Properties

Label 1008.2.h.b.575.8
Level $1008$
Weight $2$
Character 1008.575
Analytic conductor $8.049$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1008,2,Mod(575,1008)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1008.575"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1008, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0, 1, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 1008 = 2^{4} \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1008.h (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(8.04892052375\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\Q(\zeta_{24})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{8} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 575.8
Root \(-0.965926 + 0.258819i\) of defining polynomial
Character \(\chi\) \(=\) 1008.575
Dual form 1008.2.h.b.575.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+3.86370i q^{5} +1.00000i q^{7} +5.27792 q^{11} +2.00000 q^{13} +1.03528i q^{17} -5.46410i q^{19} +0.378937 q^{23} -9.92820 q^{25} +6.31319i q^{29} +9.46410i q^{31} -3.86370 q^{35} -10.9282 q^{37} +5.93426i q^{41} +4.00000i q^{43} +8.48528 q^{47} -1.00000 q^{49} -7.07107i q^{53} +20.3923i q^{55} -2.82843 q^{59} -3.46410 q^{61} +7.72741i q^{65} -15.4641i q^{67} -4.52004 q^{71} +0.535898 q^{73} +5.27792i q^{77} -10.3923i q^{79} +11.8685 q^{83} -4.00000 q^{85} -3.86370i q^{89} +2.00000i q^{91} +21.1117 q^{95} +11.4641 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 16 q^{13} - 24 q^{25} - 32 q^{37} - 8 q^{49} + 32 q^{73} - 32 q^{85} + 64 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1008\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(577\) \(757\) \(785\)
\(\chi(n)\) \(-1\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 3.86370i 1.72790i 0.503577 + 0.863950i \(0.332017\pi\)
−0.503577 + 0.863950i \(0.667983\pi\)
\(6\) 0 0
\(7\) 1.00000i 0.377964i
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 5.27792 1.59135 0.795676 0.605723i \(-0.207116\pi\)
0.795676 + 0.605723i \(0.207116\pi\)
\(12\) 0 0
\(13\) 2.00000 0.554700 0.277350 0.960769i \(-0.410544\pi\)
0.277350 + 0.960769i \(0.410544\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 1.03528i 0.251091i 0.992088 + 0.125546i \(0.0400682\pi\)
−0.992088 + 0.125546i \(0.959932\pi\)
\(18\) 0 0
\(19\) − 5.46410i − 1.25355i −0.779200 0.626775i \(-0.784374\pi\)
0.779200 0.626775i \(-0.215626\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 0.378937 0.0790139 0.0395070 0.999219i \(-0.487421\pi\)
0.0395070 + 0.999219i \(0.487421\pi\)
\(24\) 0 0
\(25\) −9.92820 −1.98564
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 6.31319i 1.17233i 0.810192 + 0.586165i \(0.199363\pi\)
−0.810192 + 0.586165i \(0.800637\pi\)
\(30\) 0 0
\(31\) 9.46410i 1.69980i 0.526942 + 0.849901i \(0.323339\pi\)
−0.526942 + 0.849901i \(0.676661\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −3.86370 −0.653085
\(36\) 0 0
\(37\) −10.9282 −1.79659 −0.898293 0.439397i \(-0.855192\pi\)
−0.898293 + 0.439397i \(0.855192\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 5.93426i 0.926775i 0.886156 + 0.463388i \(0.153366\pi\)
−0.886156 + 0.463388i \(0.846634\pi\)
\(42\) 0 0
\(43\) 4.00000i 0.609994i 0.952353 + 0.304997i \(0.0986555\pi\)
−0.952353 + 0.304997i \(0.901344\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 8.48528 1.23771 0.618853 0.785507i \(-0.287598\pi\)
0.618853 + 0.785507i \(0.287598\pi\)
\(48\) 0 0
\(49\) −1.00000 −0.142857
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) − 7.07107i − 0.971286i −0.874157 0.485643i \(-0.838586\pi\)
0.874157 0.485643i \(-0.161414\pi\)
\(54\) 0 0
\(55\) 20.3923i 2.74970i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −2.82843 −0.368230 −0.184115 0.982905i \(-0.558942\pi\)
−0.184115 + 0.982905i \(0.558942\pi\)
\(60\) 0 0
\(61\) −3.46410 −0.443533 −0.221766 0.975100i \(-0.571182\pi\)
−0.221766 + 0.975100i \(0.571182\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 7.72741i 0.958467i
\(66\) 0 0
\(67\) − 15.4641i − 1.88924i −0.328165 0.944620i \(-0.606430\pi\)
0.328165 0.944620i \(-0.393570\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −4.52004 −0.536430 −0.268215 0.963359i \(-0.586434\pi\)
