Properties

Label 1008.2.q.g.529.1
Level $1008$
Weight $2$
Character 1008.529
Analytic conductor $8.049$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1008,2,Mod(529,1008)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1008, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 4, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1008.529");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1008 = 2^{4} \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1008.q (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(8.04892052375\)
Analytic rank: \(0\)
Dimension: \(6\)
Relative dimension: \(3\) over \(\Q(\zeta_{3})\)
Coefficient field: 6.0.309123.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 3x^{5} + 10x^{4} - 15x^{3} + 19x^{2} - 12x + 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 126)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 529.1
Root \(0.500000 + 1.41036i\) of defining polynomial
Character \(\chi\) \(=\) 1008.529
Dual form 1008.2.q.g.625.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.71053 - 0.272169i) q^{3} +(1.59097 - 2.75564i) q^{5} +(2.56238 - 0.658939i) q^{7} +(2.85185 + 0.931107i) q^{9} +(1.59097 + 2.75564i) q^{11} +(2.85185 + 4.93955i) q^{13} +(-3.47141 + 4.28061i) q^{15} +(-0.760877 + 1.31788i) q^{17} +(0.641315 + 1.11079i) q^{19} +(-4.56238 + 0.429736i) q^{21} +(1.11956 - 1.93914i) q^{23} +(-2.56238 - 4.43818i) q^{25} +(-4.62476 - 2.36887i) q^{27} +(-3.54063 + 6.13255i) q^{29} +9.42107 q^{31} +(-1.97141 - 5.14663i) q^{33} +(2.26088 - 8.10936i) q^{35} +(0.500000 + 0.866025i) q^{37} +(-3.53379 - 9.22544i) q^{39} +(-2.80150 - 4.85235i) q^{41} +(-3.41423 + 5.91362i) q^{43} +(7.10301 - 6.37731i) q^{45} +5.82846 q^{47} +(6.13160 - 3.37690i) q^{49} +(1.66019 - 2.04719i) q^{51} +(1.02859 - 1.78157i) q^{53} +10.1248 q^{55} +(-0.794668 - 2.07459i) q^{57} +1.12476 q^{59} +3.12476 q^{61} +(7.92107 + 0.506659i) q^{63} +18.1488 q^{65} -10.9669 q^{67} +(-2.44282 + 3.01225i) q^{69} -8.69002 q^{71} +(-2.48345 + 4.30146i) q^{73} +(3.17511 + 8.28905i) q^{75} +(5.89248 + 6.01266i) q^{77} +4.13844 q^{79} +(7.26608 + 5.31075i) q^{81} +(4.03379 - 6.98673i) q^{83} +(2.42107 + 4.19341i) q^{85} +(7.72545 - 9.52628i) q^{87} +(0.112725 + 0.195246i) q^{89} +(10.5624 + 10.7778i) q^{91} +(-16.1150 - 2.56412i) q^{93} +4.08126 q^{95} +(7.42107 - 12.8537i) q^{97} +(1.97141 + 9.34004i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 2 q^{3} + q^{5} - 2 q^{7} + 8 q^{9} + q^{11} + 8 q^{13} - 12 q^{15} - 4 q^{17} + 3 q^{19} - 10 q^{21} + 7 q^{23} + 2 q^{25} + 7 q^{27} - 5 q^{29} + 40 q^{31} - 3 q^{33} + 13 q^{35} + 3 q^{37} + 5 q^{39}+ \cdots + 3 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1008\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(577\) \(757\) \(785\)
\(\chi(n)\) \(1\) \(e\left(\frac{2}{3}\right)\) \(1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.71053 0.272169i −0.987577 0.157137i
\(4\) 0 0
\(5\) 1.59097 2.75564i 0.711504 1.23236i −0.252788 0.967522i \(-0.581348\pi\)
0.964292 0.264840i \(-0.0853191\pi\)
\(6\) 0 0
\(7\) 2.56238 0.658939i 0.968489 0.249055i
\(8\) 0 0
\(9\) 2.85185 + 0.931107i 0.950616 + 0.310369i
\(10\) 0 0
\(11\) 1.59097 + 2.75564i 0.479696 + 0.830858i 0.999729 0.0232884i \(-0.00741361\pi\)
−0.520033 + 0.854146i \(0.674080\pi\)
\(12\) 0 0
\(13\) 2.85185 + 4.93955i 0.790960 + 1.36998i 0.925373 + 0.379058i \(0.123752\pi\)
−0.134412 + 0.990925i \(0.542915\pi\)
\(14\) 0 0
\(15\) −3.47141 + 4.28061i −0.896314 + 1.10525i
\(16\) 0 0
\(17\) −0.760877 + 1.31788i −0.184540 + 0.319632i −0.943421 0.331596i \(-0.892413\pi\)
0.758882 + 0.651229i \(0.225746\pi\)
\(18\) 0 0
\(19\) 0.641315 + 1.11079i 0.147128 + 0.254833i 0.930165 0.367142i \(-0.119664\pi\)
−0.783037 + 0.621975i \(0.786330\pi\)
\(20\) 0 0
\(21\) −4.56238 + 0.429736i −0.995593 + 0.0937761i
\(22\) 0 0
\(23\) 1.11956 1.93914i 0.233445 0.404338i −0.725375 0.688354i \(-0.758334\pi\)
0.958820 + 0.284016i \(0.0916669\pi\)
\(24\) 0 0
\(25\) −2.56238 4.43818i −0.512476 0.887635i
\(26\) 0 0
\(27\) −4.62476 2.36887i −0.890036 0.455890i
\(28\) 0 0
\(29\) −3.54063 + 6.13255i −0.657478 + 1.13879i 0.323788 + 0.946130i \(0.395043\pi\)
−0.981266 + 0.192656i \(0.938290\pi\)
\(30\) 0 0
\(31\) 9.42107 1.69207 0.846037 0.533125i \(-0.178982\pi\)
0.846037 + 0.533125i \(0.178982\pi\)
\(32\) 0 0
\(33\) −1.97141 5.14663i −0.343178 0.895914i
\(34\) 0 0
\(35\) 2.26088 8.10936i 0.382158 1.37073i
\(36\) 0 0
\(37\) 0.500000 + 0.866025i 0.0821995 + 0.142374i 0.904194 0.427121i \(-0.140472\pi\)
−0.821995 + 0.569495i \(0.807139\pi\)
\(38\) 0 0
\(39\) −3.53379 9.22544i −0.565860 1.47725i
\(40\) 0 0
\(41\) −2.80150 4.85235i −0.437522 0.757810i 0.559976 0.828509i \(-0.310810\pi\)
−0.997498 + 0.0706992i \(0.977477\pi\)
\(42\) 0 0
\(43\) −3.41423 + 5.91362i −0.520665 + 0.901819i 0.479046 + 0.877790i \(0.340983\pi\)
−0.999711 + 0.0240288i \(0.992351\pi\)
\(44\) 0 0
\(45\) 7.10301 6.37731i 1.05885 0.950674i
\(46\) 0 0
\(47\) 5.82846 0.850168 0.425084 0.905154i \(-0.360245\pi\)
0.425084 + 0.905154i \(0.360245\pi\)
\(48\) 0 0
\(49\) 6.13160 3.37690i 0.875943 0.482415i
\(50\) 0 0
\(51\) 1.66019 2.04719i 0.232473 0.286663i
\(52\) 0 0
\(53\) 1.02859 1.78157i 0.141288 0.244717i −0.786694 0.617343i \(-0.788209\pi\)
0.927982 + 0.372626i \(0.121542\pi\)
\(54\) 0 0
\(55\) 10.1248 1.36522
\(56\) 0 0
\(57\) −0.794668 2.07459i −0.105256 0.274786i
\(58\) 0 0
\(59\) 1.12476 0.146432 0.0732159 0.997316i \(-0.476674\pi\)
0.0732159 + 0.997316i \(0.476674\pi\)
\(60\) 0 0
\(61\) 3.12476 0.400085 0.200042 0.979787i \(-0.435892\pi\)
0.200042 + 0.979787i \(0.435892\pi\)
\(62\) 0 0
\(63\) 7.92107 + 0.506659i 0.997961 + 0.0638331i
\(64\) 0 0
\(65\) 18.1488 2.25109
\(66\) 0 0
