(150\) 0 0
\(151\) 0.823832 + 1.42692i 0.0670425 + 0.116121i 0.897598 0.440815i \(-0.145310\pi\)
−0.830556 + 0.556936i \(0.811977\pi\)
\(152\) 0 0
\(153\) −8.72665 0.797618i −0.705508 0.0644836i
\(154\) 0 0
\(155\) −2.33482 + 4.04403i −0.187537 + 0.324824i
\(156\) 0 0
\(157\) −6.60078 −0.526799 −0.263400 0.964687i \(-0.584844\pi\)
−0.263400 + 0.964687i \(0.584844\pi\)
\(158\) 0 0
\(159\) 6.41741 + 12.3863i 0.508934 + 0.982301i
\(160\) 0 0
\(161\) −0.296790 + 11.7977i −0.0233903 + 0.929785i
\(162\) 0 0
\(163\) 2.99115 + 5.18082i 0.234285 + 0.405793i 0.959065 0.283188i \(-0.0913919\pi\)
−0.724780 + 0.688980i \(0.758059\pi\)
\(164\) 0 0
\(165\) −0.328893 + 0.514055i −0.0256043 + 0.0400191i
\(166\) 0 0
\(167\) −3.73025 6.46099i −0.288656 0.499966i 0.684833 0.728700i \(-0.259875\pi\)
−0.973489 + 0.228733i \(0.926542\pi\)
\(168\) 0 0
\(169\) 3.33842 5.78231i 0.256802 0.444793i
\(170\) 0 0
\(171\) −9.31138 + 13.1888i −0.712059 + 1.00857i
\(172\) 0 0
\(173\) −25.6591 −1.95083 −0.975414 0.220381i \(-0.929270\pi\)
−0.975414 + 0.220381i \(0.929270\pi\)
\(174\) 0 0
\(175\) −10.4911 6.41415i −0.793056 0.484864i
\(176\) 0 0
\(177\) 8.07227 12.6168i 0.606749 0.948340i
\(178\) 0 0
\(179\) −7.51819 + 13.0219i −0.561936 + 0.973301i 0.435392 + 0.900241i \(0.356610\pi\)
−0.997328 + 0.0730602i \(0.976723\pi\)
\(180\) 0 0
\(181\) −0.0861875 −0.00640627 −0.00320313 0.999995i \(-0.501020\pi\)
−0.00320313 + 0.999995i \(0.501020\pi\)
\(182\) 0 0
\(183\) 6.20535 9.69886i 0.458712 0.716961i
\(184\) 0 0
\(185\) −0.593579 −0.0436408
\(186\) 0 0
\(187\) −1.73385 −0.126792
\(188\) 0 0
\(189\) −12.8581 + 4.86518i −0.935287 + 0.353890i
\(190\) 0 0
\(191\) −3.98229 −0.288148 −0.144074 0.989567i \(-0.546020\pi\)
−0.144074 + 0.989567i \(0.546020\pi\)
\(192\) 0 0
\(193\) 6.78074 0.488088 0.244044 0.969764i \(-0.421526\pi\)
0.244044 + 0.969764i \(0.421526\pi\)
\(194\) 0 0
\(195\) −1.39329 + 2.17770i −0.0997759 + 0.155948i
\(196\) 0 0
\(197\) 11.0584 0.787875 0.393938 0.919137i \(-0.371113\pi\)
0.393938 + 0.919137i \(0.371113\pi\)
\(198\) 0 0
\(199\) −2.80924 + 4.86575i −0.199142 + 0.344924i −0.948250 0.317523i \(-0.897149\pi\)
0.749109 + 0.662447i \(0.230482\pi\)
\(200\) 0 0
\(201\) −1.78647 + 2.79223i −0.126008 + 0.196949i
\(202\) 0 0
\(203\) 0.412155 16.3835i 0.0289276 1.14990i
\(204\) 0 0
\(205\) 0.162253 0.0113322
\(206\) 0 0
\(207\) −13.3260 1.21800i −0.926219 0.0846566i
\(208\) 0 0
\(209\) −1.59718 + 2.76639i −0.110479 + 0.191355i
\(210\) 0 0
\(211\) −9.66225 16.7355i −0.665177 1.15212i −0.979237 0.202717i \(-0.935023\pi\)
0.314060 0.949403i \(-0.398311\pi\)
\(212\) 0 0
\(213\) −13.4518 + 21.0250i −0.921705 + 1.44061i
\(214\) 0 0
\(215\) 3.31284 + 5.73801i 0.225934 + 0.391329i
\(216\) 0 0
\(217\) −18.2814 + 9.95036i −1.24102 + 0.675474i
\(218\) 0 0
\(219\) 6.30564 + 12.1706i 0.426096 + 0.822415i
\(220\) 0 0
\(221\) −7.34514 −0.494088
\(222\) 0 0
\(223\) −12.6623 + 21.9317i −0.847927 + 1.46865i 0.0351275 + 0.999383i \(0.488816\pi\)
−0.883055 + 0.469270i \(0.844517\pi\)
\(224\) 0 0
\(225\) 8.04163 11.3903i 0.536109 0.759354i
\(226\) 0 0
\(227\) 2.40856 + 4.17174i 0.159862 + 0.276888i 0.934819 0.355126i \(-0.115562\pi\)
−0.774957 + 0.632014i \(0.782229\pi\)
\(228\) 0 0
\(229\) 4.64766 8.04999i 0.307126 0.531958i −0.670606 0.741814i \(-0.733966\pi\)
0.977732 + 0.209855i \(0.0672993\pi\)
\(230\) 0 0
\(231\) −2.44592 + 1.19019i −0.160929 + 0.0783090i
\(232\) 0 0
\(233\) 0.0971780 + 0.168317i 0.00636634 + 0.0110268i 0.869191 0.494476i \(-0.164640\pi\)
−0.862825 + 0.505503i \(0.831307\pi\)
\(234\) 0 0
\(235\) 3.60963 6.25206i 0.235466 0.407840i
\(236\) 0 0
\(237\) −8.63307 + 13.4934i −0.560778 + 0.876488i
\(238\) 0 0
\(239\) 6.82743 + 11.8255i 0.441630 + 0.764925i 0.997811 0.0661361i \(-0.0210672\pi\)
−0.556181 + 0.831061i \(0.687734\pi\)
\(240\) 0 0
\(241\) 6.50000 + 11.2583i 0.418702 + 0.725213i 0.995809 0.0914555i \(-0.0291519\pi\)
−0.577107 + 0.816668i \(0.695819\pi\)
\(242\) 0 0
\(243\) −4.54309 14.9118i −0.291440 0.956589i
\(244\) 0 0
\(245\) 1.89397 + 3.69829i 0.121001 + 0.236275i
\(246\) 0 0
\(247\) −6.76615 + 11.7193i −0.430520 + 0.745682i
\(248\) 0 0
\(249\) −6.13667 11.8445i −0.388896 0.750614i
\(250\) 0 0
\(251\) 19.5438 1.23359 0.616796 0.787123i \(-0.288430\pi\)
0.616796 + 0.787123i \(0.288430\pi\)
\(252\) 0 0
\(253\) −2.64766 −0.166457
\(254\) 0 0
\(255\) −3.00000 0.136815i −0.187867 0.00856770i
\(256\) 0 0
\(257\) −4.16372 + 7.21177i −0.259725 + 0.449858i −0.966168 0.257912i \(-0.916965\pi\)
0.706443 + 0.707770i \(0.250299\pi\)
\(258\) 0 0