−0.268215 + 0.963359i \(0.586434\pi\)
\(72\) 0 0
\(73\) 0.535898 0.0627222 0.0313611 0.999508i \(-0.490016\pi\)
0.0313611 + 0.999508i \(0.490016\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 5.27792i 0.601474i
\(78\) 0 0
\(79\) − 10.3923i − 1.16923i −0.811312 0.584613i \(-0.801246\pi\)
0.811312 0.584613i \(-0.198754\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 11.8685 1.30274 0.651369 0.758761i \(-0.274195\pi\)
0.651369 + 0.758761i \(0.274195\pi\)
\(84\) 0 0
\(85\) −4.00000 −0.433861
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) − 3.86370i − 0.409552i −0.978809 0.204776i \(-0.934353\pi\)
0.978809 0.204776i \(-0.0656465\pi\)
\(90\) 0 0
\(91\) 2.00000i 0.209657i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 21.1117 2.16601
\(96\) 0 0
\(97\) 11.4641 1.16400 0.582002 0.813188i \(-0.302270\pi\)
0.582002 + 0.813188i \(0.302270\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 14.4195i 1.43480i 0.696663 + 0.717399i \(0.254667\pi\)
−0.696663 + 0.717399i \(0.745333\pi\)
\(102\) 0 0
\(103\) − 5.46410i − 0.538394i −0.963085 0.269197i \(-0.913242\pi\)
0.963085 0.269197i \(-0.0867583\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −10.1769 −0.983838 −0.491919 0.870641i \(-0.663704\pi\)
−0.491919 + 0.870641i \(0.663704\pi\)
\(108\) 0 0
\(109\) 8.00000 0.766261 0.383131 0.923694i \(-0.374846\pi\)
0.383131 + 0.923694i \(0.374846\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 9.89949i 0.931266i 0.884978 + 0.465633i \(0.154173\pi\)
−0.884978 + 0.465633i \(0.845827\pi\)
\(114\) 0 0
\(115\) 1.46410i 0.136528i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −1.03528 −0.0949036
\(120\) 0 0
\(121\) 16.8564 1.53240
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) − 19.0411i − 1.70309i
\(126\) 0 0
\(127\) − 6.39230i − 0.567225i −0.958939 0.283613i \(-0.908467\pi\)
0.958939 0.283613i \(-0.0915330\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −21.1117 −1.84453 −0.922267 0.386552i \(-0.873666\pi\)
−0.922267 + 0.386552i \(0.873666\pi\)
\(132\) 0 0
\(133\) 5.46410 0.473798
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) − 3.48477i − 0.297724i −0.988858 0.148862i \(-0.952439\pi\)
0.988858 0.148862i \(-0.0475610\pi\)
\(138\) 0 0
\(139\) 5.85641i 0.496734i 0.968666 + 0.248367i \(0.0798939\pi\)
−0.968666 + 0.248367i \(0.920106\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 10.5558 0.882723
\(144\) 0 0
\(145\) −24.3923 −2.02567
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) − 2.72689i − 0.223396i −0.993742 0.111698i \(-0.964371\pi\)
0.993742 0.111698i \(-0.0356289\pi\)
\(150\) 0 0
\(151\) 10.9282i 0.889325i 0.895698 + 0.444662i \(0.146676\pi\)
−0.895698 + 0.444662i \(0.853324\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −36.5665 −2.93709
\(156\) 0 0
\(157\) 17.3205 1.38233 0.691164 0.722698i \(-0.257098\pi\)
0.691164 + 0.722698i \(0.257098\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0.378937i 0.0298644i
\(162\) 0 0
\(163\) − 7.46410i − 0.584634i −0.956322 0.292317i \(-0.905574\pi\)
0.956322 0.292317i \(-0.0944262\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 16.7675 1.29751 0.648754 0.760998i \(-0.275291\pi\)
0.648754 + 0.760998i \(0.275291\pi\)
\(168\) 0 0
\(169\) −9.00000 −0.692308
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) − 3.10583i − 0.236132i −0.993006 0.118066i \(-0.962331\pi\)
0.993006 0.118066i \(-0.0376694\pi\)
\(174\) 0 0
\(175\) − 9.92820i − 0.750502i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −1.89469 −0.141616 −0.0708078 0.997490i \(-0.522558\pi\)
−0.0708078 + 0.997490i \(0.522558\pi\)
\(180\) 0 0
\(181\) −0.928203 −0.0689928 −0.0344964 0.999405i \(-0.510983\pi\)
−0.0344964 + 0.999405i \(0.510983\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) − 42.2233i − 3.10432i
\(186\) 0 0
\(187\) 5.46410i 0.399575i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −3.76217 −0.272221 −0.136110 0.990694i \(-0.543460\pi\)
−0.136110 + 0.990694i \(0.543460\pi\)
\(192\) 0 0
\(193\) 13.8564 0.997406 0.498703 0.866773i \(-0.333810\pi\)
0.498703 + 0.866773i \(0.333810\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) − 23.8386i − 1.69843i −0.528050 0.849213i \(-0.677077\pi\)