\(67\) −10.9669 −1.33982 −0.669910 0.742442i \(-0.733667\pi\)
−0.669910 + 0.742442i \(0.733667\pi\)
\(68\) 0 0
\(69\) −2.44282 + 3.01225i −0.294081 + 0.362632i
\(70\) 0 0
\(71\) −8.69002 −1.03132 −0.515658 0.856794i \(-0.672452\pi\)
−0.515658 + 0.856794i \(0.672452\pi\)
\(72\) 0 0
\(73\) −2.48345 + 4.30146i −0.290666 + 0.503448i −0.973967 0.226689i \(-0.927210\pi\)
0.683302 + 0.730136i \(0.260543\pi\)
\(74\) 0 0
\(75\) 3.17511 + 8.28905i 0.366630 + 0.957137i
\(76\) 0 0
\(77\) 5.89248 + 6.01266i 0.671510 + 0.685206i
\(78\) 0 0
\(79\) 4.13844 0.465610 0.232805 0.972523i \(-0.425210\pi\)
0.232805 + 0.972523i \(0.425210\pi\)
\(80\) 0 0
\(81\) 7.26608 + 5.31075i 0.807342 + 0.590084i
\(82\) 0 0
\(83\) 4.03379 6.98673i 0.442766 0.766893i −0.555127 0.831765i \(-0.687331\pi\)
0.997894 + 0.0648718i \(0.0206639\pi\)
\(84\) 0 0
\(85\) 2.42107 + 4.19341i 0.262602 + 0.454839i
\(86\) 0 0
\(87\) 7.72545 9.52628i 0.828255 1.02132i
\(88\) 0 0
\(89\) 0.112725 + 0.195246i 0.0119488 + 0.0206960i 0.871938 0.489616i \(-0.162863\pi\)
−0.859989 + 0.510312i \(0.829530\pi\)
\(90\) 0 0
\(91\) 10.5624 + 10.7778i 1.10724 + 1.12982i
\(92\) 0 0
\(93\) −16.1150 2.56412i −1.67105 0.265887i
\(94\) 0 0
\(95\) 4.08126 0.418728
\(96\) 0 0
\(97\) 7.42107 12.8537i 0.753495 1.30509i −0.192624 0.981273i \(-0.561700\pi\)
0.946119 0.323819i \(-0.104967\pi\)
\(98\) 0 0
\(99\) 1.97141 + 9.34004i 0.198134 + 0.938710i
\(100\) 0 0
\(101\) −9.29467 16.0988i −0.924854 1.60189i −0.791796 0.610786i \(-0.790854\pi\)
−0.133058 0.991108i \(-0.542480\pi\)
\(102\) 0 0
\(103\) −0.141315 + 0.244765i −0.0139242 + 0.0241174i −0.872904 0.487893i \(-0.837766\pi\)
0.858979 + 0.512010i \(0.171099\pi\)
\(104\) 0 0
\(105\) −6.07442 + 13.2560i −0.592803 + 1.29365i
\(106\) 0 0
\(107\) −5.68878 9.85326i −0.549955 0.952550i −0.998277 0.0586780i \(-0.981311\pi\)
0.448322 0.893872i \(-0.352022\pi\)
\(108\) 0 0
\(109\) −2.21053 + 3.82876i −0.211731 + 0.366728i −0.952256 0.305300i \(-0.901243\pi\)
0.740526 + 0.672028i \(0.234577\pi\)
\(110\) 0 0
\(111\) −0.619562 1.61745i −0.0588062 0.153522i
\(112\) 0 0
\(113\) −1.60752 2.78431i −0.151223 0.261926i 0.780454 0.625213i \(-0.214988\pi\)
−0.931677 + 0.363287i \(0.881655\pi\)
\(114\) 0 0
\(115\) −3.56238 6.17023i −0.332194 0.575377i
\(116\) 0 0
\(117\) 3.53379 + 16.7422i 0.326699 + 1.54782i
\(118\) 0 0
\(119\) −1.08126 + 3.87828i −0.0991186 + 0.355521i
\(120\) 0 0
\(121\) 0.437618 0.757977i 0.0397835 0.0689070i
\(122\) 0 0
\(123\) 3.47141 + 9.06259i 0.313007 + 0.817146i
\(124\) 0 0
\(125\) −0.396990 −0.0355079
\(126\) 0 0
\(127\) −20.1053 −1.78406 −0.892030 0.451976i \(-0.850719\pi\)
−0.892030 + 0.451976i \(0.850719\pi\)
\(128\) 0 0
\(129\) 7.44966 9.18620i 0.655906 0.808800i
\(130\) 0 0
\(131\) 3.18194 5.51129i 0.278008 0.481523i −0.692882 0.721051i \(-0.743659\pi\)
0.970890 + 0.239528i \(0.0769926\pi\)
\(132\) 0 0
\(133\) 2.37524 + 2.42368i 0.205959 + 0.210160i
\(134\) 0 0
\(135\) −13.8856 + 8.97539i −1.19509 + 0.772479i
\(136\) 0 0
\(137\) −1.37072 2.37416i −0.117109 0.202838i 0.801512 0.597979i \(-0.204029\pi\)
−0.918621 + 0.395140i \(0.870696\pi\)
\(138\) 0 0
\(139\) 3.98345 + 6.89953i 0.337872 + 0.585211i 0.984032 0.177991i \(-0.0569597\pi\)
−0.646161 + 0.763202i \(0.723626\pi\)
\(140\) 0 0
\(141\) −9.96978 1.58632i −0.839607 0.133593i
\(142\) 0 0
\(143\) −9.07442 + 15.7174i −0.758841 + 1.31435i
\(144\) 0 0
\(145\) 11.2661 + 19.5134i 0.935597 + 1.62050i
\(146\) 0 0
\(147\) −11.4074 + 4.10748i −0.940866 + 0.338779i
\(148\) 0 0
\(149\) 11.6300 20.1437i 0.952764 1.65024i 0.213360 0.976974i \(-0.431559\pi\)
0.739404 0.673262i \(-0.235107\pi\)
\(150\) 0 0
\(151\) −4.06238 7.03625i −0.330592 0.572602i 0.652036 0.758188i \(-0.273915\pi\)
−0.982628 + 0.185586i \(0.940582\pi\)
\(152\) 0 0
\(153\) −3.39699 + 3.04993i −0.274630 + 0.246572i
\(154\) 0 0
\(155\) 14.9887 25.9611i 1.20392 2.08525i
\(156\) 0 0
\(157\) −11.2632 −0.898901 −0.449451 0.893305i \(-0.648380\pi\)
−0.449451 + 0.893305i \(0.648380\pi\)
\(158\) 0 0
\(159\) −2.24433 + 2.76748i −0.177987 + 0.219476i
\(160\) 0 0
\(161\) 1.59097 5.70653i 0.125386 0.449738i
\(162\) 0 0
\(163\) 1.99028 + 3.44727i 0.155891 + 0.270011i 0.933383 0.358881i \(-0.116842\pi\)
−0.777492 + 0.628893i \(0.783508\pi\)
\(164\) 0 0
\(165\) −17.3187 2.75564i −1.34826 0.214527i
\(166\) 0 0
\(167\) −2.61956 4.53721i −0.202708 0.351100i 0.746692 0.665170i \(-0.231641\pi\)
−0.949400 + 0.314070i \(0.898307\pi\)
\(168\) 0 0
\(169\) −9.76608 + 16.9153i −0.751237 + 1.30118i
\(170\) 0 0
\(171\) 0.794668 + 3.76494i 0.0607698 + 0.287912i
\(172\) 0 0
\(173\) 2.55159 0.193994 0.0969968 0.995285i \(-0.469076\pi\)
0.0969968 + 0.995285i \(0.469076\pi\)
\(174\) 0 0
\(175\) −9.49028 9.68385i −0.717398 0.732030i
\(176\) 0 0
\(177\) −1.92395 0.306125i −0.144613 0.0230098i
\(178\) 0 0
\(179\) −3.51887 + 6.09487i −0.263013 + 0.455552i −0.967041 0.254620i \(-0.918050\pi\)
0.704028 + 0.710172i \(0.251383\pi\)
\(180\) 0 0
\(181\) −12.9669 −0.963822 −0.481911 0.876220i \(-0.660057\pi\)
−0.481911 + 0.876220i \(0.660057\pi\)
\(182\) 0 0
\(183\) −5.34501 0.850463i −0.395115 0.0628680i
\(184\) 0 0
\(185\) 3.18194 0.233941
\(186\) 0 0
\(187\) −4.84213 −0.354092
\(188\) 0 0
\(189\) −13.4114 3.02252i −0.975532 0.219856i
\(190\) 0 0
\(191\) −1.98057 −0.143309 −0.0716545 0.997430i \(-0.522828\pi\)
−0.0716545 + 0.997430i \(0.522828\pi\)
\(192\) 0 0
\(193\) −4.54583 −0.327216 −0.163608 0.986525i \(-0.552313\pi\)
−0.163608 + 0.986525i \(0.552313\pi\)
\(194\) 0 0
\(195\) −31.0442 4.93955i −2.22312 0.353728i
\(196\) 0 0
\(197\) −21.8148 −1.55424 −0.777120 0.629353i \(-0.783320\pi\)
−0.777120 + 0.629353i \(0.783320\pi\)
\(198\) 0 0
\(199\) −6.14132 + 10.6371i −0.435346 + 0.754042i −0.997324 0.0731106i \(-0.976707\pi\)
