Properties

Label 1008.2.k
Level 10081008
Weight 22
Character orbit 1008.k
Rep. character χ1008(881,)\chi_{1008}(881,\cdot)
Character field Q\Q
Dimension 1616
Newform subspaces 33
Sturm bound 384384
Trace bound 77

Related objects

Downloads

Learn more

Defining parameters

Level: N N == 1008=24327 1008 = 2^{4} \cdot 3^{2} \cdot 7
Weight: k k == 2 2
Character orbit: [χ][\chi] == 1008.k (of order 22 and degree 11)
Character conductor: cond(χ)\operatorname{cond}(\chi) == 21 21
Character field: Q\Q
Newform subspaces: 3 3
Sturm bound: 384384
Trace bound: 77
Distinguishing TpT_p: 55

Dimensions

The following table gives the dimensions of various subspaces of M2(1008,[χ])M_{2}(1008, [\chi]).

Total New Old
Modular forms 216 16 200
Cusp forms 168 16 152
Eisenstein series 48 0 48

Trace form

16q4q7+32q258q43+16q67+48q7916q85+48q91+O(q100) 16 q - 4 q^{7} + 32 q^{25} - 8 q^{43} + 16 q^{67} + 48 q^{79} - 16 q^{85} + 48 q^{91}+O(q^{100}) Copy content Toggle raw display

Decomposition of S2new(1008,[χ])S_{2}^{\mathrm{new}}(1008, [\chi]) into newform subspaces

Label Char Prim Dim AA Field CM Minimal twist Traces Sato-Tate qq-expansion
a2a_{2} a3a_{3} a5a_{5} a7a_{7}
1008.2.k.a 1008.k 21.c 44 8.0498.049 Q(2,7)\Q(\sqrt{-2}, \sqrt{7}) Q(7)\Q(\sqrt{-7}) 63.2.c.a 00 00 00 00 U(1)[D2]\mathrm{U}(1)[D_{2}] qβ2q7+(β1β3)q11+(β1+β3)q23+q-\beta _{2}q^{7}+(\beta _{1}-\beta _{3})q^{11}+(\beta _{1}+\beta _{3})q^{23}+\cdots
1008.2.k.b 1008.k 21.c 44 8.0498.049 Q(2,3)\Q(\sqrt{-2}, \sqrt{3}) None 252.2.f.a 00 00 00 44 SU(2)[C2]\mathrm{SU}(2)[C_{2}] qβ3q5+(1+β1)q7β2q112β1q13+q-\beta _{3}q^{5}+(1+\beta _{1})q^{7}-\beta _{2}q^{11}-2\beta _{1}q^{13}+\cdots
1008.2.k.c 1008.k 21.c 88 8.0498.049 Q(ζ16)\Q(\zeta_{16}) None 504.2.k.a 00 00 00 8-8 SU(2)[C2]\mathrm{SU}(2)[C_{2}] qβ7q5+(β61)q7+(β2+β1)q11+q-\beta_{7} q^{5}+(-\beta_{6}-1)q^{7}+(\beta_{2}+\beta_1)q^{11}+\cdots

Decomposition of S2old(1008,[χ])S_{2}^{\mathrm{old}}(1008, [\chi]) into lower level spaces