0.528050 0.849213i \(-0.322923\pi\)
\(198\) 0 0
\(199\) − 4.00000i − 0.283552i −0.989899 0.141776i \(-0.954719\pi\)
0.989899 0.141776i \(-0.0452813\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −6.31319 −0.443099
\(204\) 0 0
\(205\) −22.9282 −1.60138
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) − 28.8391i − 1.99484i
\(210\) 0 0
\(211\) − 22.9282i − 1.57844i −0.614109 0.789221i \(-0.710484\pi\)
0.614109 0.789221i \(-0.289516\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −15.4548 −1.05401
\(216\) 0 0
\(217\) −9.46410 −0.642465
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 2.07055i 0.139280i
\(222\) 0 0
\(223\) 9.85641i 0.660034i 0.943975 + 0.330017i \(0.107054\pi\)
−0.943975 + 0.330017i \(0.892946\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −4.34418 −0.288333 −0.144167 0.989553i \(-0.546050\pi\)
−0.144167 + 0.989553i \(0.546050\pi\)
\(228\) 0 0
\(229\) 29.7128 1.96348 0.981739 0.190233i \(-0.0609243\pi\)
0.981739 + 0.190233i \(0.0609243\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 20.4553i 1.34007i 0.742328 + 0.670037i \(0.233722\pi\)
−0.742328 + 0.670037i \(0.766278\pi\)
\(234\) 0 0
\(235\) 32.7846i 2.13863i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 22.2485 1.43913 0.719567 0.694423i \(-0.244340\pi\)
0.719567 + 0.694423i \(0.244340\pi\)
\(240\) 0 0
\(241\) −6.39230 −0.411765 −0.205882 0.978577i \(-0.566006\pi\)
−0.205882 + 0.978577i \(0.566006\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) − 3.86370i − 0.246843i
\(246\) 0 0
\(247\) − 10.9282i − 0.695345i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 24.4949 1.54610 0.773052 0.634343i \(-0.218729\pi\)
0.773052 + 0.634343i \(0.218729\pi\)
\(252\) 0 0
\(253\) 2.00000 0.125739
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) − 0.277401i − 0.0173038i −0.999963 0.00865191i \(-0.997246\pi\)
0.999963 0.00865191i \(-0.00275402\pi\)
\(258\) 0 0
\(259\) − 10.9282i − 0.679046i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −22.2485 −1.37190 −0.685950 0.727649i \(-0.740613\pi\)
−0.685950 + 0.727649i \(0.740613\pi\)
\(264\) 0 0
\(265\) 27.3205 1.67829
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 13.1069i 0.799139i 0.916703 + 0.399570i \(0.130840\pi\)
−0.916703 + 0.399570i \(0.869160\pi\)
\(270\) 0 0
\(271\) − 3.32051i − 0.201707i −0.994901 0.100853i \(-0.967843\pi\)
0.994901 0.100853i \(-0.0321573\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −52.4002 −3.15985
\(276\) 0 0
\(277\) 27.8564 1.67373 0.836865 0.547410i \(-0.184386\pi\)
0.836865 + 0.547410i \(0.184386\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 20.4553i 1.22026i 0.792300 + 0.610131i \(0.208883\pi\)
−0.792300 + 0.610131i \(0.791117\pi\)
\(282\) 0 0
\(283\) − 21.4641i − 1.27591i −0.770074 0.637954i \(-0.779781\pi\)
0.770074 0.637954i \(-0.220219\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −5.93426 −0.350288
\(288\) 0 0
\(289\) 15.9282 0.936953
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) − 18.0058i − 1.05191i −0.850512 0.525956i \(-0.823708\pi\)
0.850512 0.525956i \(-0.176292\pi\)
\(294\) 0 0
\(295\) − 10.9282i − 0.636265i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 0.757875 0.0438290
\(300\) 0 0
\(301\) −4.00000 −0.230556
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) − 13.3843i − 0.766381i
\(306\) 0 0
\(307\) − 14.5359i − 0.829608i −0.909911 0.414804i \(-0.863850\pi\)
0.909911 0.414804i \(-0.136150\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 18.2832 1.03675 0.518374 0.855154i \(-0.326538\pi\)
0.518374 + 0.855154i \(0.326538\pi\)
\(312\) 0 0
\(313\) 24.9282 1.40903 0.704513 0.709691i \(-0.251166\pi\)
0.704513 + 0.709691i \(0.251166\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) − 15.3533i − 0.862326i −0.902274 0.431163i \(-0.858103\pi\)
0.902274 0.431163i \(-0.141897\pi\)
\(318\) 0 0
\(319\) 33.3205i 1.86559i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 5.65685 0.314756
\(324\) 0 0
\(325\) −19.8564 −1.10144
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 8.48528i 0.467809i
\(330\) 0 0
