Properties

Label 1008.2.h.b.575.4
Level $1008$
Weight $2$
Character 1008.575
Analytic conductor $8.049$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1008,2,Mod(575,1008)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1008.575"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1008, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0, 1, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 1008 = 2^{4} \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1008.h (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(8.04892052375\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\Q(\zeta_{24})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{8} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 575.4
Root \(0.258819 - 0.965926i\) of defining polynomial
Character \(\chi\) \(=\) 1008.575
Dual form 1008.2.h.b.575.5

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.03528i q^{5} +1.00000i q^{7} +0.378937 q^{11} +2.00000 q^{13} -3.86370i q^{17} +1.46410i q^{19} +5.27792 q^{23} +3.92820 q^{25} -3.48477i q^{29} +2.53590i q^{31} +1.03528 q^{35} +2.92820 q^{37} -8.76268i q^{41} +4.00000i q^{43} +8.48528 q^{47} -1.00000 q^{49} -7.07107i q^{53} -0.392305i q^{55} -2.82843 q^{59} +3.46410 q^{61} -2.07055i q^{65} -8.53590i q^{67} +10.1769 q^{71} +7.46410 q^{73} +0.378937i q^{77} +10.3923i q^{79} -17.5254 q^{83} -4.00000 q^{85} +1.03528i q^{89} +2.00000i q^{91} +1.51575 q^{95} +4.53590 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 16 q^{13} - 24 q^{25} - 32 q^{37} - 8 q^{49} + 32 q^{73} - 32 q^{85} + 64 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1008\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(577\) \(757\) \(785\)
\(\chi(n)\) \(-1\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) − 1.03528i − 0.462990i −0.972836 0.231495i \(-0.925638\pi\)
0.972836 0.231495i \(-0.0743616\pi\)
\(6\) 0 0
\(7\) 1.00000i 0.377964i
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 0.378937 0.114254 0.0571270 0.998367i \(-0.481806\pi\)
0.0571270 + 0.998367i \(0.481806\pi\)
\(12\) 0 0
\(13\) 2.00000 0.554700 0.277350 0.960769i \(-0.410544\pi\)
0.277350 + 0.960769i \(0.410544\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) − 3.86370i − 0.937086i −0.883441 0.468543i \(-0.844779\pi\)
0.883441 0.468543i \(-0.155221\pi\)
\(18\) 0 0
\(19\) 1.46410i 0.335888i 0.985797 + 0.167944i \(0.0537128\pi\)
−0.985797 + 0.167944i \(0.946287\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 5.27792 1.10052 0.550261 0.834993i \(-0.314528\pi\)
0.550261 + 0.834993i \(0.314528\pi\)
\(24\) 0 0
\(25\) 3.92820 0.785641
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) − 3.48477i − 0.647105i −0.946210 0.323552i \(-0.895123\pi\)
0.946210 0.323552i \(-0.104877\pi\)
\(30\) 0 0
\(31\) 2.53590i 0.455461i 0.973724 + 0.227730i \(0.0731305\pi\)
−0.973724 + 0.227730i \(0.926870\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 1.03528 0.174994
\(36\) 0 0
\(37\) 2.92820 0.481394 0.240697 0.970600i \(-0.422624\pi\)
0.240697 + 0.970600i \(0.422624\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) − 8.76268i − 1.36850i −0.729247 0.684251i \(-0.760129\pi\)
0.729247 0.684251i \(-0.239871\pi\)
\(42\) 0 0
\(43\) 4.00000i 0.609994i 0.952353 + 0.304997i \(0.0986555\pi\)
−0.952353 + 0.304997i \(0.901344\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 8.48528 1.23771 0.618853 0.785507i \(-0.287598\pi\)
0.618853 + 0.785507i \(0.287598\pi\)
\(48\) 0 0
\(49\) −1.00000 −0.142857
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) − 7.07107i − 0.971286i −0.874157 0.485643i \(-0.838586\pi\)
0.874157 0.485643i \(-0.161414\pi\)
\(54\) 0 0
\(55\) − 0.392305i − 0.0528984i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −2.82843 −0.368230 −0.184115 0.982905i \(-0.558942\pi\)
−0.184115 + 0.982905i \(0.558942\pi\)
\(60\) 0 0
\(61\) 3.46410 0.443533 0.221766 0.975100i \(-0.428818\pi\)
0.221766 + 0.975100i \(0.428818\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) − 2.07055i − 0.256820i
\(66\) 0 0
\(67\) − 8.53590i − 1.04283i −0.853304 0.521413i \(-0.825405\pi\)
0.853304 0.521413i \(-0.174595\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 10.1769 1.20778 0.603888 0.797069i \(-0.293618\pi\)