0.561978 + 0.827152i \(0.310041\pi\)
\(200\) 0 0
\(201\) 18.7592 + 2.98485i 1.32317 + 0.210535i
\(202\) 0 0
\(203\) −5.03147 + 18.0470i −0.353140 + 1.26665i
\(204\) 0 0
\(205\) −17.8285 −1.24519
\(206\) 0 0
\(207\) 4.99837 4.48769i 0.347410 0.311916i
\(208\) 0 0
\(209\) −2.04063 + 3.53447i −0.141153 + 0.244485i
\(210\) 0 0
\(211\) 8.32846 + 14.4253i 0.573355 + 0.993080i 0.996218 + 0.0868863i \(0.0276917\pi\)
−0.422863 + 0.906193i \(0.638975\pi\)
\(212\) 0 0
\(213\) 14.8646 + 2.36515i 1.01850 + 0.162058i
\(214\) 0 0
\(215\) 10.8639 + 18.8168i 0.740911 + 1.28330i
\(216\) 0 0
\(217\) 24.1404 6.20790i 1.63876 0.421420i
\(218\) 0 0
\(219\) 5.41874 6.68187i 0.366165 0.451519i
\(220\) 0 0
\(221\) −8.67962 −0.583854
\(222\) 0 0
\(223\) 5.32846 9.22916i 0.356820 0.618031i −0.630608 0.776102i \(-0.717194\pi\)
0.987428 + 0.158071i \(0.0505276\pi\)
\(224\) 0 0
\(225\) −3.17511 15.0429i −0.211674 1.00286i
\(226\) 0 0
\(227\) −7.25404 12.5644i −0.481468 0.833926i 0.518306 0.855195i \(-0.326563\pi\)
−0.999774 + 0.0212688i \(0.993229\pi\)
\(228\) 0 0
\(229\) −5.12476 + 8.87635i −0.338654 + 0.586566i −0.984180 0.177173i \(-0.943305\pi\)
0.645526 + 0.763738i \(0.276638\pi\)
\(230\) 0 0
\(231\) −8.44282 11.8886i −0.555497 0.782212i
\(232\) 0 0
\(233\) 0.540628 + 0.936396i 0.0354177 + 0.0613453i 0.883191 0.469014i \(-0.155390\pi\)
−0.847773 + 0.530359i \(0.822057\pi\)
\(234\) 0 0
\(235\) 9.27292 16.0612i 0.604898 1.04771i
\(236\) 0 0
\(237\) −7.07893 1.12635i −0.459826 0.0731645i
\(238\) 0 0
\(239\) 6.16019 + 10.6698i 0.398470 + 0.690170i 0.993537 0.113506i \(-0.0362081\pi\)
−0.595068 + 0.803676i \(0.702875\pi\)
\(240\) 0 0
\(241\) 6.50000 + 11.2583i 0.418702 + 0.725213i 0.995809 0.0914555i \(-0.0291519\pi\)
−0.577107 + 0.816668i \(0.695819\pi\)
\(242\) 0 0
\(243\) −10.9834 11.0618i −0.704589 0.709616i
\(244\) 0 0
\(245\) 0.449657 22.2691i 0.0287275 1.42272i
\(246\) 0 0
\(247\) −3.65787 + 6.33561i −0.232744 + 0.403125i
\(248\) 0 0
\(249\) −8.80150 + 10.8532i −0.557773 + 0.687791i
\(250\) 0 0
\(251\) −5.11109 −0.322609 −0.161305 0.986905i \(-0.551570\pi\)
−0.161305 + 0.986905i \(0.551570\pi\)
\(252\) 0 0
\(253\) 7.12476 0.447930
\(254\) 0 0
\(255\) −3.00000 7.83191i −0.187867 0.490453i
\(256\) 0 0
\(257\) −3.83009 + 6.63392i −0.238915 + 0.413813i −0.960403 0.278614i \(-0.910125\pi\)
0.721488 + 0.692427i \(0.243458\pi\)
\(258\) 0 0
\(259\) 1.85185 + 1.88962i 0.115068 + 0.117415i
\(260\) 0 0
\(261\) −15.8074 + 14.1924i −0.978453 + 0.878487i
\(262\) 0 0
\(263\) −1.54746 2.68029i −0.0954208 0.165274i 0.814363 0.580355i \(-0.197086\pi\)
−0.909784 + 0.415082i \(0.863753\pi\)
\(264\) 0 0
\(265\) −3.27292 5.66886i −0.201054 0.348235i
\(266\) 0 0
\(267\) −0.139680 0.364654i −0.00854830 0.0223165i
\(268\) 0 0
\(269\) −13.4451 + 23.2877i −0.819765 + 1.41987i 0.0860906 + 0.996287i \(0.472563\pi\)
−0.905855 + 0.423587i \(0.860771\pi\)
\(270\) 0 0
\(271\) 11.1082 + 19.2400i 0.674776 + 1.16875i 0.976534 + 0.215362i \(0.0690930\pi\)
−0.301759 + 0.953384i \(0.597574\pi\)
\(272\) 0 0
\(273\) −15.1339 21.3106i −0.915947 1.28977i
\(274\) 0 0
\(275\) 8.15335 14.1220i 0.491666 0.851590i
\(276\) 0 0
\(277\) 7.31875 + 12.6764i 0.439741 + 0.761653i 0.997669 0.0682357i \(-0.0217370\pi\)
−0.557928 + 0.829889i \(0.688404\pi\)
\(278\) 0 0
\(279\) 26.8675 + 8.77202i 1.60851 + 0.525167i
\(280\) 0 0
\(281\) 11.6992 20.2636i 0.697915 1.20882i −0.271273 0.962502i \(-0.587445\pi\)
0.969188 0.246322i \(-0.0792219\pi\)
\(282\) 0 0
\(283\) 26.1248 1.55296 0.776478 0.630144i \(-0.217004\pi\)
0.776478 + 0.630144i \(0.217004\pi\)
\(284\) 0 0
\(285\) −6.98113 1.11079i −0.413526 0.0657975i
\(286\) 0 0
\(287\) −10.3759 10.5876i −0.612471 0.624963i
\(288\) 0 0
\(289\) 7.34213 + 12.7169i 0.431890 + 0.748056i
\(290\) 0 0
\(291\) −16.1923 + 19.9668i −0.949212 + 1.17048i
\(292\) 0 0
\(293\) 12.9315 + 22.3980i 0.755465 + 1.30850i 0.945143 + 0.326657i \(0.105922\pi\)
−0.189678 + 0.981846i \(0.560745\pi\)
\(294\) 0 0
\(295\) 1.78947 3.09945i 0.104187 0.180457i
\(296\) 0 0
\(297\) −0.830095 16.5130i −0.0481670 0.958182i
\(298\) 0 0
\(299\) 12.7713 0.738582
\(300\) 0 0
\(301\) −4.85185 + 17.4027i −0.279656 + 1.00308i
\(302\) 0 0
\(303\) 11.5172 + 30.0673i 0.661648 + 1.72732i
\(304\) 0 0
\(305\) 4.97141 8.61073i 0.284662 0.493049i
\(306\) 0 0
\(307\) −3.53216 −0.201591 −0.100795 0.994907i \(-0.532139\pi\)
−0.100795 + 0.994907i \(0.532139\pi\)
\(308\) 0 0
\(309\) 0.308342 0.380217i 0.0175409 0.0216298i
\(310\) 0 0
\(311\) −1.70370 −0.0966078 −0.0483039 0.998833i \(-0.515382\pi\)
−0.0483039 + 0.998833i \(0.515382\pi\)
\(312\) 0 0
\(313\) −2.84213 −0.160647 −0.0803234 0.996769i \(-0.525595\pi\)
−0.0803234 + 0.996769i \(0.525595\pi\)
\(314\) 0 0
\(315\) 13.9984 21.0216i 0.788719 1.18443i
\(316\) 0 0
\(317\) −24.9201 −1.39965 −0.699827 0.714313i \(-0.746739\pi\)
−0.699827 + 0.714313i \(0.746739\pi\)
\(318\) 0 0
\(319\) −22.5322 −1.26156
\(320\) 0 0
\(321\) 7.04910 + 18.4026i 0.393442 + 1.02713i
\(322\) 0 0
\(323\) −1.95185 −0.108604
\(324\) 0 0
\(325\) 14.6150 25.3140i 0.810697 1.40417i
\(326\) 0 0
\(327\) 4.82326 5.94758i 0.266727 0.328902i
\(328\) 0 0
\(329\) 14.9347 3.84060i 0.823379 0.211739i
\(330\) 0 0
\(331\) 7.17154 0.394183 0.197092 0.980385i \(-0.436850\pi\)
0.197092 + 0.980385i \(0.436850\pi\)
\(332\) 0 0
\(333\) 0.619562 + 2.93533i 0.0339518 + 0.160855i
\(334\) 0 0
\(335\) −17.4480 + 30.2209i −0.953287 + 1.65114i
\(336\) 0 0
\(337\) −10.9211 18.9158i −0.594908 1.03041i −0.993560 0.113309i \(-0.963855\pi\)
0.398651 0.917103i \(-0.369478\pi\)
\(338\) 0 0
\(339\) 1.99192 + 5.20018i 0.108186 + 0.282435i
\(340\) 0 0
\(341\) 14.9887 + 25.9611i 0.811681 + 1.40587i
\(342\) 0 0