\(331\) − 12.7846i − 0.702706i −0.936243 0.351353i \(-0.885722\pi\)
0.936243 0.351353i \(-0.114278\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 59.7487 3.26442
\(336\) 0 0
\(337\) 12.7846 0.696422 0.348211 0.937416i \(-0.386789\pi\)
0.348211 + 0.937416i \(0.386789\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 49.9507i 2.70498i
\(342\) 0 0
\(343\) − 1.00000i − 0.0539949i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −6.03579 −0.324018 −0.162009 0.986789i \(-0.551797\pi\)
−0.162009 + 0.986789i \(0.551797\pi\)
\(348\) 0 0
\(349\) −13.3205 −0.713030 −0.356515 0.934290i \(-0.616035\pi\)
−0.356515 + 0.934290i \(0.616035\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) − 15.9353i − 0.848150i −0.905627 0.424075i \(-0.860599\pi\)
0.905627 0.424075i \(-0.139401\pi\)
\(354\) 0 0
\(355\) − 17.4641i − 0.926898i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −15.0759 −0.795674 −0.397837 0.917456i \(-0.630239\pi\)
−0.397837 + 0.917456i \(0.630239\pi\)
\(360\) 0 0
\(361\) −10.8564 −0.571390
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 2.07055i 0.108378i
\(366\) 0 0
\(367\) 10.9282i 0.570448i 0.958461 + 0.285224i \(0.0920679\pi\)
−0.958461 + 0.285224i \(0.907932\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 7.07107 0.367112
\(372\) 0 0
\(373\) −22.0000 −1.13912 −0.569558 0.821951i \(-0.692886\pi\)
−0.569558 + 0.821951i \(0.692886\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 12.6264i 0.650292i
\(378\) 0 0
\(379\) − 20.7846i − 1.06763i −0.845600 0.533817i \(-0.820757\pi\)
0.845600 0.533817i \(-0.179243\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −25.2528 −1.29036 −0.645178 0.764032i \(-0.723217\pi\)
−0.645178 + 0.764032i \(0.723217\pi\)
\(384\) 0 0
\(385\) −20.3923 −1.03929
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) − 13.4858i − 0.683757i −0.939744 0.341879i \(-0.888937\pi\)
0.939744 0.341879i \(-0.111063\pi\)
\(390\) 0 0
\(391\) 0.392305i 0.0198397i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 40.1528 2.02031
\(396\) 0 0
\(397\) −11.4641 −0.575367 −0.287683 0.957726i \(-0.592885\pi\)
−0.287683 + 0.957726i \(0.592885\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 4.79744i 0.239573i 0.992800 + 0.119786i \(0.0382210\pi\)
−0.992800 + 0.119786i \(0.961779\pi\)
\(402\) 0 0
\(403\) 18.9282i 0.942881i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −57.6781 −2.85900
\(408\) 0 0
\(409\) −3.46410 −0.171289 −0.0856444 0.996326i \(-0.527295\pi\)
−0.0856444 + 0.996326i \(0.527295\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) − 2.82843i − 0.139178i
\(414\) 0 0
\(415\) 45.8564i 2.25100i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 3.38323 0.165282 0.0826408 0.996579i \(-0.473665\pi\)
0.0826408 + 0.996579i \(0.473665\pi\)
\(420\) 0 0
\(421\) −25.7128 −1.25317 −0.626583 0.779355i \(-0.715547\pi\)
−0.626583 + 0.779355i \(0.715547\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) − 10.2784i − 0.498577i
\(426\) 0 0
\(427\) − 3.46410i − 0.167640i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 21.4906 1.03517 0.517583 0.855633i \(-0.326832\pi\)
0.517583 + 0.855633i \(0.326832\pi\)
\(432\) 0 0
\(433\) −22.7846 −1.09496 −0.547479 0.836819i \(-0.684412\pi\)
−0.547479 + 0.836819i \(0.684412\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) − 2.07055i − 0.0990480i
\(438\) 0 0
\(439\) 13.8564i 0.661330i 0.943748 + 0.330665i \(0.107273\pi\)
−0.943748 + 0.330665i \(0.892727\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 27.9053 1.32582 0.662911 0.748698i \(-0.269321\pi\)
0.662911 + 0.748698i \(0.269321\pi\)
\(444\) 0 0
\(445\) 14.9282 0.707665
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 31.0112i 1.46351i 0.681569 + 0.731754i \(0.261298\pi\)
−0.681569 + 0.731754i \(0.738702\pi\)
\(450\) 0 0
\(451\) 31.3205i 1.47483i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −7.72741 −0.362266
\(456\) 0 0
\(457\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) − 32.9058i − 1.53258i −0.642496 0.766289i \(-0.722101\pi\)
0.642496 0.766289i \(-0.277899\pi\)
\(462\) 0 0
\(463\) 0.535898i 0.0249053i 0.999922 + 0.0124527i \(0.00396391\pi\)