0.603888 + 0.797069i \(0.293618\pi\)
\(72\) 0 0
\(73\) 7.46410 0.873607 0.436804 0.899557i \(-0.356111\pi\)
0.436804 + 0.899557i \(0.356111\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 0.378937i 0.0431839i
\(78\) 0 0
\(79\) 10.3923i 1.16923i 0.811312 + 0.584613i \(0.198754\pi\)
−0.811312 + 0.584613i \(0.801246\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −17.5254 −1.92366 −0.961829 0.273650i \(-0.911769\pi\)
−0.961829 + 0.273650i \(0.911769\pi\)
\(84\) 0 0
\(85\) −4.00000 −0.433861
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 1.03528i 0.109739i 0.998494 + 0.0548695i \(0.0174743\pi\)
−0.998494 + 0.0548695i \(0.982526\pi\)
\(90\) 0 0
\(91\) 2.00000i 0.209657i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 1.51575 0.155513
\(96\) 0 0
\(97\) 4.53590 0.460551 0.230275 0.973126i \(-0.426037\pi\)
0.230275 + 0.973126i \(0.426037\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) − 0.277401i − 0.0276025i −0.999905 0.0138012i \(-0.995607\pi\)
0.999905 0.0138012i \(-0.00439321\pi\)
\(102\) 0 0
\(103\) 1.46410i 0.144262i 0.997395 + 0.0721311i \(0.0229800\pi\)
−0.997395 + 0.0721311i \(0.977020\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 4.52004 0.436969 0.218484 0.975840i \(-0.429889\pi\)
0.218484 + 0.975840i \(0.429889\pi\)
\(108\) 0 0
\(109\) 8.00000 0.766261 0.383131 0.923694i \(-0.374846\pi\)
0.383131 + 0.923694i \(0.374846\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 9.89949i 0.931266i 0.884978 + 0.465633i \(0.154173\pi\)
−0.884978 + 0.465633i \(0.845827\pi\)
\(114\) 0 0
\(115\) − 5.46410i − 0.509530i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 3.86370 0.354185
\(120\) 0 0
\(121\) −10.8564 −0.986946
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) − 9.24316i − 0.826733i
\(126\) 0 0
\(127\) 14.3923i 1.27711i 0.769576 + 0.638555i \(0.220468\pi\)
−0.769576 + 0.638555i \(0.779532\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −1.51575 −0.132432 −0.0662158 0.997805i \(-0.521093\pi\)
−0.0662158 + 0.997805i \(0.521093\pi\)
\(132\) 0 0
\(133\) −1.46410 −0.126954
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 6.31319i 0.539372i 0.962948 + 0.269686i \(0.0869200\pi\)
−0.962948 + 0.269686i \(0.913080\pi\)
\(138\) 0 0
\(139\) − 21.8564i − 1.85384i −0.375264 0.926918i \(-0.622448\pi\)
0.375264 0.926918i \(-0.377552\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 0.757875 0.0633767
\(144\) 0 0
\(145\) −3.60770 −0.299603
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 16.8690i 1.38196i 0.722872 + 0.690982i \(0.242822\pi\)
−0.722872 + 0.690982i \(0.757178\pi\)
\(150\) 0 0
\(151\) − 2.92820i − 0.238294i −0.992877 0.119147i \(-0.961984\pi\)
0.992877 0.119147i \(-0.0380159\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 2.62536 0.210874
\(156\) 0 0
\(157\) −17.3205 −1.38233 −0.691164 0.722698i \(-0.742902\pi\)
−0.691164 + 0.722698i \(0.742902\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 5.27792i 0.415958i
\(162\) 0 0
\(163\) − 0.535898i − 0.0419748i −0.999780 0.0209874i \(-0.993319\pi\)
0.999780 0.0209874i \(-0.00668099\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −22.4243 −1.73525 −0.867624 0.497221i \(-0.834354\pi\)
−0.867624 + 0.497221i \(0.834354\pi\)
\(168\) 0 0
\(169\) −9.00000 −0.692308
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 11.5911i 0.881256i 0.897690 + 0.440628i \(0.145244\pi\)
−0.897690 + 0.440628i \(0.854756\pi\)
\(174\) 0 0
\(175\) 3.92820i 0.296944i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −26.3896 −1.97245 −0.986225 0.165409i \(-0.947106\pi\)
−0.986225 + 0.165409i \(0.947106\pi\)
\(180\) 0 0
\(181\) 12.9282 0.960946 0.480473 0.877010i \(-0.340465\pi\)
0.480473 + 0.877010i \(0.340465\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) − 3.03150i − 0.222880i
\(186\) 0 0
\(187\) − 1.46410i − 0.107066i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 20.7327 1.50017 0.750084 0.661343i \(-0.230013\pi\)
0.750084 + 0.661343i \(0.230013\pi\)
\(192\) 0 0
\(193\) −13.8564 −0.997406 −0.498703 0.866773i \(-0.666190\pi\)