\(259\) −2.25729 1.38008i −0.140261 0.0857540i
\(260\) 0 0
\(261\) 18.5059 + 1.69145i 1.14549 + 0.104698i
\(262\) 0 0
\(263\) −8.54523 14.8008i −0.526921 0.912655i −0.999508 0.0313704i \(-0.990013\pi\)
0.472586 0.881284i \(-0.343320\pi\)
\(264\) 0 0
\(265\) 2.39037 + 4.14024i 0.146839 + 0.254333i
\(266\) 0 0
\(267\) 21.5167 + 0.981271i 1.31680 + 0.0600528i
\(268\) 0 0
\(269\) −5.00720 + 8.67272i −0.305294 + 0.528785i −0.977327 0.211737i \(-0.932088\pi\)
0.672033 + 0.740522i \(0.265421\pi\)
\(270\) 0 0
\(271\) −5.10457 8.84137i −0.310081 0.537075i 0.668299 0.743893i \(-0.267023\pi\)
−0.978380 + 0.206818i \(0.933689\pi\)
\(272\) 0 0
\(273\) −10.3617 + 5.04204i −0.627117 + 0.305158i
\(274\) 0 0
\(275\) 1.37938 2.38915i 0.0831797 0.144071i
\(276\) 0 0
\(277\) −9.67111 16.7508i −0.581081 1.00646i −0.995352 0.0963074i \(-0.969297\pi\)
0.414271 0.910154i \(-0.364037\pi\)
\(278\) 0 0
\(279\) −9.89104 21.4281i −0.592161 1.28287i
\(280\) 0 0
\(281\) −6.40136 + 11.0875i −0.381873 + 0.661424i −0.991330 0.131396i \(-0.958054\pi\)
0.609457 + 0.792819i \(0.291388\pi\)
\(282\) 0 0
\(283\) 16.3523 0.972046 0.486023 0.873946i \(-0.338447\pi\)
0.486023 + 0.873946i \(0.338447\pi\)
\(284\) 0 0
\(285\) −2.98181 + 4.66053i −0.176627 + 0.276066i
\(286\) 0 0
\(287\) 0.617023 + 0.377240i 0.0364217 + 0.0222678i
\(288\) 0 0
\(289\) 4.23385 + 7.33325i 0.249050 + 0.431367i
\(290\) 0 0
\(291\) 9.34941 + 18.0455i 0.548072 + 1.05784i
\(292\) 0 0
\(293\) −10.3889 17.9941i −0.606926 1.05123i −0.991744 0.128235i \(-0.959069\pi\)
0.384817 0.922993i \(-0.374264\pi\)
\(294\) 0 0
\(295\) 2.56654 4.44537i 0.149430 0.258820i
\(296\) 0 0
\(297\) −1.16372 2.85637i −0.0675256 0.165743i
\(298\) 0 0
\(299\) −11.2163 −0.648658
\(300\) 0 0
\(301\) −0.742705 + 29.5232i −0.0428088 + 1.70169i
\(302\) 0 0
\(303\) −2.80778 0.128049i −0.161303 0.00735622i
\(304\) 0 0
\(305\) 1.97296 3.41726i 0.112971 0.195672i
\(306\) 0 0
\(307\) 22.6768 1.29424 0.647118 0.762390i \(-0.275974\pi\)
0.647118 + 0.762390i \(0.275974\pi\)
\(308\) 0 0
\(309\) 5.08472 + 9.81411i 0.289260 + 0.558305i
\(310\) 0 0
\(311\) 6.51459 0.369408 0.184704 0.982794i \(-0.440867\pi\)
0.184704 + 0.982794i \(0.440867\pi\)
\(312\) 0 0
\(313\) 0.266149 0.0150436 0.00752181 0.999972i \(-0.497606\pi\)
0.00752181 + 0.999972i \(0.497606\pi\)
\(314\) 0 0
\(315\) −4.32597 + 1.86633i −0.243741 + 0.105156i
\(316\) 0 0
\(317\) 15.7237 0.883133 0.441566 0.897229i \(-0.354423\pi\)
0.441566 + 0.897229i \(0.354423\pi\)
\(318\) 0 0
\(319\) 3.67684 0.205864
\(320\) 0 0
\(321\) 32.3712 + 1.47629i 1.80678 + 0.0823985i
\(322\) 0 0
\(323\) −15.7195 −0.874654
\(324\) 0 0
\(325\) 5.84348 10.1212i 0.324138 0.561424i
\(326\) 0 0
\(327\) −2.28434 4.40904i −0.126324 0.243820i
\(328\) 0 0
\(329\) 28.2630 15.3832i 1.55819 0.848105i
\(330\) 0 0
\(331\) 25.1623 1.38304 0.691521 0.722356i \(-0.256941\pi\)
0.691521 + 0.722356i \(0.256941\pi\)
\(332\) 0 0
\(333\) 1.73025 2.45076i 0.0948172 0.134301i
\(334\) 0 0
\(335\) −0.568000 + 0.983804i −0.0310331 + 0.0537510i
\(336\) 0 0
\(337\) −9.36693 16.2240i −0.510249 0.883777i −0.999929 0.0118752i \(-0.996220\pi\)
0.489681 0.871902i \(-0.337113\pi\)
\(338\) 0 0
\(339\) 21.3171 + 0.972168i 1.15779 + 0.0528009i
\(340\) 0 0
\(341\) −2.33482 4.04403i −0.126438 0.218997i
\(342\) 0 0
\(343\) −1.39610 + 18.4676i −0.0753825 + 0.997155i
\(344\) 0 0
\(345\) −4.58113 0.208922i −0.246640 0.0112480i
\(346\) 0 0
\(347\) −22.5438 −1.21021 −0.605106 0.796145i \(-0.706869\pi\)
−0.605106 + 0.796145i \(0.706869\pi\)
\(348\) 0 0
\(349\) 1.89543 3.28298i 0.101460 0.175734i −0.810826 0.585287i \(-0.800982\pi\)
0.912286 + 0.409553i \(0.134315\pi\)
\(350\) 0 0
\(351\) −4.92986 12.1005i −0.263137 0.645876i
\(352\) 0 0
\(353\) −3.41741 5.91913i −0.181890 0.315043i 0.760634 0.649181i \(-0.224888\pi\)
−0.942524 + 0.334138i \(0.891555\pi\)
\(354\) 0 0
\(355\) −4.27694 + 7.40789i −0.226997 + 0.393170i
\(356\) 0 0
\(357\) −11.0905 7.49533i −0.586969 0.396695i
\(358\) 0 0
\(359\) 6.32237 + 10.9507i 0.333682 + 0.577954i 0.983231 0.182366i \(-0.0583755\pi\)
−0.649549 + 0.760320i \(0.725042\pi\)
\(360\) 0 0
\(361\) −4.98035 + 8.62622i −0.262124 + 0.454012i
\(362\) 0 0
\(363\) 8.48395 + 16.3750i 0.445292 + 0.859465i
\(364\) 0 0
\(365\) 2.34874 + 4.06813i 0.122939 + 0.212936i
\(366\) 0 0
\(367\) 3.27188 + 5.66707i 0.170791 + 0.295819i 0.938697 0.344744i \(-0.112034\pi\)
−0.767906 + 0.640563i \(0.778701\pi\)
\(368\) 0 0
\(369\) −0.472958 + 0.669906i −0.0246212 + 0.0348739i
\(370\) 0 0
\(371\) −0.535897 + 21.3024i −0.0278224 + 1.10596i
\(372\) 0 0
