Properties

 Label 1008.2.cz.d.607.1 Level $1008$ Weight $2$ Character 1008.607 Analytic conductor $8.049$ Analytic rank $0$ Dimension $2$ CM no Inner twists $2$

Related objects

Newspace parameters

 Level: $$N$$ $$=$$ $$1008 = 2^{4} \cdot 3^{2} \cdot 7$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 1008.cz (of order $$6$$, degree $$2$$, minimal)

Newform invariants

 Self dual: no Analytic conductor: $$8.04892052375$$ Analytic rank: $$0$$ Dimension: $$2$$ Coefficient field: $$\Q(\zeta_{6})$$ Defining polynomial: $$x^{2} - x + 1$$ Coefficient ring: $$\Z[a_1, a_2, a_3]$$ Coefficient ring index: $$1$$ Twist minimal: yes Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

 Embedding label 607.1 Root $$0.500000 - 0.866025i$$ of defining polynomial Character $$\chi$$ $$=$$ 1008.607 Dual form 1008.2.cz.d.367.1

$q$-expansion

 $$f(q)$$ $$=$$ $$q+(1.50000 + 0.866025i) q^{3} +(0.500000 + 2.59808i) q^{7} +(1.50000 + 2.59808i) q^{9} +O(q^{10})$$ $$q+(1.50000 + 0.866025i) q^{3} +(0.500000 + 2.59808i) q^{7} +(1.50000 + 2.59808i) q^{9} +(3.00000 + 1.73205i) q^{11} +(-1.50000 - 0.866025i) q^{13} +(1.50000 - 0.866025i) q^{17} +(2.50000 - 4.33013i) q^{19} +(-1.50000 + 4.33013i) q^{21} +(-3.00000 + 1.73205i) q^{23} +(-2.50000 + 4.33013i) q^{25} +5.19615i q^{27} +(-1.50000 - 2.59808i) q^{29} -1.00000 q^{31} +(3.00000 + 5.19615i) q^{33} +(-3.50000 + 6.06218i) q^{37} +(-1.50000 - 2.59808i) q^{39} +(-1.50000 - 0.866025i) q^{41} +(-1.50000 + 0.866025i) q^{43} +9.00000 q^{47} +(-6.50000 + 2.59808i) q^{49} +3.00000 q^{51} +(4.50000 + 7.79423i) q^{53} +(7.50000 - 4.33013i) q^{57} +15.0000 q^{59} +1.73205i q^{61} +(-6.00000 + 5.19615i) q^{63} -15.5885i q^{67} -6.00000 q^{69} -10.3923i q^{71} +(1.50000 - 0.866025i) q^{73} +(-7.50000 + 4.33013i) q^{75} +(-3.00000 + 8.66025i) q^{77} -1.73205i q^{79} +(-4.50000 + 7.79423i) q^{81} +(4.50000 + 7.79423i) q^{83} -5.19615i q^{87} +(1.50000 + 0.866025i) q^{89} +(1.50000 - 4.33013i) q^{91} +(-1.50000 - 0.866025i) q^{93} +(-1.50000 + 0.866025i) q^{97} +10.3923i q^{99} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$2 q + 3 q^{3} + q^{7} + 3 q^{9} + O(q^{10})$$ $$2 q + 3 q^{3} + q^{7} + 3 q^{9} + 6 q^{11} - 3 q^{13} + 3 q^{17} + 5 q^{19} - 3 q^{21} - 6 q^{23} - 5 q^{25} - 3 q^{29} - 2 q^{31} + 6 q^{33} - 7 q^{37} - 3 q^{39} - 3 q^{41} - 3 q^{43} + 18 q^{47} - 13 q^{49} + 6 q^{51} + 9 q^{53} + 15 q^{57} + 30 q^{59} - 12 q^{63} - 12 q^{69} + 3 q^{73} - 15 q^{75} - 6 q^{77} - 9 q^{81} + 9 q^{83} + 3 q^{89} + 3 q^{91} - 3 q^{93} - 3 q^{97} + O(q^{100})$$

Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/1008\mathbb{Z}\right)^\times$$.

 $$n$$ $$127$$ $$577$$ $$757$$ $$785$$ $$\chi(n)$$ $$-1$$ $$e\left(\frac{5}{6}\right)$$ $$1$$ $$e\left(\frac{1}{3}\right)$$

Coefficient data

For each $$n$$ we display the coefficients of the $$q$$-expansion $$a_n$$, the Satake parameters $$\alpha_p$$, and the Satake angles $$\theta_p = \textrm{Arg}(\alpha_p)$$.