\(343\) 13.4863 12.6933i 0.728193 0.685372i
\(344\) 0 0
\(345\) 4.41423 + 11.5239i 0.237654 + 0.620428i
\(346\) 0 0
\(347\) 2.11109 0.113329 0.0566646 0.998393i \(-0.481953\pi\)
0.0566646 + 0.998393i \(0.481953\pi\)
\(348\) 0 0
\(349\) 18.1082 31.3643i 0.969310 1.67889i 0.271751 0.962368i \(-0.412397\pi\)
0.697559 0.716527i \(-0.254269\pi\)
\(350\) 0 0
\(351\) −1.48796 29.5999i −0.0794215 1.57993i
\(352\) 0 0
\(353\) 5.24433 + 9.08344i 0.279127 + 0.483463i 0.971168 0.238396i \(-0.0766215\pi\)
−0.692041 + 0.721858i \(0.743288\pi\)
\(354\) 0 0
\(355\) −13.8256 + 23.9466i −0.733786 + 1.27095i
\(356\) 0 0
\(357\) 2.90507 6.33963i 0.153753 0.335529i
\(358\) 0 0
\(359\) −16.2209 28.0955i −0.856108 1.48282i −0.875613 0.483013i \(-0.839542\pi\)
0.0195047 0.999810i \(-0.493791\pi\)
\(360\) 0 0
\(361\) 8.67743 15.0297i 0.456707 0.791039i
\(362\) 0 0
\(363\) −0.954858 + 1.17744i −0.0501171 + 0.0617995i
\(364\) 0 0
\(365\) 7.90219 + 13.6870i 0.413620 + 0.716410i
\(366\) 0 0
\(367\) −9.05555 15.6847i −0.472696 0.818733i 0.526816 0.849979i \(-0.323386\pi\)
−0.999512 + 0.0312465i \(0.990052\pi\)
\(368\) 0 0
\(369\) −3.47141 16.4467i −0.180714 0.856179i
\(370\) 0 0
\(371\) 1.46169 5.24284i 0.0758874 0.272195i
\(372\) 0 0
\(373\) 5.83530 10.1070i 0.302140 0.523322i −0.674480 0.738293i \(-0.735632\pi\)
0.976621 + 0.214971i \(0.0689656\pi\)
\(374\) 0 0
\(375\) 0.679065 + 0.108048i 0.0350668 + 0.00557959i
\(376\) 0 0
\(377\) −40.3893 −2.08016
\(378\) 0 0
\(379\) −14.2690 −0.732947 −0.366474 0.930428i \(-0.619435\pi\)
−0.366474 + 0.930428i \(0.619435\pi\)
\(380\) 0 0
\(381\) 34.3908 + 5.47204i 1.76190 + 0.280341i
\(382\) 0 0
\(383\) −0.824893 + 1.42876i −0.0421501 + 0.0730061i −0.886331 0.463053i \(-0.846754\pi\)
0.844181 + 0.536059i \(0.180087\pi\)
\(384\) 0 0
\(385\) 25.9435 6.67160i 1.32220 0.340016i
\(386\) 0 0
\(387\) −15.2431 + 13.6857i −0.774849 + 0.695685i
\(388\) 0 0
\(389\) 16.0338 + 27.7713i 0.812946 + 1.40806i 0.910794 + 0.412862i \(0.135471\pi\)
−0.0978483 + 0.995201i \(0.531196\pi\)
\(390\) 0 0
\(391\) 1.70370 + 2.95089i 0.0861596 + 0.149233i
\(392\) 0 0
\(393\) −6.94282 + 8.56122i −0.350219 + 0.431856i
\(394\) 0 0
\(395\) 6.58414 11.4041i 0.331284 0.573800i
\(396\) 0 0
\(397\) −18.9669 32.8516i −0.951921 1.64878i −0.741261 0.671217i \(-0.765772\pi\)
−0.210660 0.977559i \(-0.567561\pi\)
\(398\) 0 0
\(399\) −3.40327 4.79225i −0.170377 0.239913i
\(400\) 0 0
\(401\) −5.30959 + 9.19647i −0.265148 + 0.459250i −0.967602 0.252479i \(-0.918754\pi\)
0.702454 + 0.711729i \(0.252087\pi\)
\(402\) 0 0
\(403\) 26.8675 + 46.5358i 1.33836 + 2.31811i
\(404\) 0 0
\(405\) 26.1947 11.5735i 1.30162 0.575090i
\(406\) 0 0
\(407\) −1.59097 + 2.75564i −0.0788615 + 0.136592i
\(408\) 0 0
\(409\) 5.54583 0.274224 0.137112 0.990556i \(-0.456218\pi\)
0.137112 + 0.990556i \(0.456218\pi\)
\(410\) 0 0
\(411\) 1.69850 + 4.43415i 0.0837806 + 0.218721i
\(412\) 0 0
\(413\) 2.88207 0.741150i 0.141818 0.0364696i
\(414\) 0 0
\(415\) −12.8353 22.2314i −0.630060 1.09130i
\(416\) 0 0
\(417\) −4.93598 12.8861i −0.241716 0.631033i
\(418\) 0 0
\(419\) −2.77455 4.80566i −0.135546 0.234772i 0.790260 0.612772i \(-0.209945\pi\)
−0.925806 + 0.378000i \(0.876612\pi\)
\(420\) 0 0
\(421\) −3.42107 + 5.92546i −0.166733 + 0.288789i −0.937269 0.348606i \(-0.886655\pi\)
0.770537 + 0.637396i \(0.219988\pi\)
\(422\) 0 0
\(423\) 16.6219 + 5.42692i 0.808184 + 0.263866i
\(424\) 0 0
\(425\) 7.79863 0.378289
\(426\) 0 0
\(427\) 8.00684 2.05903i 0.387478 0.0996433i
\(428\) 0 0
\(429\) 19.7999 24.4153i 0.955947 1.17878i
\(430\) 0 0
\(431\) −16.5539 + 28.6722i −0.797374 + 1.38109i 0.123947 + 0.992289i \(0.460445\pi\)
−0.921321 + 0.388803i \(0.872889\pi\)
\(432\) 0 0
\(433\) −12.1111 −0.582022 −0.291011 0.956720i \(-0.593992\pi\)
−0.291011 + 0.956720i \(0.593992\pi\)
\(434\) 0 0
\(435\) −13.9601 36.4446i −0.669334 1.74739i
\(436\) 0 0
\(437\) 2.87197 0.137385
\(438\) 0 0
\(439\) 8.83422 0.421634 0.210817 0.977526i \(-0.432388\pi\)
0.210817 + 0.977526i \(0.432388\pi\)
\(440\) 0 0
\(441\) 20.6307 3.92124i 0.982412 0.186726i
\(442\) 0 0
\(443\) −17.5185 −0.832328 −0.416164 0.909290i \(-0.636626\pi\)
−0.416164 + 0.909290i \(0.636626\pi\)
\(444\) 0 0
\(445\) 0.717370 0.0340066
\(446\) 0 0
\(447\) −25.3759 + 31.2911i −1.20024 + 1.48002i
\(448\) 0 0
\(449\) 31.2301 1.47384 0.736920 0.675980i \(-0.236280\pi\)
0.736920 + 0.675980i \(0.236280\pi\)
\(450\) 0 0
\(451\) 8.91423 15.4399i 0.419755 0.727036i
\(452\) 0 0
\(453\) 5.03379 + 13.1414i 0.236508 + 0.617437i
\(454\) 0 0
\(455\) 46.5043 11.9590i 2.18015 0.560645i
\(456\) 0 0
\(457\) −32.1248 −1.50273 −0.751367 0.659885i \(-0.770605\pi\)
−0.751367 + 0.659885i \(0.770605\pi\)
\(458\) 0 0
\(459\) 6.64076 4.29245i 0.309964 0.200354i
\(460\) 0 0
\(461\) 1.23229 2.13438i 0.0573933 0.0994081i −0.835901 0.548880i \(-0.815054\pi\)
0.893295 + 0.449472i \(0.148388\pi\)
\(462\) 0 0
\(463\) −15.1735 26.2812i −0.705171 1.22139i −0.966630 0.256177i \(-0.917537\pi\)
0.261459 0.965215i \(-0.415796\pi\)
\(464\) 0 0
\(465\) −32.7044 + 40.3279i −1.51663 + 1.87016i
\(466\) 0 0
\(467\) 7.98181 + 13.8249i 0.369354 + 0.639740i 0.989465 0.144774i \(-0.0462456\pi\)
−0.620110 + 0.784515i \(0.712912\pi\)
\(468\) 0 0
\(469\) −28.1014 + 7.22651i −1.29760 + 0.333689i
\(470\) 0 0
\(471\) 19.2661 + 3.06549i 0.887734 + 0.141250i
\(472\) 0 0
\(473\) −21.7278 −0.999044
\(474\) 0 0
\(475\) 3.28659 5.69254i 0.150799 0.261192i
\(476\) 0 0
\(477\) 4.59222 4.12304i 0.210263 0.188781i
\(478\) 0 0
\(479\) −11.5865 20.0683i −0.529399 0.916946i −0.999412 0.0342863i \(-0.989084\pi\)
0.470013 0.882659i \(-0.344249\pi\)
\(480\) 0 0
\(481\) −2.85185 + 4.93955i −0.130033 + 0.225224i
\(482\) 0 0
\(483\) −4.27455 + 9.32820i −0.194499 + 0.424448i