−0.498703 + 0.866773i \(0.666190\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 15.3533i 1.09388i 0.837173 + 0.546938i \(0.184207\pi\)
−0.837173 + 0.546938i \(0.815793\pi\)
\(198\) 0 0
\(199\) − 4.00000i − 0.283552i −0.989899 0.141776i \(-0.954719\pi\)
0.989899 0.141776i \(-0.0452813\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 3.48477 0.244583
\(204\) 0 0
\(205\) −9.07180 −0.633602
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 0.554803i 0.0383765i
\(210\) 0 0
\(211\) − 9.07180i − 0.624528i −0.949995 0.312264i \(-0.898913\pi\)
0.949995 0.312264i \(-0.101087\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 4.14110 0.282421
\(216\) 0 0
\(217\) −2.53590 −0.172148
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) − 7.72741i − 0.519802i
\(222\) 0 0
\(223\) − 17.8564i − 1.19575i −0.801588 0.597877i \(-0.796011\pi\)
0.801588 0.597877i \(-0.203989\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −23.9401 −1.58896 −0.794480 0.607290i \(-0.792256\pi\)
−0.794480 + 0.607290i \(0.792256\pi\)
\(228\) 0 0
\(229\) −25.7128 −1.69915 −0.849575 0.527467i \(-0.823142\pi\)
−0.849575 + 0.527467i \(0.823142\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 10.6574i 0.698188i 0.937088 + 0.349094i \(0.113511\pi\)
−0.937088 + 0.349094i \(0.886489\pi\)
\(234\) 0 0
\(235\) − 8.78461i − 0.573045i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 17.3495 1.12225 0.561123 0.827732i \(-0.310369\pi\)
0.561123 + 0.827732i \(0.310369\pi\)
\(240\) 0 0
\(241\) 14.3923 0.927090 0.463545 0.886073i \(-0.346577\pi\)
0.463545 + 0.886073i \(0.346577\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 1.03528i 0.0661414i
\(246\) 0 0
\(247\) 2.92820i 0.186317i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −24.4949 −1.54610 −0.773052 0.634343i \(-0.781271\pi\)
−0.773052 + 0.634343i \(0.781271\pi\)
\(252\) 0 0
\(253\) 2.00000 0.125739
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 14.4195i 0.899466i 0.893163 + 0.449733i \(0.148481\pi\)
−0.893163 + 0.449733i \(0.851519\pi\)
\(258\) 0 0
\(259\) 2.92820i 0.181950i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −17.3495 −1.06982 −0.534908 0.844910i \(-0.679654\pi\)
−0.534908 + 0.844910i \(0.679654\pi\)
\(264\) 0 0
\(265\) −7.32051 −0.449695
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 18.0058i 1.09784i 0.835876 + 0.548918i \(0.184960\pi\)
−0.835876 + 0.548918i \(0.815040\pi\)
\(270\) 0 0
\(271\) 31.3205i 1.90259i 0.308289 + 0.951293i \(0.400244\pi\)
−0.308289 + 0.951293i \(0.599756\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 1.48854 0.0897625
\(276\) 0 0
\(277\) 0.143594 0.00862770 0.00431385 0.999991i \(-0.498627\pi\)
0.00431385 + 0.999991i \(0.498627\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 10.6574i 0.635765i 0.948130 + 0.317883i \(0.102972\pi\)
−0.948130 + 0.317883i \(0.897028\pi\)
\(282\) 0 0
\(283\) − 14.5359i − 0.864069i −0.901857 0.432035i \(-0.857796\pi\)
0.901857 0.432035i \(-0.142204\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 8.76268 0.517245
\(288\) 0 0
\(289\) 2.07180 0.121870
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) − 13.1069i − 0.765711i −0.923808 0.382855i \(-0.874941\pi\)
0.923808 0.382855i \(-0.125059\pi\)
\(294\) 0 0
\(295\) 2.92820i 0.170487i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 10.5558 0.610460
\(300\) 0 0
\(301\) −4.00000 −0.230556
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) − 3.58630i − 0.205351i
\(306\) 0 0
\(307\) − 21.4641i − 1.22502i −0.790462 0.612510i \(-0.790160\pi\)
0.790462 0.612510i \(-0.209840\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −1.31268 −0.0744351 −0.0372176 0.999307i \(-0.511849\pi\)
−0.0372176 + 0.999307i \(0.511849\pi\)
\(312\) 0 0
\(313\) 11.0718 0.625815 0.312907 0.949784i \(-0.398697\pi\)
0.312907 + 0.949784i \(0.398697\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 23.8386i 1.33891i 0.742854 + 0.669453i \(0.233472\pi\)
−0.742854 + 0.669453i \(0.766528\pi\)
\(318\) 0 0
\(319\) − 1.32051i − 0.0739343i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 5.65685 0.314756
\(324\) 0 0
\(325\) 7.85641 0.435795
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 8.48528i 0.467809i
\(330\) 0 0