\(373\) −4.71420 + 8.16524i −0.244092 + 0.422780i −0.961876 0.273486i \(-0.911823\pi\)
0.717784 + 0.696266i \(0.245157\pi\)
\(374\) 0 0
\(375\) 5.34562 8.35512i 0.276047 0.431457i
\(376\) 0 0
\(377\) 15.5763 0.802218
\(378\) 0 0
\(379\) 7.27762 0.373826 0.186913 0.982376i \(-0.440152\pi\)
0.186913 + 0.982376i \(0.440152\pi\)
\(380\) 0 0
\(381\) 11.5139 17.9961i 0.589876 0.921967i
\(382\) 0 0
\(383\) −12.0416 + 20.8567i −0.615299 + 1.06573i 0.375033 + 0.927011i \(0.377631\pi\)
−0.990332 + 0.138717i \(0.955702\pi\)
\(384\) 0 0
\(385\) −0.818771 + 0.445647i −0.0417284 + 0.0227123i
\(386\) 0 0
\(387\) −33.3478 3.04799i −1.69516 0.154938i
\(388\) 0 0
\(389\) 8.14913 + 14.1147i 0.413177 + 0.715644i 0.995235 0.0975035i \(-0.0310857\pi\)
−0.582058 + 0.813147i \(0.697752\pi\)
\(390\) 0 0
\(391\) −6.51459 11.2836i −0.329457 0.570636i
\(392\) 0 0
\(393\) −0.945916 1.82573i −0.0477151 0.0920958i
\(394\) 0 0
\(395\) −2.74484 + 4.75420i −0.138108 + 0.239210i
\(396\) 0 0
\(397\) −6.08619 10.5416i −0.305457 0.529067i 0.671906 0.740636i \(-0.265476\pi\)
−0.977363 + 0.211569i \(0.932143\pi\)
\(398\) 0 0
\(399\) −22.1752 + 10.7905i −1.11015 + 0.540203i
\(400\) 0 0
\(401\) 16.6804 28.8914i 0.832981 1.44277i −0.0626819 0.998034i \(-0.519965\pi\)
0.895663 0.444733i \(-0.146701\pi\)
\(402\) 0 0
\(403\) −9.89104 17.1318i −0.492708 0.853395i
\(404\) 0 0
\(405\) −1.78813 5.03407i −0.0888529 0.250145i
\(406\) 0 0
\(407\) 0.296790 0.514055i 0.0147113 0.0254808i
\(408\) 0 0
\(409\) −5.78074 −0.285839 −0.142920 0.989734i \(-0.545649\pi\)
−0.142920 + 0.989734i \(0.545649\pi\)
\(410\) 0 0
\(411\) 4.36333 + 0.198990i 0.215227 + 0.00981544i
\(412\) 0 0
\(413\) 20.0957 10.9379i 0.988846 0.538217i
\(414\) 0 0
\(415\) −2.28580 3.95912i −0.112205 0.194346i
\(416\) 0 0
\(417\) 8.50214 + 0.387740i 0.416351 + 0.0189877i
\(418\) 0 0
\(419\) −15.4356 26.7352i −0.754078 1.30610i −0.945831 0.324659i \(-0.894751\pi\)
0.191753 0.981443i \(-0.438583\pi\)
\(420\) 0 0
\(421\) −1.86693 + 3.23361i −0.0909884 + 0.157597i −0.907927 0.419128i \(-0.862336\pi\)
0.816939 + 0.576724i \(0.195669\pi\)
\(422\) 0 0
\(423\) 15.2915 + 33.1278i 0.743500 + 1.61073i
\(424\) 0 0
\(425\) 13.5759 0.658526
\(426\) 0 0
\(427\) 15.4481 8.40819i 0.747584 0.406901i
\(428\) 0 0
\(429\) −1.18929 2.29548i −0.0574197 0.110827i
\(430\) 0 0
\(431\) 14.0979 24.4182i 0.679070 1.17618i −0.296192 0.955128i \(-0.595717\pi\)
0.975261 0.221055i \(-0.0709499\pi\)
\(432\) 0 0
\(433\) 12.5438 0.602815 0.301407 0.953495i \(-0.402544\pi\)
0.301407 + 0.953495i \(0.402544\pi\)
\(434\) 0 0
\(435\) 6.36186 + 0.290133i 0.305028 + 0.0139108i
\(436\) 0 0
\(437\) −24.0043 −1.14828
\(438\) 0 0
\(439\) −26.0406 −1.24285 −0.621426 0.783473i \(-0.713446\pi\)
−0.621426 + 0.783473i \(0.713446\pi\)
\(440\) 0 0
\(441\) −20.7903 2.96055i −0.990013 0.140978i
\(442\) 0 0
\(443\) 23.5729 1.11998 0.559992 0.828498i \(-0.310804\pi\)
0.559992 + 0.828498i \(0.310804\pi\)
\(444\) 0 0
\(445\) 7.38151 0.349917
\(446\) 0 0
\(447\) −14.3830 27.7608i −0.680291 1.31304i
\(448\) 0 0
\(449\) 13.6870 0.645928 0.322964 0.946411i \(-0.395321\pi\)
0.322964 + 0.946411i \(0.395321\pi\)
\(450\) 0 0
\(451\) −0.0811263 + 0.140515i −0.00382009 + 0.00661659i
\(452\) 0 0
\(453\) −2.85087 0.130014i −0.133946 0.00610860i
\(454\) 0 0
\(455\) −3.46857 + 1.88790i −0.162609 + 0.0885062i
\(456\) 0 0
\(457\) −22.3523 −1.04560 −0.522799 0.852456i \(-0.675112\pi\)
−0.522799 + 0.852456i \(0.675112\pi\)
\(458\) 0 0
\(459\) 9.30972 11.9875i 0.434541 0.559530i
\(460\) 0 0
\(461\) −3.98755 + 6.90663i −0.185719 + 0.321674i −0.943818 0.330464i \(-0.892795\pi\)
0.758100 + 0.652138i \(0.226128\pi\)
\(462\) 0 0
\(463\) 14.3676 + 24.8854i 0.667719 + 1.15652i 0.978540 + 0.206055i \(0.0660625\pi\)
−0.310821 + 0.950468i \(0.600604\pi\)
\(464\) 0 0
\(465\) −3.72072 7.18143i −0.172544 0.333031i
\(466\) 0 0
\(467\) −16.7829 29.0688i −0.776619 1.34514i −0.933880 0.357586i \(-0.883600\pi\)
0.157261 0.987557i \(-0.449733\pi\)
\(468\) 0 0
\(469\) −4.44738 + 2.42066i −0.205361 + 0.111775i
\(470\) 0 0
\(471\) 6.16158 9.63046i 0.283911 0.443748i
\(472\) 0 0
\(473\) −6.62568 −0.304649
\(474\) 0 0
\(475\) 12.5057 21.6606i 0.573802 0.993855i
\(476\) 0 0
\(477\) −24.0620 2.19927i −1.10172 0.100698i
\(478\) 0 0
\(479\) 0.183560 + 0.317935i 0.00838707 + 0.0145268i 0.870188 0.492719i \(-0.163997\pi\)
−0.861801 + 0.507246i \(0.830664\pi\)
\(480\) 0 0
\(481\) 1.25729 2.17770i 0.0573277 0.0992945i
\(482\) 0 0
\(483\) −16.9356 11.4457i −0.770596 0.520797i
\(484\) 0 0
\(485\) 3.48249 + 6.03184i 0.158132 + 0.273892i
\(486\) 0 0