\(484\) 0 0
\(485\) −23.6134 40.8996i −1.07223 1.85716i
\(486\) 0 0
\(487\) −1.70658 + 2.95588i −0.0773323 + 0.133943i −0.902098 0.431531i \(-0.857974\pi\)
0.824766 + 0.565474i \(0.191307\pi\)
\(488\) 0 0
\(489\) −2.46621 6.43837i −0.111526 0.291153i
\(490\) 0 0
\(491\) 9.58414 + 16.6002i 0.432526 + 0.749157i 0.997090 0.0762323i \(-0.0242890\pi\)
−0.564564 + 0.825389i \(0.690956\pi\)
\(492\) 0 0
\(493\) −5.38796 9.33223i −0.242662 0.420302i
\(494\) 0 0
\(495\) 28.8743 + 9.42724i 1.29780 + 0.423723i
\(496\) 0 0
\(497\) −22.2672 + 5.72619i −0.998819 + 0.256855i
\(498\) 0 0
\(499\) 20.5848 35.6540i 0.921503 1.59609i 0.124413 0.992231i \(-0.460295\pi\)
0.797090 0.603860i \(-0.206371\pi\)
\(500\) 0 0
\(501\) 3.24596 + 8.47402i 0.145019 + 0.378591i
\(502\) 0 0
\(503\) 26.4542 1.17953 0.589767 0.807574i \(-0.299220\pi\)
0.589767 + 0.807574i \(0.299220\pi\)
\(504\) 0 0
\(505\) −59.1502 −2.63215
\(506\) 0 0
\(507\) 21.3090 26.2762i 0.946367 1.16697i
\(508\) 0 0
\(509\) −6.38564 + 11.0603i −0.283039 + 0.490237i −0.972132 0.234436i \(-0.924676\pi\)
0.689093 + 0.724673i \(0.258009\pi\)
\(510\) 0 0
\(511\) −3.52915 + 12.6584i −0.156120 + 0.559975i
\(512\) 0 0
\(513\) −0.334608 6.65634i −0.0147733 0.293884i
\(514\) 0 0
\(515\) 0.449657 + 0.778828i 0.0198142 + 0.0343193i
\(516\) 0 0
\(517\) 9.27292 + 16.0612i 0.407822 + 0.706369i
\(518\) 0 0
\(519\) −4.36458 0.694462i −0.191584 0.0304835i
\(520\) 0 0
\(521\) −3.40615 + 5.89962i −0.149226 + 0.258467i −0.930942 0.365168i \(-0.881012\pi\)
0.781716 + 0.623635i \(0.214345\pi\)
\(522\) 0 0
\(523\) −14.7535 25.5538i −0.645125 1.11739i −0.984273 0.176656i \(-0.943472\pi\)
0.339148 0.940733i \(-0.389861\pi\)
\(524\) 0 0
\(525\) 13.5978 + 19.1475i 0.593457 + 0.835665i
\(526\) 0 0
\(527\) −7.16827 + 12.4158i −0.312255 + 0.540841i
\(528\) 0 0
\(529\) 8.99316 + 15.5766i 0.391007 + 0.677244i
\(530\) 0 0
\(531\) 3.20765 + 1.04728i 0.139200 + 0.0454479i
\(532\) 0 0
\(533\) 15.9789 27.6763i 0.692125 1.19879i
\(534\) 0 0
\(535\) −36.2028 −1.56518
\(536\) 0 0
\(537\) 7.67799 9.46775i 0.331330 0.408564i
\(538\) 0 0
\(539\) 19.0607 + 11.5239i 0.821004 + 0.496371i
\(540\) 0 0
\(541\) 14.7008 + 25.4626i 0.632038 + 1.09472i 0.987135 + 0.159892i \(0.0511145\pi\)
−0.355097 + 0.934829i \(0.615552\pi\)
\(542\) 0 0
\(543\) 22.1803 + 3.52918i 0.951848 + 0.151452i
\(544\) 0 0
\(545\) 7.03379 + 12.1829i 0.301295 + 0.521857i
\(546\) 0 0
\(547\) −17.6150 + 30.5102i −0.753165 + 1.30452i 0.193116 + 0.981176i \(0.438141\pi\)
−0.946281 + 0.323344i \(0.895193\pi\)
\(548\) 0 0
\(549\) 8.91135 + 2.90949i 0.380327 + 0.124174i
\(550\) 0 0
\(551\) −9.08263 −0.386933
\(552\) 0 0
\(553\) 10.6043 2.72698i 0.450939 0.115963i
\(554\) 0 0
\(555\) −5.44282 0.866025i −0.231035 0.0367607i
\(556\) 0 0
\(557\) −3.36909 + 5.83543i −0.142753 + 0.247255i −0.928532 0.371252i \(-0.878929\pi\)
0.785779 + 0.618507i \(0.212262\pi\)
\(558\) 0 0
\(559\) −38.9475 −1.64730
\(560\) 0 0
\(561\) 8.28263 + 1.31788i 0.349693 + 0.0556408i
\(562\) 0 0
\(563\) 1.45993 0.0615286 0.0307643 0.999527i \(-0.490206\pi\)
0.0307643 + 0.999527i \(0.490206\pi\)
\(564\) 0 0
\(565\) −10.2301 −0.430383
\(566\) 0 0
\(567\) 22.1179 + 8.82028i 0.928866 + 0.370417i
\(568\) 0 0
\(569\) 19.5653 0.820218 0.410109 0.912036i \(-0.365491\pi\)
0.410109 + 0.912036i \(0.365491\pi\)
\(570\) 0 0
\(571\) 21.9259 0.917569 0.458785 0.888547i \(-0.348285\pi\)
0.458785 + 0.888547i \(0.348285\pi\)
\(572\) 0 0
\(573\) 3.38783 + 0.539049i 0.141529 + 0.0225191i
\(574\) 0 0
\(575\) −11.4750 −0.478540
\(576\) 0 0
\(577\) 12.3655 21.4177i 0.514783 0.891631i −0.485069 0.874476i \(-0.661206\pi\)
0.999853 0.0171554i \(-0.00546099\pi\)
\(578\) 0 0
\(579\) 7.77579 + 1.23723i 0.323151 + 0.0514176i
\(580\) 0 0
\(581\) 5.73229 20.5607i 0.237815 0.853001i
\(582\) 0 0
\(583\) 6.54583 0.271101
\(584\) 0 0
\(585\) 51.7577 + 16.8985i 2.13992 + 0.698668i
\(586\) 0 0
\(587\) 18.0796 31.3148i 0.746226 1.29250i −0.203394 0.979097i \(-0.565197\pi\)
0.949620 0.313404i \(-0.101469\pi\)
\(588\) 0 0
\(589\) 6.04187 + 10.4648i 0.248951 + 0.431196i
\(590\) 0 0
\(591\) 37.3149 + 5.93730i 1.53493 + 0.244228i
\(592\) 0 0
\(593\) −7.55391 13.0838i −0.310202 0.537285i 0.668204 0.743978i \(-0.267063\pi\)
−0.978406 + 0.206693i \(0.933730\pi\)
\(594\) 0 0
\(595\) 8.96690 + 9.14978i 0.367607 + 0.375105i
\(596\) 0 0
\(597\) 13.4000 16.5236i 0.548426 0.676265i
\(598\) 0 0
\(599\) 5.45417 0.222851 0.111426 0.993773i \(-0.464458\pi\)
0.111426 + 0.993773i \(0.464458\pi\)
\(600\) 0 0
\(601\) −3.36840 + 5.83424i −0.137400 + 0.237984i −0.926512 0.376266i \(-0.877208\pi\)
0.789112 + 0.614250i \(0.210541\pi\)
\(602\) 0 0
\(603\) −31.2759 10.2114i −1.27365 0.415839i
\(604\) 0 0
\(605\) −1.39248 2.41184i −0.0566122 0.0980553i
\(606\) 0 0
\(607\) 3.33530 5.77690i 0.135376 0.234477i −0.790365 0.612636i \(-0.790109\pi\)
0.925741 + 0.378159i \(0.123443\pi\)
\(608\) 0 0
\(609\) 13.5183 29.5006i 0.547790 1.19542i
\(610\) 0 0
\(611\) 16.6219 + 28.7899i 0.672449 + 1.16472i
\(612\) 0 0
\(613\) 0.654988 1.13447i 0.0264547 0.0458209i −0.852495 0.522735i \(-0.824912\pi\)
0.878950 + 0.476915i \(0.158245\pi\)
\(614\) 0 0
\(615\) 30.4962 + 4.85235i 1.22972 + 0.195666i
\(616\) 0 0
\(617\) 17.2483 + 29.8749i 0.694390 + 1.20272i 0.970386 + 0.241560i \(0.0776589\pi\)
−0.275996 + 0.961159i \(0.589008\pi\)
\(618\) 0 0
\(619\) −8.22421 14.2447i −0.330559 0.572545i 0.652063 0.758165i \(-0.273904\pi\)
−0.982622 + 0.185620i \(0.940571\pi\)
\(620\) 0 0
\(621\) −9.77128 + 6.31595i −0.392108 + 0.253450i
\(622\) 0 0
\(623\) 0.417500 + 0.426015i 0.0167268 + 0.0170679i
\(624\) 0 0
\(625\) 12.1803 21.0969i 0.487212 0.843877i
\(626\) 0 0
\(627\) 4.45254 5.49044i 0.177817 0.219267i
\(628\) 0 0