Display $$a_p$$ with $$p$$ up to: 50 250 1000 Display $$a_n$$ with $$n$$ up to: 50 250 1000
$$n$$ $$a_n$$ $$a_n / n^{(k-1)/2}$$ $$\alpha_n$$ $$\theta_n$$
$$p$$ $$a_p$$ $$a_p / p^{(k-1)/2}$$ $$\alpha_p$$ $$\theta_p$$
$$2$$ 0 0
$$3$$ 1.50000 + 0.866025i 0.866025 + 0.500000i
$$4$$ 0 0
$$5$$ 0 0 −0.500000 0.866025i $$-0.666667\pi$$
0.500000 + 0.866025i $$0.333333\pi$$
$$6$$ 0 0
$$7$$ 0.500000 + 2.59808i 0.188982 + 0.981981i
$$8$$ 0 0
$$9$$ 1.50000 + 2.59808i 0.500000 + 0.866025i
$$10$$ 0 0
$$11$$ 3.00000 + 1.73205i 0.904534 + 0.522233i 0.878668 0.477432i $$-0.158432\pi$$
0.0258656 + 0.999665i $$0.491766\pi$$
$$12$$ 0 0
$$13$$ −1.50000 0.866025i −0.416025 0.240192i 0.277350 0.960769i $$-0.410544\pi$$
−0.693375 + 0.720577i $$0.743877\pi$$
$$14$$ 0 0
$$15$$ 0 0
$$16$$ 0 0
$$17$$ 1.50000 0.866025i 0.363803 0.210042i −0.306944 0.951727i $$-0.599307\pi$$
0.670748 + 0.741685i $$0.265973\pi$$
$$18$$ 0 0
$$19$$ 2.50000 4.33013i 0.573539 0.993399i −0.422659 0.906289i $$-0.638903\pi$$
0.996199 0.0871106i $$-0.0277634\pi$$
$$20$$ 0 0
$$21$$ −1.50000 + 4.33013i −0.327327 + 0.944911i
$$22$$ 0 0
$$23$$ −3.00000 + 1.73205i −0.625543 + 0.361158i −0.779024 0.626994i $$-0.784285\pi$$
0.153481 + 0.988152i $$0.450952\pi$$
$$24$$ 0 0
$$25$$ −2.50000 + 4.33013i −0.500000 + 0.866025i
$$26$$ 0 0
$$27$$ 5.19615i 1.00000i
$$28$$ 0 0
$$29$$ −1.50000 2.59808i −0.278543 0.482451i 0.692480 0.721437i $$-0.256518\pi$$
−0.971023 + 0.238987i $$0.923185\pi$$
$$30$$ 0 0
$$31$$ −1.00000 −0.179605 −0.0898027 0.995960i $$-0.528624\pi$$
−0.0898027 + 0.995960i $$0.528624\pi$$
$$32$$ 0 0
$$33$$ 3.00000 + 5.19615i 0.522233 + 0.904534i
$$34$$ 0 0
$$35$$ 0 0
$$36$$ 0 0
$$37$$ −3.50000 + 6.06218i −0.575396 + 0.996616i 0.420602 + 0.907245i $$0.361819\pi$$
−0.995998 + 0.0893706i $$0.971514\pi$$
$$38$$ 0 0
$$39$$ −1.50000 2.59808i −0.240192 0.416025i
$$40$$ 0 0
$$41$$ −1.50000 0.866025i −0.234261 0.135250i 0.378275 0.925693i $$-0.376517\pi$$
−0.612536 + 0.790443i $$0.709851\pi$$
$$42$$ 0 0
$$43$$ −1.50000 + 0.866025i −0.228748 + 0.132068i −0.609994 0.792406i $$-0.708828\pi$$
0.381246 + 0.924473i $$0.375495\pi$$
$$44$$ 0 0
$$45$$ 0 0
$$46$$ 0 0
$$47$$ 9.00000 1.31278 0.656392 0.754420i $$-0.272082\pi$$
0.656392 + 0.754420i $$0.272082\pi$$
$$48$$ 0 0
$$49$$ −6.50000 + 2.59808i −0.928571 + 0.371154i
$$50$$ 0 0
$$51$$ 3.00000 0.420084
$$52$$ 0 0
$$53$$ 4.50000 + 7.79423i 0.618123 + 1.07062i 0.989828 + 0.142269i $$0.0454398\pi$$
−0.371706 + 0.928351i $$0.621227\pi$$
$$54$$ 0 0
$$55$$ 0 0
$$56$$ 0 0
$$57$$ 7.50000 4.33013i 0.993399 0.573539i