\(487\) 14.9538 25.9007i 0.677621 1.17367i −0.298075 0.954543i \(-0.596344\pi\)
0.975695 0.219131i \(-0.0703222\pi\)
\(488\) 0 0
\(489\) −10.3509 0.472052i −0.468083 0.0213469i
\(490\) 0 0
\(491\) 0.255158 + 0.441947i 0.0115151 + 0.0199448i 0.871726 0.489994i \(-0.163001\pi\)
−0.860210 + 0.509939i \(0.829668\pi\)
\(492\) 0 0
\(493\) 9.04689 + 15.6697i 0.407451 + 0.705726i
\(494\) 0 0
\(495\) −0.442991 0.959702i −0.0199110 0.0431354i
\(496\) 0 0
\(497\) −33.4880 + 18.2271i −1.50214 + 0.817599i
\(498\) 0 0
\(499\) −9.50953 + 16.4710i −0.425705 + 0.737343i −0.996486 0.0837597i \(-0.973307\pi\)
0.570781 + 0.821102i \(0.306641\pi\)
\(500\) 0 0
\(501\) 12.9086 + 0.588695i 0.576712 + 0.0263010i
\(502\) 0 0
\(503\) 37.7807 1.68456 0.842280 0.539040i \(-0.181213\pi\)
0.842280 + 0.539040i \(0.181213\pi\)
\(504\) 0 0
\(505\) −0.963235 −0.0428634
\(506\) 0 0
\(507\) 5.32004 + 10.2683i 0.236271 + 0.456031i
\(508\) 0 0
\(509\) 5.60817 9.71363i 0.248578 0.430549i −0.714554 0.699581i \(-0.753370\pi\)
0.963131 + 0.269031i \(0.0867035\pi\)
\(510\) 0 0
\(511\) −0.526563 + 20.9314i −0.0232938 + 0.925949i
\(512\) 0 0
\(513\) −10.5505 25.8965i −0.465815 1.14336i
\(514\) 0 0
\(515\) 1.89397 + 3.28045i 0.0834582 + 0.144554i
\(516\) 0 0
\(517\) 3.60963 + 6.25206i 0.158751 + 0.274965i
\(518\) 0 0
\(519\) 23.9518 37.4364i 1.05137 1.64327i
\(520\) 0 0
\(521\) −13.7360 + 23.7914i −0.601785 + 1.04232i 0.390766 + 0.920490i \(0.372210\pi\)
−0.992551 + 0.121831i \(0.961123\pi\)
\(522\) 0 0
\(523\) −11.0919 19.2118i −0.485016 0.840072i 0.514836 0.857289i \(-0.327853\pi\)
−0.999852 + 0.0172166i \(0.994520\pi\)
\(524\) 0 0
\(525\) 19.1513 9.31909i 0.835830 0.406718i
\(526\) 0 0
\(527\) 11.4897 19.9007i 0.500498 0.866889i
\(528\) 0 0
\(529\) 1.55195 + 2.68805i 0.0674760 + 0.116872i
\(530\) 0 0
\(531\) 10.8727 + 23.5547i 0.471833 + 1.02219i
\(532\) 0 0
\(533\) −0.343677 + 0.595265i −0.0148863 + 0.0257838i
\(534\) 0 0
\(535\) 11.1052 0.480122
\(536\) 0 0
\(537\) −11.9808 23.1244i −0.517011 0.997891i
\(538\) 0 0
\(539\) −4.14980 0.208922i −0.178745 0.00899893i
\(540\) 0 0
\(541\) 14.9246 + 25.8502i 0.641659 + 1.11139i 0.985062 + 0.172198i \(0.0550869\pi\)
−0.343403 + 0.939188i \(0.611580\pi\)
\(542\) 0 0
\(543\) 0.0804528 0.125747i 0.00345256 0.00539630i
\(544\) 0 0
\(545\) −0.850874 1.47376i −0.0364474 0.0631288i
\(546\) 0 0
\(547\) −8.84348 + 15.3174i −0.378120 + 0.654923i −0.990789 0.135417i \(-0.956763\pi\)
0.612669 + 0.790340i \(0.290096\pi\)
\(548\) 0 0
\(549\) 8.35807 + 18.1071i 0.356714 + 0.772790i
\(550\) 0 0
\(551\) 33.3350 1.42012
\(552\) 0 0
\(553\) −21.4918 + 11.6977i −0.913925 + 0.497439i
\(554\) 0 0
\(555\) 0.554084 0.866025i 0.0235196 0.0367607i
\(556\) 0 0
\(557\) 15.0651 26.0935i 0.638328 1.10562i −0.347472 0.937690i \(-0.612960\pi\)
0.985800 0.167926i \(-0.0537069\pi\)
\(558\) 0 0
\(559\) −28.0685 −1.18717
\(560\) 0 0
\(561\) 1.61849 2.52967i 0.0683325 0.106803i
\(562\) 0 0
\(563\) −4.09766 −0.172696 −0.0863478 0.996265i \(-0.527520\pi\)
−0.0863478 + 0.996265i \(0.527520\pi\)
\(564\) 0 0
\(565\) 7.31304 0.307662
\(566\) 0 0
\(567\) 4.90428 23.3012i 0.205961 0.978560i
\(568\) 0 0
\(569\) 6.23697 0.261467 0.130734 0.991418i \(-0.458267\pi\)
0.130734 + 0.991418i \(0.458267\pi\)
\(570\) 0 0
\(571\) −35.6021 −1.48990 −0.744951 0.667119i \(-0.767527\pi\)
−0.744951 + 0.667119i \(0.767527\pi\)
\(572\) 0 0
\(573\) 3.71732 5.81012i 0.155293 0.242721i
\(574\) 0 0
\(575\) 20.7309 0.864539
\(576\) 0 0
\(577\) 23.1388 40.0776i 0.963281 1.66845i 0.249118 0.968473i \(-0.419859\pi\)
0.714164 0.699979i \(-0.246807\pi\)
\(578\) 0 0
\(579\) −6.32957 + 9.89302i −0.263048 + 0.411140i
\(580\) 0 0
\(581\) 0.512453 20.3705i 0.0212601 0.845109i
\(582\) 0 0
\(583\) −4.78074 −0.197998
\(584\) 0 0
\(585\) −1.87665 4.06560i −0.0775898 0.168092i
\(586\) 0 0
\(587\) −1.13161 + 1.96001i −0.0467066 + 0.0808982i −0.888434 0.459005i \(-0.848206\pi\)
0.841727 + 0.539903i \(0.181539\pi\)
\(588\) 0 0
\(589\) −21.1680 36.6640i −0.872212 1.51072i
\(590\) 0 0
\(591\) −10.3226 + 16.1340i −0.424614 + 0.663665i
\(592\) 0 0
\(593\) 23.0979 + 40.0067i 0.948515 + 1.64288i 0.748555 + 0.663072i \(0.230748\pi\)
0.199960 + 0.979804i \(0.435919\pi\)
\(594\) 0 0
\(595\) −3.91381 2.39285i −0.160451 0.0980974i
\(596\) 0 0
\(597\) −4.47675 8.64065i −0.183221 0.353638i
\(598\) 0 0
\(599\) 16.7807 0.685642 0.342821 0.939401i \(-0.388618\pi\)
0.342821 + 0.939401i \(0.388618\pi\)
\(600\) 0 0
\(601\) −5.69961 + 9.87202i −0.232492 + 0.402688i −0.958541 0.284955i \(-0.908021\pi\)
0.726049 + 0.687643i \(0.241355\pi\)