\(331\) 28.7846i 1.58215i 0.611722 + 0.791073i \(0.290477\pi\)
−0.611722 + 0.791073i \(0.709523\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −8.83701 −0.482818
\(336\) 0 0
\(337\) −28.7846 −1.56800 −0.783999 0.620762i \(-0.786823\pi\)
−0.783999 + 0.620762i \(0.786823\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 0.960947i 0.0520382i
\(342\) 0 0
\(343\) − 1.00000i − 0.0539949i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −10.9348 −0.587009 −0.293505 0.955958i \(-0.594822\pi\)
−0.293505 + 0.955958i \(0.594822\pi\)
\(348\) 0 0
\(349\) 21.3205 1.14126 0.570630 0.821207i \(-0.306699\pi\)
0.570630 + 0.821207i \(0.306699\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) − 20.8343i − 1.10890i −0.832218 0.554448i \(-0.812929\pi\)
0.832218 0.554448i \(-0.187071\pi\)
\(354\) 0 0
\(355\) − 10.5359i − 0.559187i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 9.41902 0.497117 0.248558 0.968617i \(-0.420043\pi\)
0.248558 + 0.968617i \(0.420043\pi\)
\(360\) 0 0
\(361\) 16.8564 0.887179
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) − 7.72741i − 0.404471i
\(366\) 0 0
\(367\) − 2.92820i − 0.152851i −0.997075 0.0764255i \(-0.975649\pi\)
0.997075 0.0764255i \(-0.0243507\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 7.07107 0.367112
\(372\) 0 0
\(373\) −22.0000 −1.13912 −0.569558 0.821951i \(-0.692886\pi\)
−0.569558 + 0.821951i \(0.692886\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) − 6.96953i − 0.358949i
\(378\) 0 0
\(379\) 20.7846i 1.06763i 0.845600 + 0.533817i \(0.179243\pi\)
−0.845600 + 0.533817i \(0.820757\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 13.9391 0.712253 0.356126 0.934438i \(-0.384097\pi\)
0.356126 + 0.934438i \(0.384097\pi\)
\(384\) 0 0
\(385\) 0.392305 0.0199937
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) − 23.2838i − 1.18053i −0.807208 0.590267i \(-0.799023\pi\)
0.807208 0.590267i \(-0.200977\pi\)
\(390\) 0 0
\(391\) − 20.3923i − 1.03128i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 10.7589 0.541339
\(396\) 0 0
\(397\) −4.53590 −0.227650 −0.113825 0.993501i \(-0.536310\pi\)
−0.113825 + 0.993501i \(0.536310\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) − 24.5964i − 1.22829i −0.789194 0.614144i \(-0.789502\pi\)
0.789194 0.614144i \(-0.210498\pi\)
\(402\) 0 0
\(403\) 5.07180i 0.252644i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 1.10961 0.0550011
\(408\) 0 0
\(409\) 3.46410 0.171289 0.0856444 0.996326i \(-0.472705\pi\)
0.0856444 + 0.996326i \(0.472705\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) − 2.82843i − 0.139178i
\(414\) 0 0
\(415\) 18.1436i 0.890634i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −26.0106 −1.27070 −0.635352 0.772223i \(-0.719145\pi\)
−0.635352 + 0.772223i \(0.719145\pi\)
\(420\) 0 0
\(421\) 29.7128 1.44811 0.724057 0.689740i \(-0.242275\pi\)
0.724057 + 0.689740i \(0.242275\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) − 15.1774i − 0.736213i
\(426\) 0 0
\(427\) 3.46410i 0.167640i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 6.79367 0.327239 0.163620 0.986523i \(-0.447683\pi\)
0.163620 + 0.986523i \(0.447683\pi\)
\(432\) 0 0
\(433\) 18.7846 0.902731 0.451365 0.892339i \(-0.350937\pi\)
0.451365 + 0.892339i \(0.350937\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 7.72741i 0.369652i
\(438\) 0 0
\(439\) − 13.8564i − 0.661330i −0.943748 0.330665i \(-0.892727\pi\)
0.943748 0.330665i \(-0.107273\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 23.0064 1.09306 0.546532 0.837438i \(-0.315948\pi\)
0.546532 + 0.837438i \(0.315948\pi\)
\(444\) 0 0
\(445\) 1.07180 0.0508080
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 11.4152i 0.538719i 0.963040 + 0.269359i \(0.0868119\pi\)
−0.963040 + 0.269359i \(0.913188\pi\)
\(450\) 0 0
\(451\) − 3.32051i − 0.156357i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 2.07055 0.0970690
\(456\) 0 0
\(457\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) − 37.8048i − 1.76075i −0.474282 0.880373i \(-0.657292\pi\)
0.474282 0.880373i \(-0.342708\pi\)
\(462\) 0 0
\(463\) 7.46410i 0.346886i 0.984844 + 0.173443i \(0.0554893\pi\)