−0.999922 + 0.0124527i \(0.996036\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −10.5558 −0.488466 −0.244233 0.969717i \(-0.578536\pi\)
−0.244233 + 0.969717i \(0.578536\pi\)
\(468\) 0 0
\(469\) 15.4641 0.714066
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 21.1117i 0.970716i
\(474\) 0 0
\(475\) 54.2487i 2.48910i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −20.3538 −0.929989 −0.464994 0.885314i \(-0.653944\pi\)
−0.464994 + 0.885314i \(0.653944\pi\)
\(480\) 0 0
\(481\) −21.8564 −0.996566
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 44.2939i 2.01128i
\(486\) 0 0
\(487\) 2.92820i 0.132690i 0.997797 + 0.0663448i \(0.0211337\pi\)
−0.997797 + 0.0663448i \(0.978866\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 34.3201 1.54884 0.774421 0.632670i \(-0.218041\pi\)
0.774421 + 0.632670i \(0.218041\pi\)
\(492\) 0 0
\(493\) −6.53590 −0.294362
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) − 4.52004i − 0.202752i
\(498\) 0 0
\(499\) − 33.8564i − 1.51562i −0.652475 0.757810i \(-0.726269\pi\)
0.652475 0.757810i \(-0.273731\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 6.21166 0.276964 0.138482 0.990365i \(-0.455778\pi\)
0.138482 + 0.990365i \(0.455778\pi\)
\(504\) 0 0
\(505\) −55.7128 −2.47919
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 5.93426i 0.263031i 0.991314 + 0.131516i \(0.0419844\pi\)
−0.991314 + 0.131516i \(0.958016\pi\)
\(510\) 0 0
\(511\) 0.535898i 0.0237067i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 21.1117 0.930291
\(516\) 0 0
\(517\) 44.7846 1.96962
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 3.66063i 0.160375i 0.996780 + 0.0801876i \(0.0255519\pi\)
−0.996780 + 0.0801876i \(0.974448\pi\)
\(522\) 0 0
\(523\) − 11.7128i − 0.512166i −0.966655 0.256083i \(-0.917568\pi\)
0.966655 0.256083i \(-0.0824320\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −9.79796 −0.426806
\(528\) 0 0
\(529\) −22.8564 −0.993757
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 11.8685i 0.514082i
\(534\) 0 0
\(535\) − 39.3205i − 1.69997i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −5.27792 −0.227336
\(540\) 0 0
\(541\) −29.7128 −1.27745 −0.638727 0.769434i \(-0.720539\pi\)
−0.638727 + 0.769434i \(0.720539\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 30.9096i 1.32402i
\(546\) 0 0
\(547\) 4.53590i 0.193941i 0.995287 + 0.0969705i \(0.0309153\pi\)
−0.995287 + 0.0969705i \(0.969085\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 34.4959 1.46958
\(552\) 0 0
\(553\) 10.3923 0.441926
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 16.8690i 0.714764i 0.933958 + 0.357382i \(0.116331\pi\)
−0.933958 + 0.357382i \(0.883669\pi\)
\(558\) 0 0
\(559\) 8.00000i 0.338364i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −18.2832 −0.770547 −0.385273 0.922802i \(-0.625893\pi\)
−0.385273 + 0.922802i \(0.625893\pi\)
\(564\) 0 0
\(565\) −38.2487 −1.60914
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 9.14162i 0.383237i 0.981470 + 0.191618i \(0.0613736\pi\)
−0.981470 + 0.191618i \(0.938626\pi\)
\(570\) 0 0
\(571\) − 18.3923i − 0.769694i −0.922980 0.384847i \(-0.874254\pi\)
0.922980 0.384847i \(-0.125746\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −3.76217 −0.156893
\(576\) 0 0
\(577\) 44.9282 1.87039 0.935193 0.354139i \(-0.115226\pi\)
0.935193 + 0.354139i \(0.115226\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 11.8685i 0.492389i
\(582\) 0 0
\(583\) − 37.3205i − 1.54566i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 19.7990 0.817192 0.408596 0.912715i \(-0.366019\pi\)
0.408596 + 0.912715i \(0.366019\pi\)
\(588\) 0 0
\(589\) 51.7128 2.13079
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) − 14.4195i − 0.592139i −0.955166 0.296070i \(-0.904324\pi\)
0.955166 0.296070i \(-0.0956761\pi\)
\(594\) 0 0
\(595\) − 4.00000i − 0.163984i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 35.4297 1.44762 0.723809 0.690001i \(-0.242390\pi\)
0.723809 + 0.690001i \(0.242390\pi\)
\(600\) 0 0
\(601\) −4.92820 −0.201026 −0.100513 0.994936i \(-0.532048\pi\)
−0.100513 + 0.994936i \(0.532048\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 65.1282i 2.64784i
\(606\) 0 0
\(607\) 24.7846i 1.00598i 0.864293 + 0.502988i \(0.167766\pi\)