\(602\) 0 0
\(603\) −2.40623 5.21289i −0.0979891 0.212285i
\(604\) 0 0
\(605\) 3.16012 + 5.47348i 0.128477 + 0.222529i
\(606\) 0 0
\(607\) −7.21420 + 12.4954i −0.292815 + 0.507171i −0.974474 0.224499i \(-0.927925\pi\)
0.681659 + 0.731670i \(0.261259\pi\)
\(608\) 0 0
\(609\) 23.5187 + 15.8948i 0.953024 + 0.644088i
\(610\) 0 0
\(611\) 15.2915 + 26.4857i 0.618629 + 1.07150i
\(612\) 0 0
\(613\) 12.2053 21.1403i 0.492969 0.853848i −0.506998 0.861947i \(-0.669245\pi\)
0.999967 + 0.00809942i \(0.00257815\pi\)
\(614\) 0 0
\(615\) −0.151457 + 0.236725i −0.00610733 + 0.00954566i
\(616\) 0 0
\(617\) 24.4698 + 42.3830i 0.985119 + 1.70628i 0.641408 + 0.767200i \(0.278350\pi\)
0.343710 + 0.939076i \(0.388316\pi\)
\(618\) 0 0
\(619\) −22.3296 38.6759i −0.897501 1.55452i −0.830678 0.556753i \(-0.812047\pi\)
−0.0668227 0.997765i \(-0.521286\pi\)
\(620\) 0 0
\(621\) 14.2163 18.3055i 0.570482 0.734574i
\(622\) 0 0
\(623\) 28.0708 + 17.1621i 1.12463 + 0.687586i
\(624\) 0 0
\(625\) −9.91955 + 17.1812i −0.396782 + 0.687246i
\(626\) 0 0
\(627\) −2.54523 4.91259i −0.101647 0.196190i
\(628\) 0 0
\(629\) 2.92101 0.116468
\(630\) 0 0
\(631\) −33.2852 −1.32506 −0.662532 0.749034i \(-0.730518\pi\)
−0.662532 + 0.749034i \(0.730518\pi\)
\(632\) 0 0
\(633\) 33.4363 + 1.52486i 1.32897 + 0.0606079i
\(634\) 0 0
\(635\) 3.66079 6.34067i 0.145274 0.251622i
\(636\) 0 0
\(637\) −17.5799 0.885061i −0.696539 0.0350674i
\(638\) 0 0
\(639\) −18.1185 39.2522i −0.716756 1.55279i
\(640\) 0 0
\(641\) −15.3940 26.6631i −0.608025 1.05313i −0.991566 0.129606i \(-0.958629\pi\)
0.383540 0.923524i \(-0.374705\pi\)
\(642\) 0 0
\(643\) 13.7345 + 23.7889i 0.541637 + 0.938142i 0.998810 + 0.0487649i \(0.0155285\pi\)
−0.457174 + 0.889378i \(0.651138\pi\)
\(644\) 0 0
\(645\) −11.4641 0.522821i −0.451399 0.0205861i
\(646\) 0 0
\(647\) 6.63521 11.4925i 0.260857 0.451818i −0.705613 0.708598i \(-0.749328\pi\)
0.966470 + 0.256780i \(0.0826615\pi\)
\(648\) 0 0
\(649\) 2.56654 + 4.44537i 0.100745 + 0.174496i
\(650\) 0 0
\(651\) 2.54756 35.9607i 0.0998468 1.40941i
\(652\) 0 0
\(653\) 8.57081 14.8451i 0.335402 0.580933i −0.648160 0.761504i \(-0.724461\pi\)
0.983562 + 0.180571i \(0.0577946\pi\)
\(654\) 0 0
\(655\) −0.352336 0.610265i −0.0137669 0.0238450i
\(656\) 0 0
\(657\) −23.6429 2.16096i −0.922397 0.0843072i
\(658\) 0 0
\(659\) −4.26089 + 7.38008i −0.165981 + 0.287487i −0.937003 0.349321i \(-0.886412\pi\)
0.771022 + 0.636808i \(0.219746\pi\)
\(660\) 0 0
\(661\) 34.3360 1.33551 0.667757 0.744379i \(-0.267254\pi\)
0.667757 + 0.744379i \(0.267254\pi\)
\(662\) 0 0
\(663\) 6.85641 10.7165i 0.266281 0.416193i
\(664\) 0 0
\(665\) −7.42315 + 4.04033i −0.287857 + 0.156677i
\(666\) 0 0
\(667\) 13.8150 + 23.9282i 0.534918 + 0.926505i
\(668\) 0 0
\(669\) −20.1783 38.9465i −0.780138 1.50576i
\(670\) 0 0
\(671\) 1.97296 + 3.41726i 0.0761652 + 0.131922i
\(672\) 0 0
\(673\) −7.70155 + 13.3395i −0.296873 + 0.514199i −0.975419 0.220359i \(-0.929277\pi\)
0.678546 + 0.734558i \(0.262610\pi\)
\(674\) 0 0
\(675\) 9.11177 + 22.3651i 0.350712 + 0.860832i
\(676\) 0 0
\(677\) −7.38151 −0.283695 −0.141847 0.989889i \(-0.545304\pi\)
−0.141847 + 0.989889i \(0.545304\pi\)
\(678\) 0 0
\(679\) −0.780738 + 31.0350i −0.0299620 + 1.19102i
\(680\) 0 0
\(681\) −8.33482 0.380110i −0.319391 0.0145658i
\(682\) 0 0
\(683\) −4.79893 + 8.31198i −0.183626 + 0.318049i −0.943113 0.332474i \(-0.892117\pi\)
0.759487 + 0.650523i \(0.225450\pi\)
\(684\) 0 0
\(685\) 1.49688 0.0571929
\(686\) 0 0
\(687\) 7.40642 + 14.2953i 0.282573 + 0.545398i
\(688\) 0 0
\(689\) −20.2527 −0.771567
\(690\) 0 0
\(691\) 14.1445 0.538084 0.269042 0.963128i \(-0.413293\pi\)
0.269042 + 0.963128i \(0.413293\pi\)
\(692\) 0 0
\(693\) 0.546692 4.67956i 0.0207671 0.177762i
\(694\) 0 0
\(695\) 2.91674 0.110638
\(696\) 0 0
\(697\) −0.798447 −0.0302433
\(698\) 0 0
\(699\) −0.336285 0.0153363i −0.0127195 0.000580072i
\(700\) 0 0
\(701\) 37.3753 1.41164 0.705822 0.708389i \(-0.250578\pi\)
0.705822 + 0.708389i \(0.250578\pi\)
\(702\) 0 0
\(703\) 2.69076 4.66053i 0.101484 0.175775i
\(704\) 0 0
\(705\) 5.75223 + 11.1025i 0.216642 + 0.418144i
\(706\) 0 0
\(707\) −3.66304 2.23954i −0.137763 0.0842264i
\(708\) 0 0
\(709\) −10.4868 −0.393838 −0.196919 0.980420i \(-0.563094\pi\)
−0.196919 + 0.980420i \(0.563094\pi\)
\(710\) 0 0
\(711\) −11.6280 25.1911i −0.436085 0.944741i
\(712\) 0 0
\(713\) 17.5452 30.3892i 0.657074 1.13809i
\(714\) 0 0
\(715\) −0.442991 0.767282i −0.0165669 0.0286947i
\(716\) 0 0
\(717\) −23.6264 1.07748i −0.882342 0.0402393i
\(718\) 0 0