$$58$$ 0 0
$$59$$ 15.0000 1.95283 0.976417 0.215894i $$-0.0692665\pi$$
0.976417 + 0.215894i $$0.0692665\pi$$
$$60$$ 0 0
$$61$$ 1.73205i 0.221766i 0.993833 + 0.110883i $$0.0353679\pi$$
−0.993833 + 0.110883i $$0.964632\pi$$
$$62$$ 0 0
$$63$$ −6.00000 + 5.19615i −0.755929 + 0.654654i
$$64$$ 0 0
$$65$$ 0 0
$$66$$ 0 0
$$67$$ 15.5885i 1.90443i −0.305424 0.952217i $$-0.598798\pi$$
0.305424 0.952217i $$-0.401202\pi$$
$$68$$ 0 0
$$69$$ −6.00000 −0.722315
$$70$$ 0 0
$$71$$ 10.3923i 1.23334i −0.787222 0.616670i $$-0.788481\pi$$
0.787222 0.616670i $$-0.211519\pi$$
$$72$$ 0 0
$$73$$ 1.50000 0.866025i 0.175562 0.101361i −0.409644 0.912245i $$-0.634347\pi$$
0.585206 + 0.810885i $$0.301014\pi$$
$$74$$ 0 0
$$75$$ −7.50000 + 4.33013i −0.866025 + 0.500000i
$$76$$ 0 0
$$77$$ −3.00000 + 8.66025i −0.341882 + 0.986928i
$$78$$ 0 0
$$79$$ 1.73205i 0.194871i −0.995242 0.0974355i $$-0.968936\pi$$
0.995242 0.0974355i $$-0.0310640\pi$$
$$80$$ 0 0
$$81$$ −4.50000 + 7.79423i −0.500000 + 0.866025i
$$82$$ 0 0
$$83$$ 4.50000 + 7.79423i 0.493939 + 0.855528i 0.999976 0.00698436i $$-0.00222321\pi$$
−0.506036 + 0.862512i $$0.668890\pi$$
$$84$$ 0 0
$$85$$ 0 0
$$86$$ 0 0
$$87$$ 5.19615i 0.557086i
$$88$$ 0 0
$$89$$ 1.50000 + 0.866025i 0.159000 + 0.0917985i 0.577389 0.816469i $$-0.304072\pi$$
−0.418389 + 0.908268i $$0.637405\pi$$
$$90$$ 0 0
$$91$$ 1.50000 4.33013i 0.157243 0.453921i
$$92$$ 0 0
$$93$$ −1.50000 0.866025i −0.155543 0.0898027i
$$94$$ 0 0
$$95$$ 0 0
$$96$$ 0 0
$$97$$ −1.50000 + 0.866025i −0.152302 + 0.0879316i −0.574214 0.818705i $$-0.694692\pi$$
0.421912 + 0.906637i $$0.361359\pi$$
$$98$$ 0 0
$$99$$ 10.3923i 1.04447i
$$100$$ 0 0
$$101$$ −12.0000 6.92820i −1.19404 0.689382i −0.234823 0.972038i $$-0.575451\pi$$
−0.959221 + 0.282656i $$0.908784\pi$$
$$102$$ 0 0
$$103$$ −4.00000 6.92820i −0.394132 0.682656i 0.598858 0.800855i $$-0.295621\pi$$
−0.992990 + 0.118199i $$0.962288\pi$$
$$104$$ 0 0
$$105$$ 0 0
$$106$$ 0 0
$$107$$ 1.50000 + 0.866025i 0.145010 + 0.0837218i 0.570750 0.821124i $$-0.306653\pi$$
−0.425739 + 0.904846i $$0.639986\pi$$
$$108$$ 0 0
$$109$$ −5.50000 9.52628i −0.526804 0.912452i −0.999512 0.0312328i $$-0.990057\pi$$
0.472708 0.881219i $$-0.343277\pi$$
$$110$$ 0 0
$$111$$ −10.5000 + 6.06218i −0.996616 + 0.575396i
$$112$$ 0 0
$$113$$ 4.50000 7.79423i 0.423324 0.733219i −0.572938 0.819599i $$-0.694196\pi$$
0.996262 + 0.0863794i $$0.0275297\pi$$
$$114$$ 0 0
$$115$$ 0 0
$$116$$ 0 0
$$117$$ 5.19615i 0.480384i
$$118$$ 0 0
$$119$$ 3.00000 + 3.46410i 0.275010 + 0.317554i
$$120$$ 0 0