−0.864293 + 0.502988i \(0.832234\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 16.9706 0.686555
\(612\) 0 0
\(613\) −10.7846 −0.435586 −0.217793 0.975995i \(-0.569886\pi\)
−0.217793 + 0.975995i \(0.569886\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) − 25.9091i − 1.04306i −0.853232 0.521531i \(-0.825361\pi\)
0.853232 0.521531i \(-0.174639\pi\)
\(618\) 0 0
\(619\) 14.1436i 0.568479i 0.958753 + 0.284240i \(0.0917411\pi\)
−0.958753 + 0.284240i \(0.908259\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 3.86370 0.154796
\(624\) 0 0
\(625\) 23.9282 0.957128
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) − 11.3137i − 0.451107i
\(630\) 0 0
\(631\) 15.4641i 0.615616i 0.951448 + 0.307808i \(0.0995955\pi\)
−0.951448 + 0.307808i \(0.900405\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 24.6980 0.980109
\(636\) 0 0
\(637\) −2.00000 −0.0792429
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 34.3944i 1.35850i 0.733908 + 0.679248i \(0.237694\pi\)
−0.733908 + 0.679248i \(0.762306\pi\)
\(642\) 0 0
\(643\) 38.2487i 1.50838i 0.656655 + 0.754191i \(0.271971\pi\)
−0.656655 + 0.754191i \(0.728029\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −0.203072 −0.00798358 −0.00399179 0.999992i \(-0.501271\pi\)
−0.00399179 + 0.999992i \(0.501271\pi\)
\(648\) 0 0
\(649\) −14.9282 −0.585983
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 28.9406i 1.13253i 0.824222 + 0.566267i \(0.191613\pi\)
−0.824222 + 0.566267i \(0.808387\pi\)
\(654\) 0 0
\(655\) − 81.5692i − 3.18717i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −43.3601 −1.68907 −0.844536 0.535499i \(-0.820124\pi\)
−0.844536 + 0.535499i \(0.820124\pi\)
\(660\) 0 0
\(661\) −8.53590 −0.332008 −0.166004 0.986125i \(-0.553086\pi\)
−0.166004 + 0.986125i \(0.553086\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 21.1117i 0.818675i
\(666\) 0 0
\(667\) 2.39230i 0.0926304i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −18.2832 −0.705817
\(672\) 0 0
\(673\) 17.8564 0.688314 0.344157 0.938912i \(-0.388165\pi\)
0.344157 + 0.938912i \(0.388165\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) − 22.7017i − 0.872499i −0.899826 0.436249i \(-0.856307\pi\)
0.899826 0.436249i \(-0.143693\pi\)
\(678\) 0 0
\(679\) 11.4641i 0.439952i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 28.6632 1.09677 0.548384 0.836227i \(-0.315243\pi\)
0.548384 + 0.836227i \(0.315243\pi\)
\(684\) 0 0
\(685\) 13.4641 0.514437
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) − 14.1421i − 0.538772i
\(690\) 0 0
\(691\) 25.8564i 0.983624i 0.870701 + 0.491812i \(0.163665\pi\)
−0.870701 + 0.491812i \(0.836335\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −22.6274 −0.858307
\(696\) 0 0
\(697\) −6.14359 −0.232705
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) − 12.1731i − 0.459772i −0.973218 0.229886i \(-0.926165\pi\)
0.973218 0.229886i \(-0.0738354\pi\)
\(702\) 0 0
\(703\) 59.7128i 2.25211i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −14.4195 −0.542303
\(708\) 0 0
\(709\) 13.8564 0.520388 0.260194 0.965556i \(-0.416213\pi\)
0.260194 + 0.965556i \(0.416213\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 3.58630i 0.134308i
\(714\) 0 0
\(715\) 40.7846i 1.52526i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −21.1117 −0.787332 −0.393666 0.919253i \(-0.628793\pi\)
−0.393666 + 0.919253i \(0.628793\pi\)
\(720\) 0 0
\(721\) 5.46410 0.203494
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) − 62.6787i − 2.32783i
\(726\) 0 0
\(727\) − 29.4641i − 1.09276i −0.837536 0.546382i \(-0.816005\pi\)
0.837536 0.546382i \(-0.183995\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −4.14110 −0.153164
\(732\) 0 0
\(733\) −8.92820 −0.329771 −0.164885 0.986313i \(-0.552725\pi\)
−0.164885 + 0.986313i \(0.552725\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) − 81.6182i − 3.00645i
\(738\) 0 0
\(739\) − 2.67949i − 0.0985667i −0.998785 0.0492834i \(-0.984306\pi\)
0.998785 0.0492834i \(-0.0156937\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 3.00429 0.110217 0.0551084 0.998480i \(-0.482450\pi\)
0.0551084 + 0.998480i \(0.482450\pi\)