−0.984844 + 0.173443i \(0.944511\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −0.757875 −0.0350703 −0.0175351 0.999846i \(-0.505582\pi\)
−0.0175351 + 0.999846i \(0.505582\pi\)
\(468\) 0 0
\(469\) 8.53590 0.394151
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 1.51575i 0.0696942i
\(474\) 0 0
\(475\) 5.75129i 0.263887i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 9.04008 0.413052 0.206526 0.978441i \(-0.433784\pi\)
0.206526 + 0.978441i \(0.433784\pi\)
\(480\) 0 0
\(481\) 5.85641 0.267029
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) − 4.69591i − 0.213230i
\(486\) 0 0
\(487\) − 10.9282i − 0.495204i −0.968862 0.247602i \(-0.920357\pi\)
0.968862 0.247602i \(-0.0796426\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 39.2190 1.76993 0.884965 0.465657i \(-0.154182\pi\)
0.884965 + 0.465657i \(0.154182\pi\)
\(492\) 0 0
\(493\) −13.4641 −0.606393
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 10.1769i 0.456496i
\(498\) 0 0
\(499\) − 6.14359i − 0.275025i −0.990500 0.137513i \(-0.956089\pi\)
0.990500 0.137513i \(-0.0439107\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −23.1822 −1.03364 −0.516822 0.856093i \(-0.672885\pi\)
−0.516822 + 0.856093i \(0.672885\pi\)
\(504\) 0 0
\(505\) −0.287187 −0.0127797
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) − 8.76268i − 0.388399i −0.980962 0.194200i \(-0.937789\pi\)
0.980962 0.194200i \(-0.0622109\pi\)
\(510\) 0 0
\(511\) 7.46410i 0.330192i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 1.51575 0.0667919
\(516\) 0 0
\(517\) 3.21539 0.141413
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) − 40.4302i − 1.77128i −0.464374 0.885639i \(-0.653721\pi\)
0.464374 0.885639i \(-0.346279\pi\)
\(522\) 0 0
\(523\) 43.7128i 1.91143i 0.294297 + 0.955714i \(0.404914\pi\)
−0.294297 + 0.955714i \(0.595086\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 9.79796 0.426806
\(528\) 0 0
\(529\) 4.85641 0.211148
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) − 17.5254i − 0.759108i
\(534\) 0 0
\(535\) − 4.67949i − 0.202312i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −0.378937 −0.0163220
\(540\) 0 0
\(541\) 25.7128 1.10548 0.552740 0.833354i \(-0.313582\pi\)
0.552740 + 0.833354i \(0.313582\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) − 8.28221i − 0.354771i
\(546\) 0 0
\(547\) 11.4641i 0.490170i 0.969502 + 0.245085i \(0.0788158\pi\)
−0.969502 + 0.245085i \(0.921184\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 5.10205 0.217355
\(552\) 0 0
\(553\) −10.3923 −0.441926
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) − 2.72689i − 0.115542i −0.998330 0.0577710i \(-0.981601\pi\)
0.998330 0.0577710i \(-0.0183993\pi\)
\(558\) 0 0
\(559\) 8.00000i 0.338364i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 1.31268 0.0553228 0.0276614 0.999617i \(-0.491194\pi\)
0.0276614 + 0.999617i \(0.491194\pi\)
\(564\) 0 0
\(565\) 10.2487 0.431167
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) − 0.656339i − 0.0275152i −0.999905 0.0137576i \(-0.995621\pi\)
0.999905 0.0137576i \(-0.00437931\pi\)
\(570\) 0 0
\(571\) 2.39230i 0.100115i 0.998746 + 0.0500574i \(0.0159404\pi\)
−0.998746 + 0.0500574i \(0.984060\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 20.7327 0.864615
\(576\) 0 0
\(577\) 31.0718 1.29354 0.646768 0.762687i \(-0.276120\pi\)
0.646768 + 0.762687i \(0.276120\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) − 17.5254i − 0.727075i
\(582\) 0 0
\(583\) − 2.67949i − 0.110973i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 19.7990 0.817192 0.408596 0.912715i \(-0.366019\pi\)
0.408596 + 0.912715i \(0.366019\pi\)
\(588\) 0 0
\(589\) −3.71281 −0.152984
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 0.277401i 0.0113915i 0.999984 + 0.00569576i \(0.00181303\pi\)
−0.999984 + 0.00569576i \(0.998187\pi\)
\(594\) 0 0
\(595\) − 4.00000i − 0.163984i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −18.4591 −0.754219 −0.377109 0.926169i \(-0.623082\pi\)
−0.377109 + 0.926169i \(0.623082\pi\)
\(600\) 0 0
\(601\) 8.92820 0.364189 0.182095 0.983281i \(-0.441712\pi\)
0.182095 + 0.983281i \(0.441712\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 11.2394i 0.456946i
\(606\) 0 0