$$121$$ 0.500000 + 0.866025i 0.0454545 + 0.0787296i
$$122$$ 0 0
$$123$$ −1.50000 2.59808i −0.135250 0.234261i
$$124$$ 0 0
$$125$$ 0 0
$$126$$ 0 0
$$127$$ 10.3923i 0.922168i −0.887357 0.461084i $$-0.847461\pi$$
0.887357 0.461084i $$-0.152539\pi$$
$$128$$ 0 0
$$129$$ −3.00000 −0.264135
$$130$$ 0 0
$$131$$ 6.00000 + 10.3923i 0.524222 + 0.907980i 0.999602 + 0.0281993i $$0.00897729\pi$$
−0.475380 + 0.879781i $$0.657689\pi$$
$$132$$ 0 0
$$133$$ 12.5000 + 4.33013i 1.08389 + 0.375470i
$$134$$ 0 0
$$135$$ 0 0
$$136$$ 0 0
$$137$$ 9.00000 15.5885i 0.768922 1.33181i −0.169226 0.985577i $$-0.554127\pi$$
0.938148 0.346235i $$-0.112540\pi$$
$$138$$ 0 0
$$139$$ −2.50000 + 4.33013i −0.212047 + 0.367277i −0.952355 0.304991i $$-0.901346\pi$$
0.740308 + 0.672268i $$0.234680\pi$$
$$140$$ 0 0
$$141$$ 13.5000 + 7.79423i 1.13691 + 0.656392i
$$142$$ 0 0
$$143$$ −3.00000 5.19615i −0.250873 0.434524i
$$144$$ 0 0
$$145$$ 0 0
$$146$$ 0 0
$$147$$ −12.0000 1.73205i −0.989743 0.142857i
$$148$$ 0 0
$$149$$ 3.00000 + 5.19615i 0.245770 + 0.425685i 0.962348 0.271821i $$-0.0876260\pi$$
−0.716578 + 0.697507i $$0.754293\pi$$
$$150$$ 0 0
$$151$$ −15.0000 8.66025i −1.22068 0.704761i −0.255619 0.966778i $$-0.582279\pi$$
−0.965064 + 0.262016i $$0.915613\pi$$
$$152$$ 0 0
$$153$$ 4.50000 + 2.59808i 0.363803 + 0.210042i
$$154$$ 0 0
$$155$$ 0 0
$$156$$ 0 0
$$157$$ 12.1244i 0.967629i 0.875171 + 0.483814i $$0.160749\pi$$
−0.875171 + 0.483814i $$0.839251\pi$$
$$158$$ 0 0
$$159$$ 15.5885i 1.23625i
$$160$$ 0 0
$$161$$ −6.00000 6.92820i −0.472866 0.546019i
$$162$$ 0 0
$$163$$ 13.5000 + 7.79423i 1.05740 + 0.610491i 0.924712 0.380667i $$-0.124305\pi$$
0.132689 + 0.991158i $$0.457639\pi$$
$$164$$ 0 0
$$165$$ 0 0
$$166$$ 0 0
$$167$$ −10.5000 + 18.1865i −0.812514 + 1.40732i 0.0985846 + 0.995129i $$0.468568\pi$$
−0.911099 + 0.412188i $$0.864765\pi$$
$$168$$ 0 0
$$169$$ −5.00000 8.66025i −0.384615 0.666173i
$$170$$ 0 0
$$171$$ 15.0000 1.14708
$$172$$ 0 0
$$173$$ 19.0526i 1.44854i −0.689517 0.724270i $$-0.742177\pi$$
0.689517 0.724270i $$-0.257823\pi$$
$$174$$ 0 0
$$175$$ −12.5000 4.33013i −0.944911 0.327327i
$$176$$ 0 0
$$177$$ 22.5000 + 12.9904i 1.69120 + 0.976417i
$$178$$ 0 0
$$179$$ 10.5000 6.06218i 0.784807 0.453108i −0.0533243 0.998577i $$-0.516982\pi$$
0.838131 + 0.545469i $$0.183648\pi$$
$$180$$ 0 0
$$181$$ 13.8564i 1.02994i −0.857209 0.514969i $$-0.827803\pi$$
0.857209 0.514969i $$-0.172197\pi$$
$$182$$ 0 0
$$183$$ −1.50000 + 2.59808i −0.110883 + 0.192055i
$$184$$ 0 0
$$185$$ 0 0
$$186$$ 0 0
$$187$$ 6.00000 0.438763
$$188$$ 0 0