\(719\) −1.11995 1.93981i −0.0417670 0.0723426i 0.844386 0.535735i \(-0.179965\pi\)
−0.886153 + 0.463392i \(0.846632\pi\)
\(720\) 0 0
\(721\) −0.424608 + 16.8786i −0.0158132 + 0.628590i
\(722\) 0 0
\(723\) −22.4933 1.02581i −0.836534 0.0381502i
\(724\) 0 0
\(725\) −28.7893 −1.06921
\(726\) 0 0
\(727\) −0.185023 + 0.320469i −0.00686211 + 0.0118855i −0.869436 0.494045i \(-0.835518\pi\)
0.862574 + 0.505931i \(0.168851\pi\)
\(728\) 0 0
\(729\) 25.9969 + 7.29124i 0.962847 + 0.270046i
\(730\) 0 0
\(731\) −16.3025 28.2368i −0.602971 1.04438i
\(732\) 0 0
\(733\) −7.00953 + 12.1409i −0.258903 + 0.448433i −0.965948 0.258735i \(-0.916694\pi\)
0.707045 + 0.707168i \(0.250028\pi\)
\(734\) 0 0
\(735\) −7.16372 0.688942i −0.264238 0.0254120i
\(736\) 0 0
\(737\) −0.568000 0.983804i −0.0209225 0.0362389i
\(738\) 0 0
\(739\) −13.3872 + 23.1874i −0.492458 + 0.852962i −0.999962 0.00868705i \(-0.997235\pi\)
0.507504 + 0.861649i \(0.330568\pi\)
\(740\) 0 0
\(741\) −10.7824 20.8113i −0.396101 0.764521i
\(742\) 0 0
\(743\) 5.04669 + 8.74113i 0.185145 + 0.320681i 0.943625 0.331015i \(-0.107391\pi\)
−0.758480 + 0.651696i \(0.774058\pi\)
\(744\) 0 0
\(745\) −5.35740 9.27928i −0.196280 0.339967i
\(746\) 0 0
\(747\) 23.0093 + 2.10306i 0.841867 + 0.0769468i
\(748\) 0 0
\(749\) 42.2316 + 25.8198i 1.54311 + 0.943437i
\(750\) 0 0
\(751\) 5.75729 9.97193i 0.210087 0.363881i −0.741655 0.670782i \(-0.765959\pi\)
0.951741 + 0.306901i \(0.0992921\pi\)
\(752\) 0 0
\(753\) −18.2434 + 28.5141i −0.664826 + 1.03911i
\(754\) 0 0
\(755\) −0.978019 −0.0355938
\(756\) 0 0
\(757\) −15.2484 −0.554214 −0.277107 0.960839i \(-0.589376\pi\)
−0.277107 + 0.960839i \(0.589376\pi\)
\(758\) 0 0
\(759\) 2.47150 3.86291i 0.0897096 0.140215i
\(760\) 0 0
\(761\) 0.850874 1.47376i 0.0308442 0.0534236i −0.850191 0.526474i \(-0.823514\pi\)
0.881035 + 0.473050i \(0.156847\pi\)
\(762\) 0 0
\(763\) 0.190757 7.58277i 0.00690588 0.274515i
\(764\) 0 0
\(765\) 3.00000 4.24925i 0.108465 0.153632i
\(766\) 0 0
\(767\) 10.8727 + 18.8320i 0.392589 + 0.679984i
\(768\) 0 0
\(769\) 24.1211 + 41.7790i 0.869829 + 1.50659i 0.862171 + 0.506618i \(0.169104\pi\)
0.00765823 + 0.999971i \(0.497562\pi\)
\(770\) 0 0
\(771\) −6.63521 12.8067i −0.238961 0.461223i
\(772\) 0 0
\(773\) 3.10243 5.37357i 0.111587 0.193274i −0.804823 0.593514i \(-0.797740\pi\)
0.916410 + 0.400240i \(0.131073\pi\)
\(774\) 0 0
\(775\) 18.2814 + 31.6643i 0.656688 + 1.13742i
\(776\) 0 0
\(777\) 4.12062 2.00511i 0.147826 0.0719330i
\(778\) 0 0
\(779\) −0.735508 + 1.27394i −0.0263523 + 0.0456436i
\(780\) 0 0
\(781\) −4.27694 7.40789i −0.153041 0.265075i
\(782\) 0 0
\(783\) −19.7424 + 25.4210i −0.705536 + 0.908474i
\(784\) 0 0
\(785\) 1.95904 3.39316i 0.0699212 0.121107i
\(786\) 0 0
\(787\) −6.09766 −0.217358 −0.108679 0.994077i \(-0.534662\pi\)
−0.108679 + 0.994077i \(0.534662\pi\)
\(788\) 0 0
\(789\) 29.5708 + 1.34858i 1.05275 + 0.0480107i
\(790\) 0 0
\(791\) 27.8104 + 17.0029i 0.988824 + 0.604554i
\(792\) 0 0
\(793\) 8.35807 + 14.4766i 0.296804 + 0.514079i
\(794\) 0 0
\(795\) −8.27188 0.377240i −0.293373 0.0133793i
\(796\) 0 0
\(797\) −6.22860 10.7882i −0.220628 0.382139i 0.734371 0.678749i \(-0.237477\pi\)
−0.954999 + 0.296609i \(0.904144\pi\)
\(798\) 0 0
\(799\) −17.7630 + 30.7665i −0.628411 + 1.08844i
\(800\) 0 0
\(801\) −21.5167 + 30.4767i −0.760256 + 1.07684i
\(802\) 0 0
\(803\) −4.69748 −0.165770
\(804\) 0 0
\(805\) −5.97656 3.65399i −0.210646 0.128786i
\(806\) 0 0
\(807\) −7.97937 15.4011i −0.280887 0.542145i
\(808\) 0 0
\(809\) −2.81644 + 4.87822i −0.0990208 + 0.171509i −0.911280 0.411788i \(-0.864904\pi\)
0.812259 + 0.583297i \(0.198238\pi\)
\(810\) 0 0
\(811\) 45.6414 1.60269 0.801344 0.598204i \(-0.204119\pi\)
0.801344 + 0.598204i \(0.204119\pi\)
\(812\) 0 0
\(813\) 17.6644 + 0.805585i 0.619517 + 0.0282531i
\(814\) 0 0
\(815\) −3.55096 −0.124385
\(816\) 0 0
\(817\) −60.0698 −2.10158
\(818\) 0 0
\(819\) 2.31596 19.8241i 0.0809262 0.692710i
\(820\) 0 0
\(821\) 32.6946 1.14105 0.570524 0.821281i \(-0.306740\pi\)
0.570524 + 0.821281i \(0.306740\pi\)
\(822\) 0 0
\(823\) 10.4399 0.363911 0.181956 0.983307i \(-0.441757\pi\)
0.181956 + 0.983307i \(0.441757\pi\)
\(824\) 0 0
\(825\) 2.19815 + 4.24268i 0.0765297 + 0.147711i
\(826\) 0 0
\(827\) −16.7060 −0.580925 −0.290463 0.956886i \(-0.593809\pi\)
−0.290463 + 0.956886i \(0.593809\pi\)
\(828\) 0 0
\(829\) −13.1046 + 22.6978i −0.455141 + 0.788327i −0.998696 0.0510466i \(-0.983744\pi\)
0.543556 + 0.839373i \(0.317078\pi\)
\(830\) 0 0
\(831\) 33.4669 + 1.52626i 1.16095 + 0.0529454i
\(832\) 0 0
\(833\) −9.32023 18.1993i −0.322927 0.630570i