\(607\) − 16.7846i − 0.681266i −0.940196 0.340633i \(-0.889359\pi\)
0.940196 0.340633i \(-0.110641\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 16.9706 0.686555
\(612\) 0 0
\(613\) 30.7846 1.24338 0.621689 0.783264i \(-0.286447\pi\)
0.621689 + 0.783264i \(0.286447\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 23.0807i 0.929193i 0.885522 + 0.464597i \(0.153801\pi\)
−0.885522 + 0.464597i \(0.846199\pi\)
\(618\) 0 0
\(619\) 41.8564i 1.68235i 0.540762 + 0.841176i \(0.318136\pi\)
−0.540762 + 0.841176i \(0.681864\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −1.03528 −0.0414775
\(624\) 0 0
\(625\) 10.0718 0.402872
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) − 11.3137i − 0.451107i
\(630\) 0 0
\(631\) 8.53590i 0.339809i 0.985461 + 0.169904i \(0.0543459\pi\)
−0.985461 + 0.169904i \(0.945654\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 14.9000 0.591289
\(636\) 0 0
\(637\) −2.00000 −0.0792429
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) − 14.5954i − 0.576484i −0.957558 0.288242i \(-0.906929\pi\)
0.957558 0.288242i \(-0.0930707\pi\)
\(642\) 0 0
\(643\) − 10.2487i − 0.404170i −0.979368 0.202085i \(-0.935228\pi\)
0.979368 0.202085i \(-0.0647717\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −39.3949 −1.54877 −0.774387 0.632712i \(-0.781942\pi\)
−0.774387 + 0.632712i \(0.781942\pi\)
\(648\) 0 0
\(649\) −1.07180 −0.0420717
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 19.1427i 0.749110i 0.927205 + 0.374555i \(0.122204\pi\)
−0.927205 + 0.374555i \(0.877796\pi\)
\(654\) 0 0
\(655\) 1.56922i 0.0613145i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −18.8652 −0.734886 −0.367443 0.930046i \(-0.619767\pi\)
−0.367443 + 0.930046i \(0.619767\pi\)
\(660\) 0 0
\(661\) −15.4641 −0.601484 −0.300742 0.953706i \(-0.597234\pi\)
−0.300742 + 0.953706i \(0.597234\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 1.51575i 0.0587782i
\(666\) 0 0
\(667\) − 18.3923i − 0.712153i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 1.31268 0.0506754
\(672\) 0 0
\(673\) −9.85641 −0.379937 −0.189968 0.981790i \(-0.560839\pi\)
−0.189968 + 0.981790i \(0.560839\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 31.1870i 1.19861i 0.800519 + 0.599307i \(0.204557\pi\)
−0.800519 + 0.599307i \(0.795443\pi\)
\(678\) 0 0
\(679\) 4.53590i 0.174072i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 33.5622 1.28422 0.642111 0.766612i \(-0.278059\pi\)
0.642111 + 0.766612i \(0.278059\pi\)
\(684\) 0 0
\(685\) 6.53590 0.249724
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) − 14.1421i − 0.538772i
\(690\) 0 0
\(691\) − 1.85641i − 0.0706210i −0.999376 0.0353105i \(-0.988758\pi\)
0.999376 0.0353105i \(-0.0112420\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −22.6274 −0.858307
\(696\) 0 0
\(697\) −33.8564 −1.28240
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) − 41.5670i − 1.56996i −0.619519 0.784982i \(-0.712672\pi\)
0.619519 0.784982i \(-0.287328\pi\)
\(702\) 0 0
\(703\) 4.28719i 0.161694i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 0.277401 0.0104328
\(708\) 0 0
\(709\) −13.8564 −0.520388 −0.260194 0.965556i \(-0.583787\pi\)
−0.260194 + 0.965556i \(0.583787\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 13.3843i 0.501245i
\(714\) 0 0
\(715\) − 0.784610i − 0.0293427i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −1.51575 −0.0565279 −0.0282640 0.999600i \(-0.508998\pi\)
−0.0282640 + 0.999600i \(0.508998\pi\)
\(720\) 0 0
\(721\) −1.46410 −0.0545260
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) − 13.6889i − 0.508392i
\(726\) 0 0
\(727\) − 22.5359i − 0.835810i −0.908491 0.417905i \(-0.862764\pi\)
0.908491 0.417905i \(-0.137236\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 15.4548 0.571617
\(732\) 0 0
\(733\) 4.92820 0.182027 0.0910137 0.995850i \(-0.470989\pi\)
0.0910137 + 0.995850i \(0.470989\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) − 3.23457i − 0.119147i
\(738\) 0 0
\(739\) − 37.3205i − 1.37286i −0.727197 0.686429i \(-0.759177\pi\)
0.727197 0.686429i \(-0.240823\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −31.2886 −1.14787 −0.573933 0.818902i \(-0.694583\pi\)