$$189$$ −13.5000 + 2.59808i −0.981981 + 0.188982i
$$190$$ 0 0
$$191$$ 1.73205i 0.125327i −0.998035 0.0626634i $$-0.980041\pi$$
0.998035 0.0626634i $$-0.0199595\pi$$
$$192$$ 0 0
$$193$$ −17.0000 −1.22369 −0.611843 0.790979i $$-0.709572\pi$$
−0.611843 + 0.790979i $$0.709572\pi$$
$$194$$ 0 0
$$195$$ 0 0
$$196$$ 0 0
$$197$$ 6.00000 0.427482 0.213741 0.976890i $$-0.431435\pi$$
0.213741 + 0.976890i $$0.431435\pi$$
$$198$$ 0 0
$$199$$ −0.500000 0.866025i −0.0354441 0.0613909i 0.847759 0.530381i $$-0.177951\pi$$
−0.883203 + 0.468990i $$0.844618\pi$$
$$200$$ 0 0
$$201$$ 13.5000 23.3827i 0.952217 1.64929i
$$202$$ 0 0
$$203$$ 6.00000 5.19615i 0.421117 0.364698i
$$204$$ 0 0
$$205$$ 0 0
$$206$$ 0 0
$$207$$ −9.00000 5.19615i −0.625543 0.361158i
$$208$$ 0 0
$$209$$ 15.0000 8.66025i 1.03757 0.599042i
$$210$$ 0 0
$$211$$ −10.5000 6.06218i −0.722850 0.417338i 0.0929509 0.995671i $$-0.470370\pi$$
−0.815801 + 0.578333i $$0.803703\pi$$
$$212$$ 0 0
$$213$$ 9.00000 15.5885i 0.616670 1.06810i
$$214$$ 0 0
$$215$$ 0 0
$$216$$ 0 0
$$217$$ −0.500000 2.59808i −0.0339422 0.176369i
$$218$$ 0 0
$$219$$ 3.00000 0.202721
$$220$$ 0 0
$$221$$ −3.00000 −0.201802
$$222$$ 0 0
$$223$$ 2.50000 + 4.33013i 0.167412 + 0.289967i 0.937509 0.347960i $$-0.113126\pi$$
−0.770097 + 0.637927i $$0.779792\pi$$
$$224$$ 0 0
$$225$$ −15.0000 −1.00000
$$226$$ 0 0
$$227$$ 6.00000 10.3923i 0.398234 0.689761i −0.595274 0.803523i $$-0.702957\pi$$
0.993508 + 0.113761i $$0.0362899\pi$$
$$228$$ 0 0
$$229$$ 12.0000 6.92820i 0.792982 0.457829i −0.0480291 0.998846i $$-0.515294\pi$$
0.841011 + 0.541017i $$0.181961\pi$$
$$230$$ 0 0
$$231$$ −12.0000 + 10.3923i −0.789542 + 0.683763i
$$232$$ 0 0
$$233$$ 10.5000 18.1865i 0.687878 1.19144i −0.284645 0.958633i $$-0.591876\pi$$
0.972523 0.232806i $$-0.0747909\pi$$
$$234$$ 0 0
$$235$$ 0 0
$$236$$ 0 0
$$237$$ 1.50000 2.59808i 0.0974355 0.168763i
$$238$$ 0 0
$$239$$ 19.5000 + 11.2583i 1.26135 + 0.728241i 0.973336 0.229385i $$-0.0736716\pi$$
0.288014 + 0.957626i $$0.407005\pi$$
$$240$$ 0 0
$$241$$ −18.0000 10.3923i −1.15948 0.669427i −0.208302 0.978065i $$-0.566794\pi$$
−0.951180 + 0.308637i $$0.900127\pi$$
$$242$$ 0 0
$$243$$ −13.5000 + 7.79423i −0.866025 + 0.500000i
$$244$$ 0 0
$$245$$ 0 0
$$246$$ 0 0
$$247$$ −7.50000 + 4.33013i −0.477214 + 0.275519i
$$248$$ 0 0
$$249$$ 15.5885i 0.987878i
$$250$$ 0 0
$$251$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$252$$ 0 0
$$253$$ −12.0000 −0.754434
$$254$$ 0 0
$$255$$ 0 0
$$256$$ 0 0
$$257$$ −24.0000 + 13.8564i −1.49708 + 0.864339i −0.999994 0.00336324i $$-0.998929\pi$$