\(744\) 0 0
\(745\) 10.5359 0.386005
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) − 10.1769i − 0.371856i
\(750\) 0 0
\(751\) − 21.8564i − 0.797552i −0.917048 0.398776i \(-0.869435\pi\)
0.917048 0.398776i \(-0.130565\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −42.2233 −1.53666
\(756\) 0 0
\(757\) −37.8564 −1.37591 −0.687957 0.725751i \(-0.741492\pi\)
−0.687957 + 0.725751i \(0.741492\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 12.1459i 0.440289i 0.975467 + 0.220144i \(0.0706529\pi\)
−0.975467 + 0.220144i \(0.929347\pi\)
\(762\) 0 0
\(763\) 8.00000i 0.289619i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −5.65685 −0.204257
\(768\) 0 0
\(769\) −34.0000 −1.22607 −0.613036 0.790055i \(-0.710052\pi\)
−0.613036 + 0.790055i \(0.710052\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) − 17.0449i − 0.613062i −0.951861 0.306531i \(-0.900832\pi\)
0.951861 0.306531i \(-0.0991683\pi\)
\(774\) 0 0
\(775\) − 93.9615i − 3.37520i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 32.4254 1.16176
\(780\) 0 0
\(781\) −23.8564 −0.853649
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 66.9213i 2.38852i
\(786\) 0 0
\(787\) 20.7846i 0.740891i 0.928854 + 0.370446i \(0.120795\pi\)
−0.928854 + 0.370446i \(0.879205\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −9.89949 −0.351986
\(792\) 0 0
\(793\) −6.92820 −0.246028
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 8.20788i 0.290738i 0.989378 + 0.145369i \(0.0464369\pi\)
−0.989378 + 0.145369i \(0.953563\pi\)
\(798\) 0 0
\(799\) 8.78461i 0.310777i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 2.82843 0.0998130
\(804\) 0 0
\(805\) −1.46410 −0.0516028
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) − 47.5756i − 1.67267i −0.548220 0.836334i \(-0.684694\pi\)
0.548220 0.836334i \(-0.315306\pi\)
\(810\) 0 0
\(811\) 22.1436i 0.777567i 0.921329 + 0.388783i \(0.127105\pi\)
−0.921329 + 0.388783i \(0.872895\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 28.8391 1.01019
\(816\) 0 0
\(817\) 21.8564 0.764659
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 1.41421i 0.0493564i 0.999695 + 0.0246782i \(0.00785611\pi\)
−0.999695 + 0.0246782i \(0.992144\pi\)
\(822\) 0 0
\(823\) − 34.3923i − 1.19884i −0.800435 0.599420i \(-0.795398\pi\)
0.800435 0.599420i \(-0.204602\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 25.6317 0.891302 0.445651 0.895207i \(-0.352972\pi\)
0.445651 + 0.895207i \(0.352972\pi\)
\(828\) 0 0
\(829\) −27.0718 −0.940242 −0.470121 0.882602i \(-0.655790\pi\)
−0.470121 + 0.882602i \(0.655790\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) − 1.03528i − 0.0358702i
\(834\) 0 0
\(835\) 64.7846i 2.24196i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −37.3244 −1.28858 −0.644290 0.764781i \(-0.722847\pi\)
−0.644290 + 0.764781i \(0.722847\pi\)
\(840\) 0 0
\(841\) −10.8564 −0.374359
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) − 34.7733i − 1.19624i
\(846\) 0 0
\(847\) 16.8564i 0.579193i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −4.14110 −0.141955
\(852\) 0 0
\(853\) 21.3205 0.730000 0.365000 0.931007i \(-0.381069\pi\)
0.365000 + 0.931007i \(0.381069\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) − 44.0165i − 1.50357i −0.659406 0.751787i \(-0.729192\pi\)
0.659406 0.751787i \(-0.270808\pi\)
\(858\) 0 0
\(859\) − 22.5359i − 0.768915i −0.923143 0.384457i \(-0.874389\pi\)
0.923143 0.384457i \(-0.125611\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −16.5916 −0.564785 −0.282393 0.959299i \(-0.591128\pi\)
−0.282393 + 0.959299i \(0.591128\pi\)
\(864\) 0 0
\(865\) 12.0000 0.408012
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) − 54.8497i − 1.86065i
\(870\) 0 0
\(871\) − 30.9282i − 1.04796i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 19.0411 0.643707
\(876\) 0 0
\(877\) −5.21539 −0.176111 −0.0880556 0.996116i \(-0.528065\pi\)
−0.0880556 + 0.996116i \(0.528065\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 23.6627i 0.797216i 0.917121 + 0.398608i \(0.130507\pi\)
−0.917121 + 0.398608i \(0.869493\pi\)
\(882\) 0 0
\(883\) − 25.8564i − 0.870137i −0.900397 0.435069i \(-0.856724\pi\)