−0.573933 + 0.818902i \(0.694583\pi\)
\(744\) 0 0
\(745\) 17.4641 0.639835
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 4.52004i 0.165159i
\(750\) 0 0
\(751\) 5.85641i 0.213703i 0.994275 + 0.106852i \(0.0340770\pi\)
−0.994275 + 0.106852i \(0.965923\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −3.03150 −0.110328
\(756\) 0 0
\(757\) −10.1436 −0.368675 −0.184338 0.982863i \(-0.559014\pi\)
−0.184338 + 0.982863i \(0.559014\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) − 31.9449i − 1.15800i −0.815327 0.579001i \(-0.803443\pi\)
0.815327 0.579001i \(-0.196557\pi\)
\(762\) 0 0
\(763\) 8.00000i 0.289619i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −5.65685 −0.204257
\(768\) 0 0
\(769\) −34.0000 −1.22607 −0.613036 0.790055i \(-0.710052\pi\)
−0.613036 + 0.790055i \(0.710052\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 36.8439i 1.32518i 0.748981 + 0.662591i \(0.230543\pi\)
−0.748981 + 0.662591i \(0.769457\pi\)
\(774\) 0 0
\(775\) 9.96152i 0.357829i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 12.8295 0.459663
\(780\) 0 0
\(781\) 3.85641 0.137993
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 17.9315i 0.640003i
\(786\) 0 0
\(787\) − 20.7846i − 0.740891i −0.928854 0.370446i \(-0.879205\pi\)
0.928854 0.370446i \(-0.120795\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −9.89949 −0.351986
\(792\) 0 0
\(793\) 6.92820 0.246028
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 22.9048i 0.811330i 0.914022 + 0.405665i \(0.132960\pi\)
−0.914022 + 0.405665i \(0.867040\pi\)
\(798\) 0 0
\(799\) − 32.7846i − 1.15984i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 2.82843 0.0998130
\(804\) 0 0
\(805\) 5.46410 0.192584
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 50.4040i 1.77211i 0.463580 + 0.886055i \(0.346565\pi\)
−0.463580 + 0.886055i \(0.653435\pi\)
\(810\) 0 0
\(811\) 49.8564i 1.75070i 0.483494 + 0.875348i \(0.339367\pi\)
−0.483494 + 0.875348i \(0.660633\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −0.554803 −0.0194339
\(816\) 0 0
\(817\) −5.85641 −0.204890
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 1.41421i 0.0493564i 0.999695 + 0.0246782i \(0.00785611\pi\)
−0.999695 + 0.0246782i \(0.992144\pi\)
\(822\) 0 0
\(823\) − 13.6077i − 0.474334i −0.971469 0.237167i \(-0.923781\pi\)
0.971469 0.237167i \(-0.0762189\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −8.66115 −0.301178 −0.150589 0.988596i \(-0.548117\pi\)
−0.150589 + 0.988596i \(0.548117\pi\)
\(828\) 0 0
\(829\) −40.9282 −1.42150 −0.710748 0.703447i \(-0.751643\pi\)
−0.710748 + 0.703447i \(0.751643\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 3.86370i 0.133869i
\(834\) 0 0
\(835\) 23.2154i 0.803402i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −7.93048 −0.273791 −0.136895 0.990586i \(-0.543712\pi\)
−0.136895 + 0.990586i \(0.543712\pi\)
\(840\) 0 0
\(841\) 16.8564 0.581255
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 9.31749i 0.320531i
\(846\) 0 0
\(847\) − 10.8564i − 0.373031i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 15.4548 0.529784
\(852\) 0 0
\(853\) −13.3205 −0.456086 −0.228043 0.973651i \(-0.573233\pi\)
−0.228043 + 0.973651i \(0.573233\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) − 9.72363i − 0.332153i −0.986113 0.166076i \(-0.946890\pi\)
0.986113 0.166076i \(-0.0531098\pi\)
\(858\) 0 0
\(859\) − 29.4641i − 1.00530i −0.864489 0.502651i \(-0.832358\pi\)
0.864489 0.502651i \(-0.167642\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −11.6926 −0.398022 −0.199011 0.979997i \(-0.563773\pi\)
−0.199011 + 0.979997i \(0.563773\pi\)
\(864\) 0 0
\(865\) 12.0000 0.408012
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 3.93803i 0.133589i
\(870\) 0 0
\(871\) − 17.0718i − 0.578456i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 9.24316 0.312476
\(876\) 0 0
\(877\) −46.7846 −1.57980 −0.789902 0.613233i \(-0.789869\pi\)
−0.789902 + 0.613233i \(0.789869\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 18.7637i 0.632166i 0.948732 + 0.316083i \(0.102368\pi\)
−0.948732 + 0.316083i \(0.897632\pi\)
\(882\) 0 0
\(883\) 1.85641i 0.0624731i 0.999512 + 0.0312365i \(0.00994451\pi\)