\(629\) −1.52175 −0.0606763
\(630\) 0 0
\(631\) 30.0118 1.19475 0.597375 0.801962i \(-0.296210\pi\)
0.597375 + 0.801962i \(0.296210\pi\)
\(632\) 0 0
\(633\) −10.3200 26.9417i −0.410183 1.07084i
\(634\) 0 0
\(635\) −31.9870 + 55.4031i −1.26937 + 2.19861i
\(636\) 0 0
\(637\) 34.1668 + 20.6569i 1.35374 + 0.818456i
\(638\) 0 0
\(639\) −24.7826 8.09134i −0.980386 0.320089i
\(640\) 0 0
\(641\) −13.9497 24.1615i −0.550978 0.954322i −0.998204 0.0599014i \(-0.980921\pi\)
0.447226 0.894421i \(-0.352412\pi\)
\(642\) 0 0
\(643\) −14.2524 24.6859i −0.562060 0.973516i −0.997317 0.0732100i \(-0.976676\pi\)
0.435257 0.900306i \(-0.356658\pi\)
\(644\) 0 0
\(645\) −13.4617 35.1436i −0.530054 1.38378i
\(646\) 0 0
\(647\) −8.35705 + 14.4748i −0.328550 + 0.569065i −0.982224 0.187711i \(-0.939893\pi\)
0.653675 + 0.756776i \(0.273226\pi\)
\(648\) 0 0
\(649\) 1.78947 + 3.09945i 0.0702427 + 0.121664i
\(650\) 0 0
\(651\) −42.9825 + 4.04857i −1.68462 + 0.158676i
\(652\) 0 0
\(653\) −19.0825 + 33.0519i −0.746756 + 1.29342i 0.202614 + 0.979259i \(0.435056\pi\)
−0.949370 + 0.314161i \(0.898277\pi\)
\(654\) 0 0
\(655\) −10.1248 17.5366i −0.395607 0.685212i
\(656\) 0 0
\(657\) −11.0875 + 9.95475i −0.432566 + 0.388372i
\(658\) 0 0
\(659\) −4.37072 + 7.57031i −0.170259 + 0.294898i −0.938510 0.345251i \(-0.887794\pi\)
0.768251 + 0.640148i \(0.221127\pi\)
\(660\) 0 0
\(661\) −20.0837 −0.781167 −0.390584 0.920567i \(-0.627727\pi\)
−0.390584 + 0.920567i \(0.627727\pi\)
\(662\) 0 0
\(663\) 14.8468 + 2.36232i 0.576601 + 0.0917449i
\(664\) 0 0
\(665\) 10.4577 2.68930i 0.405534 0.104286i
\(666\) 0 0
\(667\) 7.92790 + 13.7315i 0.306970 + 0.531687i
\(668\) 0 0
\(669\) −11.6264 + 14.3366i −0.449503 + 0.554283i
\(670\) 0 0
\(671\) 4.97141 + 8.61073i 0.191919 + 0.332414i
\(672\) 0 0
\(673\) −17.0264 + 29.4906i −0.656319 + 1.13678i 0.325242 + 0.945631i \(0.394554\pi\)
−0.981561 + 0.191148i \(0.938779\pi\)
\(674\) 0 0
\(675\) 1.33693 + 26.5955i 0.0514585 + 1.02366i
\(676\) 0 0
\(677\) −0.717370 −0.0275708 −0.0137854 0.999905i \(-0.504388\pi\)
−0.0137854 + 0.999905i \(0.504388\pi\)
\(678\) 0 0
\(679\) 10.5458 37.8260i 0.404712 1.45163i
\(680\) 0 0
\(681\) 8.98865 + 23.4661i 0.344446 + 0.899223i
\(682\) 0 0
\(683\) 10.5270 18.2332i 0.402803 0.697675i −0.591260 0.806481i \(-0.701369\pi\)
0.994063 + 0.108806i \(0.0347027\pi\)
\(684\) 0 0
\(685\) −8.72313 −0.333294
\(686\) 0 0
\(687\) 11.1819 13.7885i 0.426618 0.526064i
\(688\) 0 0
\(689\) 11.7335 0.447012
\(690\) 0 0
\(691\) −5.84789 −0.222464 −0.111232 0.993794i \(-0.535480\pi\)
−0.111232 + 0.993794i \(0.535480\pi\)
\(692\) 0 0
\(693\) 11.2060 + 22.6337i 0.425681 + 0.859784i
\(694\) 0 0
\(695\) 25.3502 0.961588
\(696\) 0 0
\(697\) 8.52640 0.322960
\(698\) 0 0
\(699\) −0.669905 1.74888i −0.0253381 0.0661486i
\(700\) 0 0
\(701\) 10.2711 0.387935 0.193967 0.981008i \(-0.437864\pi\)
0.193967 + 0.981008i \(0.437864\pi\)
\(702\) 0 0
\(703\) −0.641315 + 1.11079i −0.0241877 + 0.0418942i
\(704\) 0 0
\(705\) −20.2330 + 24.9494i −0.762018 + 0.939647i
\(706\) 0 0
\(707\) −34.4246 35.1268i −1.29467 1.32108i
\(708\) 0 0
\(709\) 43.4854 1.63313 0.816564 0.577255i \(-0.195876\pi\)
0.816564 + 0.577255i \(0.195876\pi\)
\(710\) 0 0
\(711\) 11.8022 + 3.85333i 0.442617 + 0.144511i
\(712\) 0 0
\(713\) 10.5475 18.2687i 0.395006 0.684170i
\(714\) 0 0
\(715\) 28.8743 + 50.0117i 1.07984 + 1.87033i
\(716\) 0 0
\(717\) −7.63323 19.9276i −0.285068 0.744210i
\(718\) 0 0
\(719\) −25.4412 44.0654i −0.948796 1.64336i −0.747966 0.663737i \(-0.768969\pi\)
−0.200830 0.979626i \(-0.564364\pi\)
\(720\) 0 0
\(721\) −0.200818 + 0.720299i −0.00747886 + 0.0268253i
\(722\) 0 0
\(723\) −8.05430 21.0268i −0.299543 0.781997i
\(724\) 0 0
\(725\) 36.2898 1.34777
\(726\) 0 0
\(727\) −6.07210 + 10.5172i −0.225202 + 0.390061i −0.956380 0.292126i \(-0.905637\pi\)
0.731178 + 0.682186i \(0.238971\pi\)
\(728\) 0 0
\(729\) 15.7769 + 21.9110i 0.584329 + 0.811517i
\(730\) 0 0
\(731\) −5.19562 8.99907i −0.192167 0.332843i
\(732\) 0 0
\(733\) 23.0848 39.9841i 0.852657 1.47685i −0.0261440 0.999658i \(-0.508323\pi\)
0.878801 0.477188i \(-0.158344\pi\)
\(734\) 0 0
\(735\) −6.83009 + 37.9696i −0.251932 + 1.40053i
\(736\) 0 0
\(737\) −17.4480 30.2209i −0.642706 1.11320i
\(738\) 0 0
\(739\) 2.49604 4.32327i 0.0918184 0.159034i −0.816458 0.577405i \(-0.804065\pi\)
0.908276 + 0.418371i \(0.137399\pi\)
\(740\) 0 0
\(741\) 7.98126 9.84172i 0.293199 0.361545i
\(742\) 0 0
\(743\) 15.7060 + 27.2036i 0.576198 + 0.998004i 0.995910 + 0.0903470i \(0.0287976\pi\)
−0.419712 + 0.907657i \(0.637869\pi\)
\(744\) 0 0
\(745\) −37.0059 64.0961i −1.35579 2.34830i
\(746\) 0 0
\(747\) 18.0092 16.1692i 0.658921 0.591600i
\(748\) 0 0
\(749\) −21.0695 21.4992i −0.769863 0.785565i
\(750\) 0 0
\(751\) 1.64815 2.85468i 0.0601419 0.104169i −0.834387 0.551179i \(-0.814178\pi\)
0.894529 + 0.447010i \(0.147511\pi\)
\(752\) 0 0
\(753\) 8.74269 + 1.39108i 0.318601 + 0.0506937i
\(754\) 0 0
\(755\) −25.8525 −0.940870
\(756\) 0 0
\(757\) −10.1384 −0.368488 −0.184244 0.982881i \(-0.558984\pi\)
−0.184244 + 0.982881i \(0.558984\pi\)
\(758\) 0 0
\(759\) −12.1871 1.93914i −0.442365 0.0703862i
\(760\) 0 0
\(761\) −7.03379 + 12.1829i −0.254975 + 0.441629i −0.964889 0.262659i \(-0.915400\pi\)
0.709914 + 0.704288i \(0.248734\pi\)
\(762\) 0 0
\(763\) −3.14132 + 11.2673i −0.113723 + 0.407905i
\(764\) 0 0
\(765\) 3.00000 + 14.2132i 0.108465 + 0.513881i
\(766\) 0 0
\(767\) 3.20765 + 5.55582i 0.115822 + 0.200609i
\(768\) 0 0
\(769\) 11.3461 + 19.6520i 0.409151 + 0.708669i 0.994795 0.101899i \(-0.0324918\pi\)
−0.585644 + 0.810568i \(0.699158\pi\)
\(770\) 0 0
\(771\) 8.35705 10.3051i 0.300972 0.371129i
\(772\) 0 0
\(773\) 0.327772 0.567717i 0.0117891 0.0204194i −0.860071 0.510175i \(-0.829581\pi\)