\(834\) 0 0
\(835\) 4.42840 0.153251
\(836\) 0 0
\(837\) 40.4963 + 5.57143i 1.39976 + 0.192577i
\(838\) 0 0
\(839\) −11.1886 + 19.3793i −0.386274 + 0.669046i −0.991945 0.126669i \(-0.959571\pi\)
0.605671 + 0.795715i \(0.292905\pi\)
\(840\) 0 0
\(841\) −4.68502 8.11470i −0.161553 0.279817i
\(842\) 0 0
\(843\) −10.2011 19.6893i −0.351344 0.678134i
\(844\) 0 0
\(845\) 1.98162 + 3.43226i 0.0681697 + 0.118073i
\(846\) 0 0
\(847\) −0.708466 + 28.1622i −0.0243432 + 0.967663i
\(848\) 0 0
\(849\) −15.2643 + 23.8579i −0.523869 + 0.818800i
\(850\) 0 0
\(851\) 4.46050 0.152904
\(852\) 0 0
\(853\) 4.96264 8.59555i 0.169918 0.294306i −0.768473 0.639882i \(-0.778983\pi\)
0.938391 + 0.345576i \(0.112317\pi\)
\(854\) 0 0
\(855\) −4.01625 8.70086i −0.137353 0.297563i
\(856\) 0 0
\(857\) −3.89776 6.75112i −0.133145 0.230614i 0.791742 0.610855i \(-0.209174\pi\)
−0.924887 + 0.380241i \(0.875841\pi\)
\(858\) 0 0
\(859\) 8.17111 14.1528i 0.278795 0.482886i −0.692291 0.721619i \(-0.743398\pi\)
0.971085 + 0.238732i \(0.0767318\pi\)
\(860\) 0 0
\(861\) −1.12636 + 0.548090i −0.0383861 + 0.0186789i
\(862\) 0 0
\(863\) −0.730252 1.26483i −0.0248581 0.0430555i 0.853329 0.521373i \(-0.174580\pi\)
−0.878187 + 0.478318i \(0.841247\pi\)
\(864\) 0 0
\(865\) 7.61537 13.1902i 0.258930 0.448480i
\(866\) 0 0
\(867\) −14.6513 0.668172i −0.497583 0.0226923i
\(868\) 0 0
\(869\) −2.74484 4.75420i −0.0931124 0.161275i
\(870\) 0 0
\(871\) −2.40623 4.16771i −0.0815319 0.141217i
\(872\) 0 0
\(873\) −35.0554 3.20407i −1.18645 0.108441i
\(874\) 0 0
\(875\) 13.3078 7.24327i 0.449885 0.244867i
\(876\) 0 0
\(877\) 1.20467 2.08655i 0.0406789 0.0704579i −0.844969 0.534815i \(-0.820381\pi\)
0.885648 + 0.464357i \(0.153715\pi\)
\(878\) 0 0
\(879\) 35.9509 + 1.63954i 1.21259 + 0.0553003i
\(880\) 0 0
\(881\) −18.9607 −0.638802 −0.319401 0.947620i \(-0.603482\pi\)
−0.319401 + 0.947620i \(0.603482\pi\)
\(882\) 0 0
\(883\) −3.64008 −0.122498 −0.0612492 0.998123i \(-0.519508\pi\)
−0.0612492 + 0.998123i \(0.519508\pi\)
\(884\) 0 0
\(885\) 4.08998 + 7.89414i 0.137483 + 0.265359i
\(886\) 0 0
\(887\) −12.2286 + 21.1805i −0.410596 + 0.711173i −0.994955 0.100322i \(-0.968013\pi\)
0.584359 + 0.811495i \(0.301346\pi\)
\(888\) 0 0
\(889\) 28.6636 15.6013i 0.961346 0.523249i
\(890\) 0 0
\(891\) 5.25370 + 0.968468i 0.176005 + 0.0324449i
\(892\) 0 0
\(893\) 32.7257 + 56.6825i 1.09512 + 1.89681i
\(894\) 0 0
\(895\) −4.46264 7.72952i −0.149170 0.258369i
\(896\) 0 0
\(897\) 10.4700 16.3645i 0.349584 0.546395i
\(898\) 0 0
\(899\) −24.3653 + 42.2019i −0.812627 + 1.40751i
\(900\) 0 0
\(901\) −11.7630 20.3742i −0.391883 0.678762i
\(902\) 0 0
\(903\) −42.3807 28.6424i −1.41034 0.953160i
\(904\) 0 0
\(905\) 0.0255796 0.0443051i 0.000850293 0.00147275i
\(906\) 0 0
\(907\) 5.01838 + 8.69209i 0.166633 + 0.288616i 0.937234 0.348701i \(-0.113377\pi\)
−0.770601 + 0.637318i \(0.780044\pi\)
\(908\) 0 0
\(909\) 2.80778 3.97699i 0.0931282 0.131908i
\(910\) 0 0
\(911\) −11.4459 + 19.8249i −0.379220 + 0.656828i −0.990949 0.134239i \(-0.957141\pi\)
0.611729 + 0.791067i \(0.290474\pi\)
\(912\) 0 0
\(913\) 4.57160 0.151298
\(914\) 0 0
\(915\) 3.14406 + 6.06841i 0.103940 + 0.200615i
\(916\) 0 0
\(917\) 0.0789903 3.13993i 0.00260849 0.103690i
\(918\) 0 0
\(919\) −10.8910 18.8638i −0.359262 0.622261i 0.628575 0.777749i \(-0.283638\pi\)
−0.987838 + 0.155488i \(0.950305\pi\)
\(920\) 0 0
\(921\) −21.1680 + 33.0852i −0.697509 + 1.09020i
\(922\) 0 0
\(923\) −18.1185 31.3821i −0.596377 1.03296i
\(924\) 0 0
\(925\) −2.32383 + 4.02499i −0.0764071 + 0.132341i
\(926\) 0 0
\(927\) −19.0651 1.74255i −0.626179 0.0572329i
\(928\) 0 0
\(929\) −32.8377 −1.07737 −0.538686 0.842507i \(-0.681079\pi\)
−0.538686 + 0.842507i \(0.681079\pi\)
\(930\) 0 0
\(931\) −37.6230 1.89413i −1.23304 0.0620778i
\(932\) 0 0
\(933\) −6.08113 + 9.50471i −0.199087 + 0.311170i
\(934\) 0 0
\(935\) 0.514589 0.891294i 0.0168289 0.0291484i
\(936\) 0 0
\(937\) −8.78074 −0.286854 −0.143427 0.989661i \(-0.545812\pi\)
−0.143427 + 0.989661i \(0.545812\pi\)
\(938\) 0 0
\(939\) −0.248440 + 0.388308i −0.00810754 + 0.0126720i
\(940\) 0 0
\(941\) 4.26615 0.139072 0.0695362 0.997579i \(-0.477848\pi\)
0.0695362 + 0.997579i \(0.477848\pi\)
\(942\) 0 0
\(943\) −1.21926 −0.0397046
\(944\) 0 0
\(945\) 1.31517 8.05369i 0.0427825 0.261987i
\(946\) 0 0
\(947\) 23.0584 0.749296 0.374648 0.927167i \(-0.377764\pi\)
0.374648 + 0.927167i \(0.377764\pi\)
\(948\) 0 0
\(949\) −19.9000 −0.645981
\(950\) 0 0
\(951\) −14.6775 + 22.9407i −0.475951 + 0.743904i
\(952\) 0 0