−0.999512 + 0.0312365i \(0.990055\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −48.0833 −1.61448 −0.807239 0.590225i \(-0.799039\pi\)
−0.807239 + 0.590225i \(0.799039\pi\)
\(888\) 0 0
\(889\) −14.3923 −0.482702
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 12.4233i 0.415730i
\(894\) 0 0
\(895\) 27.3205i 0.913224i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 8.83701 0.294731
\(900\) 0 0
\(901\) −27.3205 −0.910178
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) − 13.3843i − 0.444908i
\(906\) 0 0
\(907\) 47.7128i 1.58428i 0.610341 + 0.792139i \(0.291033\pi\)
−0.610341 + 0.792139i \(0.708967\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −26.3896 −0.874326 −0.437163 0.899382i \(-0.644017\pi\)
−0.437163 + 0.899382i \(0.644017\pi\)
\(912\) 0 0
\(913\) −6.64102 −0.219786
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) − 1.51575i − 0.0500545i
\(918\) 0 0
\(919\) − 34.9282i − 1.15218i −0.817388 0.576088i \(-0.804579\pi\)
0.817388 0.576088i \(-0.195421\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 20.3538 0.669953
\(924\) 0 0
\(925\) 11.5026 0.378202
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 25.7332i 0.844280i 0.906531 + 0.422140i \(0.138721\pi\)
−0.906531 + 0.422140i \(0.861279\pi\)
\(930\) 0 0
\(931\) − 1.46410i − 0.0479840i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −1.51575 −0.0495703
\(936\) 0 0
\(937\) −39.5692 −1.29267 −0.646335 0.763054i \(-0.723699\pi\)
−0.646335 + 0.763054i \(0.723699\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 34.4216i 1.12211i 0.827778 + 0.561056i \(0.189605\pi\)
−0.827778 + 0.561056i \(0.810395\pi\)
\(942\) 0 0
\(943\) − 46.2487i − 1.50607i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −40.3286 −1.31050 −0.655252 0.755410i \(-0.727438\pi\)
−0.655252 + 0.755410i \(0.727438\pi\)
\(948\) 0 0
\(949\) 14.9282 0.484590
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 25.1512i 0.814728i 0.913266 + 0.407364i \(0.133552\pi\)
−0.913266 + 0.407364i \(0.866448\pi\)
\(954\) 0 0
\(955\) − 21.4641i − 0.694562i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −6.31319 −0.203864
\(960\) 0 0
\(961\) 24.5692 0.792555
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 14.3452i 0.461789i
\(966\) 0 0
\(967\) − 16.5359i − 0.531759i −0.964006 0.265879i \(-0.914338\pi\)
0.964006 0.265879i \(-0.0856623\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 26.2137 0.841238 0.420619 0.907237i \(-0.361813\pi\)
0.420619 + 0.907237i \(0.361813\pi\)
\(972\) 0 0
\(973\) 21.8564 0.700684
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 47.2239i 1.51082i 0.655250 + 0.755412i \(0.272563\pi\)
−0.655250 + 0.755412i \(0.727437\pi\)
\(978\) 0 0
\(979\) 0.392305i 0.0125381i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −12.2747 −0.391501 −0.195750 0.980654i \(-0.562714\pi\)
−0.195750 + 0.980654i \(0.562714\pi\)
\(984\) 0 0
\(985\) 15.8949 0.506453
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 21.1117i 0.671312i
\(990\) 0 0
\(991\) − 14.6410i − 0.465087i −0.972586 0.232544i \(-0.925295\pi\)
0.972586 0.232544i \(-0.0747048\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −4.14110 −0.131282
\(996\) 0 0
\(997\) −35.4641 −1.12316 −0.561580 0.827423i \(-0.689806\pi\)
−0.561580 + 0.827423i \(0.689806\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1008.2.h.b.575.4 yes 8
3.2 odd 2 inner 1008.2.h.b.575.6 yes 8
4.3 odd 2 inner 1008.2.h.b.575.3 8
7.6 odd 2 7056.2.h.k.4607.6 8
8.3 odd 2 4032.2.h.f.575.5 8
8.5 even 2 4032.2.h.f.575.6 8
12.11 even 2 inner 1008.2.h.b.575.5 yes 8
21.20 even 2 7056.2.h.k.4607.3 8
24.5 odd 2 4032.2.h.f.575.4 8
24.11 even 2 4032.2.h.f.575.3 8
28.27 even 2 7056.2.h.k.4607.5 8
84.83 odd 2 7056.2.h.k.4607.4 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1008.2.h.b.575.3 8 4.3 odd 2 inner
1008.2.h.b.575.4 yes 8 1.1 even 1 trivial
1008.2.h.b.575.5 yes 8 12.11 even 2 inner
1008.2.h.b.575.6 yes 8 3.2 odd 2 inner
4032.2.h.f.575.3 8 24.11 even 2
4032.2.h.f.575.4 8 24.5 odd 2
4032.2.h.f.575.5 8 8.3 odd 2
4032.2.h.f.575.6 8 8.5 even 2
7056.2.h.k.4607.3 8 21.20 even 2
7056.2.h.k.4607.4 8 84.83 odd 2
7056.2.h.k.4607.5 8 28.27 even 2
7056.2.h.k.4607.6 8 7.6 odd 2