0.871860 + 0.489756i \(0.162914\pi\)
\(774\) 0 0
\(775\) −24.1404 41.8123i −0.867148 1.50194i
\(776\) 0 0
\(777\) −2.65335 3.73627i −0.0951885 0.134038i
\(778\) 0 0
\(779\) 3.59329 6.22377i 0.128743 0.222990i
\(780\) 0 0
\(781\) −13.8256 23.9466i −0.494718 0.856877i
\(782\) 0 0
\(783\) 30.9018 19.9743i 1.10434 0.713823i
\(784\) 0 0
\(785\) −17.9194 + 31.0374i −0.639572 + 1.10777i
\(786\) 0 0
\(787\) −0.540073 −0.0192515 −0.00962576 0.999954i \(-0.503064\pi\)
−0.00962576 + 0.999954i \(0.503064\pi\)
\(788\) 0 0
\(789\) 1.91750 + 5.00589i 0.0682648 + 0.178215i
\(790\) 0 0
\(791\) −5.95378 6.07521i −0.211692 0.216010i
\(792\) 0 0
\(793\) 8.91135 + 15.4349i 0.316451 + 0.548110i
\(794\) 0 0
\(795\) 4.05555 + 10.5876i 0.143835 + 0.375502i
\(796\) 0 0
\(797\) −12.5550 21.7459i −0.444721 0.770279i 0.553312 0.832974i \(-0.313364\pi\)
−0.998033 + 0.0626954i \(0.980030\pi\)
\(798\) 0 0
\(799\) −4.43474 + 7.68119i −0.156890 + 0.271741i
\(800\) 0 0
\(801\) 0.139680 + 0.661770i 0.00493536 + 0.0233825i
\(802\) 0 0
\(803\) −15.8044 −0.557725
\(804\) 0 0
\(805\) −13.1940 13.4631i −0.465027 0.474511i
\(806\) 0 0
\(807\) 29.3365 36.1750i 1.03270 1.27342i
\(808\) 0 0
\(809\) −14.5865 + 25.2645i −0.512833 + 0.888252i 0.487057 + 0.873370i \(0.338071\pi\)
−0.999889 + 0.0148817i \(0.995263\pi\)
\(810\) 0 0
\(811\) 15.4290 0.541785 0.270892 0.962610i \(-0.412681\pi\)
0.270892 + 0.962610i \(0.412681\pi\)
\(812\) 0 0
\(813\) −13.7644 35.9339i −0.482740 1.26026i
\(814\) 0 0
\(815\) 12.6659 0.443669
\(816\) 0 0
\(817\) −8.75839 −0.306417
\(818\) 0 0
\(819\) 20.0870 + 40.5714i 0.701897 + 1.41768i
\(820\) 0 0
\(821\) 8.48727 0.296208 0.148104 0.988972i \(-0.452683\pi\)
0.148104 + 0.988972i \(0.452683\pi\)
\(822\) 0 0
\(823\) −29.0974 −1.01427 −0.507136 0.861866i \(-0.669296\pi\)
−0.507136 + 0.861866i \(0.669296\pi\)
\(824\) 0 0
\(825\) −17.7902 + 21.9371i −0.619374 + 0.763752i
\(826\) 0 0
\(827\) 25.9396 0.902007 0.451003 0.892522i \(-0.351066\pi\)
0.451003 + 0.892522i \(0.351066\pi\)
\(828\) 0 0
\(829\) 3.10821 5.38358i 0.107953 0.186979i −0.806988 0.590568i \(-0.798904\pi\)
0.914941 + 0.403588i \(0.132237\pi\)
\(830\) 0 0
\(831\) −9.06883 23.6754i −0.314594 0.821291i
\(832\) 0 0
\(833\) −0.215047 + 10.6501i −0.00745093 + 0.369004i
\(834\) 0 0
\(835\) −16.6706 −0.576910
\(836\) 0 0
\(837\) −43.5702 22.3173i −1.50601 0.771399i
\(838\) 0 0
\(839\) −21.2947 + 36.8834i −0.735174 + 1.27336i 0.219474 + 0.975618i \(0.429566\pi\)
−0.954647 + 0.297740i \(0.903767\pi\)
\(840\) 0 0
\(841\) −10.5721 18.3114i −0.364555 0.631428i
\(842\) 0 0
\(843\) −25.5270 + 31.4774i −0.879195 + 1.08414i
\(844\) 0 0
\(845\) 31.0751 + 53.8237i 1.06902 + 1.85159i
\(846\) 0 0
\(847\) 0.621885 2.23059i 0.0213682 0.0766440i
\(848\) 0 0
\(849\) −44.6873 7.11034i −1.53366 0.244026i
\(850\) 0 0
\(851\) 2.23912 0.0767562
\(852\) 0 0
\(853\) −10.6969 + 18.5275i −0.366254 + 0.634370i −0.988976 0.148073i \(-0.952693\pi\)
0.622723 + 0.782442i \(0.286026\pi\)
\(854\) 0 0
\(855\) 11.6391 + 3.80009i 0.398050 + 0.129960i
\(856\) 0 0
\(857\) 18.4218 + 31.9074i 0.629275 + 1.08994i 0.987697 + 0.156377i \(0.0499815\pi\)
−0.358422 + 0.933560i \(0.616685\pi\)
\(858\) 0 0
\(859\) −8.81875 + 15.2745i −0.300892 + 0.521160i −0.976338 0.216249i \(-0.930618\pi\)
0.675446 + 0.737409i \(0.263951\pi\)
\(860\) 0 0
\(861\) 14.8668 + 20.9344i 0.506658 + 0.713441i
\(862\) 0 0
\(863\) 0.380438 + 0.658939i 0.0129503 + 0.0224305i 0.872428 0.488743i \(-0.162544\pi\)
−0.859478 + 0.511173i \(0.829211\pi\)
\(864\) 0 0
\(865\) 4.05950 7.03127i 0.138027 0.239070i
\(866\) 0 0
\(867\) −9.09781 23.7511i −0.308978 0.806628i
\(868\) 0 0
\(869\) 6.58414 + 11.4041i 0.223351 + 0.386856i
\(870\) 0 0
\(871\) −31.2759 54.1715i −1.05974 1.83553i
\(872\) 0 0
\(873\) 33.1319 29.7469i 1.12134 1.00678i
\(874\) 0 0
\(875\) −1.01724 + 0.261592i −0.0343890 + 0.00884343i
\(876\) 0 0
\(877\) 20.7495 35.9392i 0.700662 1.21358i −0.267573 0.963538i \(-0.586222\pi\)
0.968234 0.250044i \(-0.0804451\pi\)
\(878\) 0 0
\(879\) −16.0237 41.8320i −0.540466 1.41096i
\(880\) 0 0
\(881\) 8.35486 0.281482 0.140741 0.990046i \(-0.455051\pi\)
0.140741 + 0.990046i \(0.455051\pi\)
\(882\) 0 0
\(883\) −35.6181 −1.19864 −0.599322 0.800508i \(-0.704563\pi\)
−0.599322 + 0.800508i \(0.704563\pi\)
\(884\) 0 0
\(885\) −3.90451 + 4.81467i −0.131249 + 0.161843i
\(886\) 0 0
\(887\) −18.5550 + 32.1382i −0.623016 + 1.07909i 0.365905 + 0.930652i \(0.380759\pi\)
−0.988921 + 0.148443i \(0.952574\pi\)
\(888\) 0 0
\(889\) −51.5175 + 13.2482i −1.72784 + 0.444330i
\(890\) 0 0
\(891\) −3.07442 + 28.4720i −0.102997 + 0.953847i
\(892\) 0 0
\(893\) 3.73788 + 6.47420i 0.125083 + 0.216651i
\(894\) 0 0
\(895\) 11.1969 + 19.3935i 0.374270 + 0.648254i
\(896\) 0 0
\(897\) −21.8457 3.47594i −0.729407 0.116058i
\(898\) 0 0
\(899\) −33.3565 + 57.7751i −1.11250 + 1.92691i
\(900\) 0 0
\(901\) 1.56526 + 2.71111i 0.0521464 + 0.0903202i
\(902\) 0 0
\(903\) 13.0357 28.4474i 0.433802 0.946671i
\(904\) 0 0
\(905\) −20.6300 + 35.7321i −0.685763 + 1.18778i
\(906\) 0 0
\(907\) −24.0751 41.6993i −0.799401 1.38460i −0.920007 0.391902i \(-0.871817\pi\)
0.120606 0.992700i \(-0.461516\pi\)
\(908\) 0 0
\(909\) −11.5172 54.5658i −0.382003 1.80983i
\(910\) 0 0
\(911\) −17.4428 + 30.2119i −0.577906 + 1.00096i 0.417813 + 0.908533i \(0.362797\pi\)
−0.995719 + 0.0924301i \(0.970537\pi\)
\(912\) 0 0
\(913\) 25.6706 0.849573
\(914\) 0 0
\(915\) −10.8473 + 13.3759i −0.358602 + 0.442193i
\(916\) 0 0
\(917\) 4.52175 16.2187i 0.149321 0.535590i
\(918\) 0 0
\(919\) 25.8675 + 44.8037i 0.853289 + 1.47794i 0.878224 + 0.478250i \(0.158729\pi\)
−0.0249351 + 0.999689i \(0.507938\pi\)
\(920\) 0 0