−0.497085 + 0.867702i $$0.665596\pi$$
$$258$$ 0 0
$$259$$ −17.5000 6.06218i −1.08740 0.376685i
$$260$$ 0 0
$$261$$ 4.50000 7.79423i 0.278543 0.482451i
$$262$$ 0 0
$$263$$ −27.0000 15.5885i −1.66489 0.961225i −0.970328 0.241794i $$-0.922264\pi$$
−0.694564 0.719431i $$-0.744403\pi$$
$$264$$ 0 0
$$265$$ 0 0
$$266$$ 0 0
$$267$$ 1.50000 + 2.59808i 0.0917985 + 0.159000i
$$268$$ 0 0
$$269$$ 19.5000 11.2583i 1.18894 0.686433i 0.230871 0.972984i $$-0.425842\pi$$
0.958065 + 0.286552i $$0.0925091\pi$$
$$270$$ 0 0
$$271$$ 0.500000 0.866025i 0.0303728 0.0526073i −0.850439 0.526073i $$-0.823664\pi$$
0.880812 + 0.473466i $$0.156997\pi$$
$$272$$ 0 0
$$273$$ 6.00000 5.19615i 0.363137 0.314485i
$$274$$ 0 0
$$275$$ −15.0000 + 8.66025i −0.904534 + 0.522233i
$$276$$ 0 0
$$277$$ 7.00000 12.1244i 0.420589 0.728482i −0.575408 0.817867i $$-0.695157\pi$$
0.995997 + 0.0893846i $$0.0284900\pi$$
$$278$$ 0 0
$$279$$ −1.50000 2.59808i −0.0898027 0.155543i
$$280$$ 0 0
$$281$$ −7.50000 12.9904i −0.447412 0.774941i 0.550804 0.834634i $$-0.314321\pi$$
−0.998217 + 0.0596933i $$0.980988\pi$$
$$282$$ 0 0
$$283$$ 31.0000 1.84276 0.921379 0.388664i $$-0.127063\pi$$
0.921379 + 0.388664i $$0.127063\pi$$
$$284$$ 0 0
$$285$$ 0 0
$$286$$ 0 0
$$287$$ 1.50000 4.33013i 0.0885422 0.255599i
$$288$$ 0 0
$$289$$ −7.00000 + 12.1244i −0.411765 + 0.713197i
$$290$$ 0 0
$$291$$ −3.00000 −0.175863
$$292$$ 0 0
$$293$$ 22.5000 + 12.9904i 1.31446 + 0.758906i 0.982832 0.184503i $$-0.0590674\pi$$
0.331632 + 0.943409i $$0.392401\pi$$
$$294$$ 0 0
$$295$$ 0 0
$$296$$ 0 0
$$297$$ −9.00000 + 15.5885i −0.522233 + 0.904534i
$$298$$ 0 0
$$299$$ 6.00000 0.346989
$$300$$ 0 0
$$301$$ −3.00000 3.46410i −0.172917 0.199667i
$$302$$ 0 0
$$303$$ −12.0000 20.7846i −0.689382 1.19404i
$$304$$ 0 0
$$305$$ 0 0
$$306$$ 0 0
$$307$$ −8.00000 −0.456584 −0.228292 0.973593i $$-0.573314\pi$$
−0.228292 + 0.973593i $$0.573314\pi$$
$$308$$ 0 0
$$309$$ 13.8564i 0.788263i
$$310$$ 0 0
$$311$$ 3.00000 0.170114 0.0850572 0.996376i $$-0.472893\pi$$
0.0850572 + 0.996376i $$0.472893\pi$$
$$312$$ 0 0
$$313$$ 29.4449i 1.66432i 0.554534 + 0.832161i $$0.312897\pi$$
−0.554534 + 0.832161i $$0.687103\pi$$
$$314$$ 0 0
$$315$$ 0 0
$$316$$ 0 0
$$317$$ −21.0000 −1.17948 −0.589739 0.807594i $$-0.700769\pi$$
−0.589739 + 0.807594i $$0.700769\pi$$
$$318$$ 0 0
$$319$$ 10.3923i 0.581857i
$$320$$ 0 0
$$321$$ 1.50000 + 2.59808i 0.0837218 + 0.145010i
$$322$$ 0 0
$$323$$ 8.66025i 0.481869i
$$324$$ 0 0
$$325$$ 7.50000 4.33013i 0.416025 0.240192i
$$326$$ 0 0
$$327$$ 19.0526i 1.05361i