0.900397 0.435069i \(-0.143276\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −48.0833 −1.61448 −0.807239 0.590225i \(-0.799039\pi\)
−0.807239 + 0.590225i \(0.799039\pi\)
\(888\) 0 0
\(889\) 6.39230 0.214391
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) − 46.3644i − 1.55153i
\(894\) 0 0
\(895\) − 7.32051i − 0.244698i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −59.7487 −1.99273
\(900\) 0 0
\(901\) 7.32051 0.243881
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) − 3.58630i − 0.119213i
\(906\) 0 0
\(907\) − 7.71281i − 0.256100i −0.991768 0.128050i \(-0.959128\pi\)
0.991768 0.128050i \(-0.0408718\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −1.89469 −0.0627738 −0.0313869 0.999507i \(-0.509992\pi\)
−0.0313869 + 0.999507i \(0.509992\pi\)
\(912\) 0 0
\(913\) 62.6410 2.07312
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) − 21.1117i − 0.697169i
\(918\) 0 0
\(919\) − 21.0718i − 0.695094i −0.937662 0.347547i \(-0.887015\pi\)
0.937662 0.347547i \(-0.112985\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −9.04008 −0.297558
\(924\) 0 0
\(925\) 108.497 3.56737
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 11.0363i 0.362089i 0.983475 + 0.181045i \(0.0579479\pi\)
−0.983475 + 0.181045i \(0.942052\pi\)
\(930\) 0 0
\(931\) 5.46410i 0.179079i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −21.1117 −0.690425
\(936\) 0 0
\(937\) 43.5692 1.42334 0.711672 0.702512i \(-0.247938\pi\)
0.711672 + 0.702512i \(0.247938\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 58.9165i 1.92062i 0.278930 + 0.960311i \(0.410020\pi\)
−0.278930 + 0.960311i \(0.589980\pi\)
\(942\) 0 0
\(943\) 2.24871i 0.0732281i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 23.3581 0.759036 0.379518 0.925184i \(-0.376090\pi\)
0.379518 + 0.925184i \(0.376090\pi\)
\(948\) 0 0
\(949\) 1.07180 0.0347920
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) − 33.6365i − 1.08959i −0.838568 0.544797i \(-0.816607\pi\)
0.838568 0.544797i \(-0.183393\pi\)
\(954\) 0 0
\(955\) − 14.5359i − 0.470371i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 3.48477 0.112529
\(960\) 0 0
\(961\) −58.5692 −1.88933
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 53.5370i 1.72342i
\(966\) 0 0
\(967\) − 23.4641i − 0.754555i −0.926100 0.377277i \(-0.876860\pi\)
0.926100 0.377277i \(-0.123140\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 36.0117 1.15567 0.577835 0.816154i \(-0.303898\pi\)
0.577835 + 0.816154i \(0.303898\pi\)
\(972\) 0 0
\(973\) −5.85641 −0.187748
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 17.8300i 0.570431i 0.958463 + 0.285216i \(0.0920652\pi\)
−0.958463 + 0.285216i \(0.907935\pi\)
\(978\) 0 0
\(979\) − 20.3923i − 0.651741i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −61.2645 −1.95403 −0.977016 0.213165i \(-0.931623\pi\)
−0.977016 + 0.213165i \(0.931623\pi\)
\(984\) 0 0
\(985\) 92.1051 2.93471
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 1.51575i 0.0481980i
\(990\) 0 0
\(991\) 54.6410i 1.73573i 0.496801 + 0.867865i \(0.334508\pi\)
−0.496801 + 0.867865i \(0.665492\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 15.4548 0.489951
\(996\) 0 0
\(997\) −28.5359 −0.903741 −0.451870 0.892084i \(-0.649243\pi\)
−0.451870 + 0.892084i \(0.649243\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1008.2.h.b.575.8 yes 8
3.2 odd 2 inner 1008.2.h.b.575.2 yes 8
4.3 odd 2 inner 1008.2.h.b.575.7 yes 8
7.6 odd 2 7056.2.h.k.4607.2 8
8.3 odd 2 4032.2.h.f.575.1 8
8.5 even 2 4032.2.h.f.575.2 8
12.11 even 2 inner 1008.2.h.b.575.1 8
21.20 even 2 7056.2.h.k.4607.7 8
24.5 odd 2 4032.2.h.f.575.8 8
24.11 even 2 4032.2.h.f.575.7 8
28.27 even 2 7056.2.h.k.4607.1 8
84.83 odd 2 7056.2.h.k.4607.8 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1008.2.h.b.575.1 8 12.11 even 2 inner
1008.2.h.b.575.2 yes 8 3.2 odd 2 inner
1008.2.h.b.575.7 yes 8 4.3 odd 2 inner
1008.2.h.b.575.8 yes 8 1.1 even 1 trivial
4032.2.h.f.575.1 8 8.3 odd 2
4032.2.h.f.575.2 8 8.5 even 2
4032.2.h.f.575.7 8 24.11 even 2
4032.2.h.f.575.8 8 24.5 odd 2
7056.2.h.k.4607.1 8 28.27 even 2
7056.2.h.k.4607.2 8 7.6 odd 2
7056.2.h.k.4607.7 8 21.20 even 2
7056.2.h.k.4607.8 8 84.83 odd 2