\(953\) −36.5552 −1.18414 −0.592070 0.805886i \(-0.701689\pi\)
−0.592070 + 0.805886i \(0.701689\pi\)
\(954\) 0 0
\(955\) 1.18190 2.04712i 0.0382455 0.0662431i
\(956\) 0 0
\(957\) −3.43219 + 5.36447i −0.110947 + 0.173409i
\(958\) 0 0
\(959\) 5.69241 + 3.48027i 0.183818 + 0.112384i
\(960\) 0 0
\(961\) 30.8885 0.996404
\(962\) 0 0
\(963\) −32.3712 + 45.8511i −1.04315 + 1.47753i
\(964\) 0 0
\(965\) −2.01245 + 3.48567i −0.0647832 + 0.112208i
\(966\) 0 0
\(967\) −26.7719 46.3703i −0.860926 1.49117i −0.871037 0.491218i \(-0.836552\pi\)
0.0101108 0.999949i \(-0.496782\pi\)
\(968\) 0 0
\(969\) 14.6735 22.9345i 0.471382 0.736762i
\(970\) 0 0
\(971\) 15.9897 + 27.6949i 0.513133 + 0.888773i 0.999884 + 0.0152321i \(0.00484870\pi\)
−0.486751 + 0.873541i \(0.661818\pi\)
\(972\) 0 0
\(973\) 11.0919 + 6.78146i 0.355591 + 0.217403i
\(974\) 0 0
\(975\) 9.31205 + 17.9733i 0.298224 + 0.575608i
\(976\) 0 0
\(977\) −27.4208 −0.877270 −0.438635 0.898665i \(-0.644538\pi\)
−0.438635 + 0.898665i \(0.644538\pi\)
\(978\) 0 0
\(979\) −3.69076 + 6.39258i −0.117957 + 0.204308i
\(980\) 0 0
\(981\) 8.56507 + 0.782849i 0.273462 + 0.0249945i
\(982\) 0 0
\(983\) −29.5782 51.2309i −0.943398 1.63401i −0.758927 0.651175i \(-0.774276\pi\)
−0.184471 0.982838i \(-0.559057\pi\)
\(984\) 0 0
\(985\) −3.28201 + 5.68460i −0.104573 + 0.181126i
\(986\) 0 0
\(987\) −3.93852 + 55.5951i −0.125365 + 1.76961i
\(988\) 0 0
\(989\) −24.8946 43.1188i −0.791604 1.37110i
\(990\) 0 0
\(991\) −6.41887 + 11.1178i −0.203902 + 0.353169i −0.949782 0.312911i \(-0.898696\pi\)
0.745880 + 0.666080i \(0.232029\pi\)
\(992\) 0 0
\(993\) −23.4880 + 36.7114i −0.745370 + 1.16500i
\(994\) 0 0
\(995\) −1.66751 2.88821i −0.0528636 0.0915624i
\(996\) 0 0
\(997\) 2.89037 + 5.00627i 0.0915389 + 0.158550i 0.908159 0.418626i \(-0.137488\pi\)
−0.816620 + 0.577176i \(0.804155\pi\)
\(998\) 0 0
\(999\) 1.96050 + 4.81211i 0.0620276 + 0.152248i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1008.2.q.g.529.2 6
3.2 odd 2 3024.2.q.g.2881.2 6
4.3 odd 2 126.2.e.c.25.2 6
7.2 even 3 1008.2.t.h.961.2 6
9.4 even 3 1008.2.t.h.193.2 6
9.5 odd 6 3024.2.t.h.1873.2 6
12.11 even 2 378.2.e.d.235.2 6
21.2 odd 6 3024.2.t.h.289.2 6
28.3 even 6 882.2.f.o.295.3 6
28.11 odd 6 882.2.f.n.295.1 6
28.19 even 6 882.2.h.p.79.2 6
28.23 odd 6 126.2.h.d.79.2 yes 6
28.27 even 2 882.2.e.o.655.2 6
36.7 odd 6 1134.2.g.m.487.2 6
36.11 even 6 1134.2.g.l.487.2 6
36.23 even 6 378.2.h.c.361.2 6
36.31 odd 6 126.2.h.d.67.2 yes 6
63.23 odd 6 3024.2.q.g.2305.2 6
63.58 even 3 inner 1008.2.q.g.625.2 6
84.11 even 6 2646.2.f.l.883.2 6
84.23 even 6 378.2.h.c.289.2 6
84.47 odd 6 2646.2.h.o.667.2 6
84.59 odd 6 2646.2.f.m.883.2 6
84.83 odd 2 2646.2.e.p.2125.2 6
252.11 even 6 7938.2.a.ca.1.2 3
252.23 even 6 378.2.e.d.37.2 6
252.31 even 6 882.2.f.o.589.3 6
252.59 odd 6 2646.2.f.m.1765.2 6
252.67 odd 6 882.2.f.n.589.1 6
252.79 odd 6 1134.2.g.m.163.2 6
252.95 even 6 2646.2.f.l.1765.2 6
252.103 even 6 882.2.e.o.373.2 6
252.115 even 6 7938.2.a.bw.1.2 3
252.131 odd 6 2646.2.e.p.1549.2 6
252.139 even 6 882.2.h.p.67.2 6
252.151 odd 6 7938.2.a.bv.1.2 3
252.167 odd 6 2646.2.h.o.361.2 6
252.191 even 6 1134.2.g.l.163.2 6
252.227 odd 6 7938.2.a.bz.1.2 3
252.247 odd 6 126.2.e.c.121.2 yes 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
126.2.e.c.25.2 6 4.3 odd 2
126.2.e.c.121.2 yes 6 252.247 odd 6
126.2.h.d.67.2 yes 6 36.31 odd 6
126.2.h.d.79.2 yes 6 28.23 odd 6
378.2.e.d.37.2 6 252.23 even 6
378.2.e.d.235.2 6 12.11 even 2
378.2.h.c.289.2 6 84.23 even 6
378.2.h.c.361.2 6 36.23 even 6
882.2.e.o.373.2 6 252.103 even 6
882.2.e.o.655.2 6 28.27 even 2
882.2.f.n.295.1 6 28.11 odd 6
882.2.f.n.589.1 6 252.67 odd 6
882.2.f.o.295.3 6 28.3 even 6
882.2.f.o.589.3 6 252.31 even 6
882.2.h.p.67.2 6 252.139 even 6
882.2.h.p.79.2 6 28.19 even 6
1008.2.q.g.529.2 6 1.1 even 1 trivial
1008.2.q.g.625.2 6 63.58 even 3 inner
1008.2.t.h.193.2 6 9.4 even 3
1008.2.t.h.961.2 6 7.2 even 3
1134.2.g.l.163.2 6 252.191 even 6
1134.2.g.l.487.2 6 36.11 even 6
1134.2.g.m.163.2 6 252.79 odd 6
1134.2.g.m.487.2 6 36.7 odd 6
2646.2.e.p.1549.2 6 252.131 odd 6
2646.2.e.p.2125.2 6 84.83 odd 2
2646.2.f.l.883.2 6 84.11 even 6
2646.2.f.l.1765.2 6 252.95 even 6
2646.2.f.m.883.2 6 84.59 odd 6
2646.2.f.m.1765.2 6 252.59 odd 6
2646.2.h.o.361.2 6 252.167 odd 6
2646.2.h.o.667.2 6 84.47 odd 6
3024.2.q.g.2305.2 6 63.23 odd 6
3024.2.q.g.2881.2 6 3.2 odd 2
3024.2.t.h.289.2 6 21.2 odd 6
3024.2.t.h.1873.2 6 9.5 odd 6
7938.2.a.bv.1.2 3 252.151 odd 6
7938.2.a.bw.1.2 3 252.115 even 6
7938.2.a.bz.1.2 3 252.227 odd 6
7938.2.a.ca.1.2 3 252.11 even 6