$$328$$ 0 0
$$329$$ 4.50000 + 23.3827i 0.248093 + 1.28913i
$$330$$ 0 0
$$331$$ 5.19615i 0.285606i 0.989751 + 0.142803i $$0.0456116\pi$$
−0.989751 + 0.142803i $$0.954388\pi$$
$$332$$ 0 0
$$333$$ −21.0000 −1.15079
$$334$$ 0 0
$$335$$ 0 0
$$336$$ 0 0
$$337$$ −5.50000 + 9.52628i −0.299604 + 0.518930i −0.976045 0.217567i $$-0.930188\pi$$
0.676441 + 0.736497i $$0.263521\pi$$
$$338$$ 0 0
$$339$$ 13.5000 7.79423i 0.733219 0.423324i
$$340$$ 0 0
$$341$$ −3.00000 1.73205i −0.162459 0.0937958i
$$342$$ 0 0
$$343$$ −10.0000 15.5885i −0.539949 0.841698i
$$344$$ 0 0
$$345$$ 0 0
$$346$$ 0 0
$$347$$ 22.5167i 1.20876i −0.796697 0.604379i $$-0.793421\pi$$
0.796697 0.604379i $$-0.206579\pi$$
$$348$$ 0 0
$$349$$ 22.5000 12.9904i 1.20440 0.695359i 0.242867 0.970059i $$-0.421912\pi$$
0.961530 + 0.274700i $$0.0885786\pi$$
$$350$$ 0 0
$$351$$ 4.50000 7.79423i 0.240192 0.416025i
$$352$$ 0 0
$$353$$ −18.0000 10.3923i −0.958043 0.553127i −0.0624731 0.998047i $$-0.519899\pi$$
−0.895570 + 0.444920i $$0.853232\pi$$
$$354$$ 0 0
$$355$$ 0 0
$$356$$ 0 0
$$357$$ 1.50000 + 7.79423i 0.0793884 + 0.412514i
$$358$$ 0 0
$$359$$ −10.5000 6.06218i −0.554169 0.319950i 0.196633 0.980477i $$-0.436999\pi$$
−0.750802 + 0.660528i $$0.770333\pi$$
$$360$$ 0 0
$$361$$ −3.00000 5.19615i −0.157895 0.273482i
$$362$$ 0 0
$$363$$ 1.73205i 0.0909091i
$$364$$ 0 0
$$365$$ 0 0
$$366$$ 0 0
$$367$$ 4.00000 6.92820i 0.208798 0.361649i −0.742538 0.669804i $$-0.766378\pi$$
0.951336 + 0.308155i $$0.0997115\pi$$
$$368$$ 0 0
$$369$$ 5.19615i 0.270501i
$$370$$ 0 0
$$371$$ −18.0000 + 15.5885i −0.934513 + 0.809312i
$$372$$ 0 0
$$373$$ 5.00000 + 8.66025i 0.258890 + 0.448411i 0.965945 0.258748i $$-0.0833099\pi$$
−0.707055 + 0.707159i $$0.749977\pi$$
$$374$$ 0 0
$$375$$ 0 0
$$376$$ 0 0
$$377$$ 5.19615i 0.267615i
$$378$$ 0 0
$$379$$ 24.2487i 1.24557i 0.782392 + 0.622786i $$0.213999\pi$$
−0.782392 + 0.622786i $$0.786001\pi$$
$$380$$ 0 0
$$381$$ 9.00000 15.5885i 0.461084 0.798621i
$$382$$ 0 0
$$383$$ 12.0000 + 20.7846i 0.613171 + 1.06204i 0.990702 + 0.136047i $$0.0434398\pi$$
−0.377531 + 0.925997i $$0.623227\pi$$
$$384$$ 0 0
$$385$$ 0 0
$$386$$ 0 0
$$387$$ −4.50000 2.59808i −0.228748 0.132068i
$$388$$ 0 0
$$389$$ −9.00000 + 15.5885i −0.456318 + 0.790366i −0.998763 0.0497253i $$-0.984165\pi$$
0.542445 + 0.840091i $$0.317499\pi$$
$$390$$ 0 0
$$391$$ −3.00000 + 5.19615i −0.151717 + 0.262781i
$$392$$ 0 0
$$393$$ 20.7846i 1.04844i
$$394$$ 0 0
$$395$$ 0 0
$$396$$ 0 0
$$397$$ 13.5000 + 7.79423i 0.677546 + 0.391181i 0.798930 0.601424i $$-0.205400\pi$$