\(921\) 6.04187 + 0.961343i 0.199086 + 0.0316773i
\(922\) 0 0
\(923\) −24.7826 42.9248i −0.815730 1.41289i
\(924\) 0 0
\(925\) 2.56238 4.43818i 0.0842506 0.145926i
\(926\) 0 0
\(927\) −0.630912 + 0.566453i −0.0207219 + 0.0186048i
\(928\) 0 0
\(929\) −50.8285 −1.66763 −0.833814 0.552046i \(-0.813847\pi\)
−0.833814 + 0.552046i \(0.813847\pi\)
\(930\) 0 0
\(931\) 7.68332 + 4.64526i 0.251811 + 0.152242i
\(932\) 0 0
\(933\) 2.91423 + 0.463693i 0.0954076 + 0.0151806i
\(934\) 0 0
\(935\) −7.70370 + 13.3432i −0.251938 + 0.436369i
\(936\) 0 0
\(937\) 2.54583 0.0831686 0.0415843 0.999135i \(-0.486759\pi\)
0.0415843 + 0.999135i \(0.486759\pi\)
\(938\) 0 0
\(939\) 4.86156 + 0.773540i 0.158651 + 0.0252435i
\(940\) 0 0
\(941\) 1.15787 0.0377454 0.0188727 0.999822i \(-0.493992\pi\)
0.0188727 + 0.999822i \(0.493992\pi\)
\(942\) 0 0
\(943\) −12.5458 −0.408548
\(944\) 0 0
\(945\) −29.6661 + 32.1482i −0.965038 + 1.04578i
\(946\) 0 0
\(947\) −9.81479 −0.318938 −0.159469 0.987203i \(-0.550978\pi\)
−0.159469 + 0.987203i \(0.550978\pi\)
\(948\) 0 0
\(949\) −28.3297 −0.919620
\(950\) 0 0
\(951\) 42.6267 + 6.78248i 1.38227 + 0.219937i
\(952\) 0 0
\(953\) 6.53791 0.211784 0.105892 0.994378i \(-0.466230\pi\)
0.105892 + 0.994378i \(0.466230\pi\)
\(954\) 0 0
\(955\) −3.15103 + 5.45774i −0.101965 + 0.176608i
\(956\) 0 0
\(957\) 38.5420 + 6.13255i 1.24589 + 0.198237i
\(958\) 0 0
\(959\) −5.07674 5.18029i −0.163937 0.167280i
\(960\) 0 0
\(961\) 57.7565 1.86311
\(962\) 0 0
\(963\) −7.04910 33.3969i −0.227154 1.07620i
\(964\) 0 0
\(965\) −7.23229 + 12.5267i −0.232816 + 0.403248i
\(966\) 0 0
\(967\) −14.4445 25.0185i −0.464502 0.804542i 0.534677 0.845057i \(-0.320433\pi\)
−0.999179 + 0.0405151i \(0.987100\pi\)
\(968\) 0 0
\(969\) 3.33870 + 0.531232i 0.107254 + 0.0170656i
\(970\) 0 0
\(971\) −2.66827 4.62158i −0.0856289 0.148314i 0.820030 0.572320i \(-0.193957\pi\)
−0.905659 + 0.424007i \(0.860623\pi\)
\(972\) 0 0
\(973\) 14.7535 + 15.0544i 0.472975 + 0.482622i
\(974\) 0 0
\(975\) −31.8892 + 39.3227i −1.02127 + 1.25933i
\(976\) 0 0
\(977\) −48.0722 −1.53797 −0.768983 0.639269i \(-0.779237\pi\)
−0.768983 + 0.639269i \(0.779237\pi\)
\(978\) 0 0
\(979\) −0.358685 + 0.621261i −0.0114636 + 0.0198556i
\(980\) 0 0
\(981\) −9.86909 + 8.86079i −0.315096 + 0.282903i
\(982\) 0 0
\(983\) 14.7313 + 25.5154i 0.469857 + 0.813816i 0.999406 0.0344634i \(-0.0109722\pi\)
−0.529549 + 0.848279i \(0.677639\pi\)
\(984\) 0 0
\(985\) −34.7067 + 60.1138i −1.10585 + 1.91538i
\(986\) 0 0
\(987\) −26.5917 + 2.50470i −0.846422 + 0.0797255i
\(988\) 0 0
\(989\) 7.64488 + 13.2413i 0.243093 + 0.421050i
\(990\) 0 0
\(991\) −15.4142 + 26.6982i −0.489649 + 0.848097i −0.999929 0.0119112i \(-0.996208\pi\)
0.510280 + 0.860008i \(0.329542\pi\)
\(992\) 0 0
\(993\) −12.2672 1.95187i −0.389286 0.0619407i
\(994\) 0 0
\(995\) 19.5413 + 33.8466i 0.619501 + 1.07301i
\(996\) 0 0
\(997\) −2.77292 4.80283i −0.0878191 0.152107i 0.818770 0.574122i \(-0.194656\pi\)
−0.906589 + 0.422015i \(0.861323\pi\)
\(998\) 0 0
\(999\) −0.260877 5.18960i −0.00825377 0.164192i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1008.2.q.g.529.1 6
3.2 odd 2 3024.2.q.g.2881.1 6
4.3 odd 2 126.2.e.c.25.3 6
7.2 even 3 1008.2.t.h.961.3 6
9.4 even 3 1008.2.t.h.193.3 6
9.5 odd 6 3024.2.t.h.1873.3 6
12.11 even 2 378.2.e.d.235.1 6
21.2 odd 6 3024.2.t.h.289.3 6
28.3 even 6 882.2.f.o.295.2 6
28.11 odd 6 882.2.f.n.295.2 6
28.19 even 6 882.2.h.p.79.3 6
28.23 odd 6 126.2.h.d.79.1 yes 6
28.27 even 2 882.2.e.o.655.1 6
36.7 odd 6 1134.2.g.m.487.3 6
36.11 even 6 1134.2.g.l.487.1 6
36.23 even 6 378.2.h.c.361.3 6
36.31 odd 6 126.2.h.d.67.1 yes 6
63.23 odd 6 3024.2.q.g.2305.1 6
63.58 even 3 inner 1008.2.q.g.625.1 6
84.11 even 6 2646.2.f.l.883.1 6
84.23 even 6 378.2.h.c.289.3 6
84.47 odd 6 2646.2.h.o.667.1 6
84.59 odd 6 2646.2.f.m.883.3 6
84.83 odd 2 2646.2.e.p.2125.3 6
252.11 even 6 7938.2.a.ca.1.3 3
252.23 even 6 378.2.e.d.37.1 6
252.31 even 6 882.2.f.o.589.2 6
252.59 odd 6 2646.2.f.m.1765.3 6
252.67 odd 6 882.2.f.n.589.2 6
252.79 odd 6 1134.2.g.m.163.3 6
252.95 even 6 2646.2.f.l.1765.1 6
252.103 even 6 882.2.e.o.373.1 6
252.115 even 6 7938.2.a.bw.1.3 3
252.131 odd 6 2646.2.e.p.1549.3 6
252.139 even 6 882.2.h.p.67.3 6
252.151 odd 6 7938.2.a.bv.1.1 3
252.167 odd 6 2646.2.h.o.361.1 6
252.191 even 6 1134.2.g.l.163.1 6
252.227 odd 6 7938.2.a.bz.1.1 3
252.247 odd 6 126.2.e.c.121.3 yes 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
126.2.e.c.25.3 6 4.3 odd 2
126.2.e.c.121.3 yes 6 252.247 odd 6
126.2.h.d.67.1 yes 6 36.31 odd 6
126.2.h.d.79.1 yes 6 28.23 odd 6
378.2.e.d.37.1 6 252.23 even 6
378.2.e.d.235.1 6 12.11 even 2
378.2.h.c.289.3 6 84.23 even 6
378.2.h.c.361.3 6 36.23 even 6
882.2.e.o.373.1 6 252.103 even 6
882.2.e.o.655.1 6 28.27 even 2
882.2.f.n.295.2 6 28.11 odd 6
882.2.f.n.589.2 6 252.67 odd 6
882.2.f.o.295.2 6 28.3 even 6
882.2.f.o.589.2 6 252.31 even 6
882.2.h.p.67.3 6 252.139 even 6
882.2.h.p.79.3 6 28.19 even 6
1008.2.q.g.529.1 6 1.1 even 1 trivial
1008.2.q.g.625.1 6 63.58 even 3 inner
1008.2.t.h.193.3 6 9.4 even 3
1008.2.t.h.961.3 6 7.2 even 3
1134.2.g.l.163.1 6 252.191 even 6
1134.2.g.l.487.1 6 36.11 even 6
1134.2.g.m.163.3 6 252.79 odd 6
1134.2.g.m.487.3 6 36.7 odd 6
2646.2.e.p.1549.3 6 252.131 odd 6
2646.2.e.p.2125.3 6 84.83 odd 2
2646.2.f.l.883.1 6 84.11 even 6
2646.2.f.l.1765.1 6 252.95 even 6
2646.2.f.m.883.3 6 84.59 odd 6
2646.2.f.m.1765.3 6 252.59 odd 6
2646.2.h.o.361.1 6 252.167 odd 6
2646.2.h.o.667.1 6 84.47 odd 6
3024.2.q.g.2305.1 6 63.23 odd 6
3024.2.q.g.2881.1 6 3.2 odd 2
3024.2.t.h.289.3 6 21.2 odd 6
3024.2.t.h.1873.3 6 9.5 odd 6
7938.2.a.bv.1.1 3 252.151 odd 6
7938.2.a.bw.1.3 3 252.115 even 6
7938.2.a.bz.1.1 3 252.227 odd 6
7938.2.a.ca.1.3 3 252.11 even 6