−0.121384 + 0.992606i $$0.538733\pi$$
$$398$$ 0 0
$$399$$ 15.0000 + 17.3205i 0.750939 + 0.867110i
$$400$$ 0 0
$$401$$ −15.0000 25.9808i −0.749064 1.29742i −0.948272 0.317460i $$-0.897170\pi$$
0.199207 0.979957i $$-0.436163\pi$$
$$402$$ 0 0
$$403$$ 1.50000 + 0.866025i 0.0747203 + 0.0431398i
$$404$$ 0 0
$$405$$ 0 0
$$406$$ 0 0
$$407$$ −21.0000 + 12.1244i −1.04093 + 0.600982i
$$408$$ 0 0
$$409$$ 29.4449i 1.45595i −0.685601 0.727977i $$-0.740461\pi$$
0.685601 0.727977i $$-0.259539\pi$$
$$410$$ 0 0
$$411$$ 27.0000 15.5885i 1.33181 0.768922i
$$412$$ 0 0
$$413$$ 7.50000 + 38.9711i 0.369051 + 1.91764i
$$414$$ 0 0
$$415$$ 0 0
$$416$$ 0 0
$$417$$ −7.50000 + 4.33013i −0.367277 + 0.212047i
$$418$$ 0 0
$$419$$ 7.50000 12.9904i 0.366399 0.634622i −0.622601 0.782540i $$-0.713924\pi$$
0.989000 + 0.147918i $$0.0472572\pi$$
$$420$$ 0 0
$$421$$ 2.50000 + 4.33013i 0.121843 + 0.211037i 0.920494 0.390756i $$-0.127786\pi$$
−0.798652 + 0.601793i $$0.794453\pi$$
$$422$$ 0 0
$$423$$ 13.5000 + 23.3827i 0.656392 + 1.13691i
$$424$$ 0 0
$$425$$ 8.66025i 0.420084i
$$426$$ 0 0
$$427$$ −4.50000 + 0.866025i −0.217770 + 0.0419099i
$$428$$ 0 0
$$429$$ 10.3923i 0.501745i
$$430$$ 0 0
$$431$$ 22.5000 12.9904i 1.08379 0.625725i 0.151871 0.988400i $$-0.451470\pi$$
0.931915 + 0.362676i $$0.118137\pi$$
$$432$$ 0 0
$$433$$ 13.8564i 0.665896i 0.942945 + 0.332948i $$0.108043\pi$$
−0.942945 + 0.332948i $$0.891957\pi$$
$$434$$ 0 0
$$435$$ 0 0
$$436$$ 0 0
$$437$$ 17.3205i 0.828552i
$$438$$ 0 0
$$439$$ 25.0000 1.19318 0.596592 0.802544i $$-0.296521\pi$$
0.596592 + 0.802544i $$0.296521\pi$$
$$440$$ 0 0
$$441$$ −16.5000 12.9904i −0.785714 0.618590i
$$442$$ 0 0
$$443$$ 25.9808i 1.23438i 0.786813 + 0.617192i $$0.211730\pi$$
−0.786813 + 0.617192i $$0.788270\pi$$
$$444$$ 0 0
$$445$$ 0 0
$$446$$ 0 0
$$447$$ 10.3923i 0.491539i
$$448$$ 0 0
$$449$$ 18.0000 0.849473 0.424736 0.905317i $$-0.360367\pi$$
0.424736 + 0.905317i $$0.360367\pi$$
$$450$$ 0 0
$$451$$ −3.00000 5.19615i −0.141264 0.244677i
$$452$$ 0 0
$$453$$ −15.0000 25.9808i −0.704761 1.22068i
$$454$$ 0 0
$$455$$ 0 0
$$456$$ 0 0
$$457$$ −1.00000 −0.0467780 −0.0233890 0.999726i $$-0.507446\pi$$
−0.0233890 + 0.999726i $$0.507446\pi$$
$$458$$ 0 0
$$459$$ 4.50000 + 7.79423i 0.210042 + 0.363803i
$$460$$ 0 0
$$461$$ −19.5000 + 11.2583i −0.908206 + 0.524353i −0.879853 0.475245i $$-0.842359\pi$$
−0.0283522 + 0.999598i $$0.509026\pi$$
$$462$$ 0 0
$$463$$ 31.5000 + 18.1865i 1.46393 + 0.845200i 0.999190 0.0402476i $$-0.0128147\pi$$
0.464739 + 0.885448i $$0.346148\pi$$
$$464$$ 0 0
$$465$$ 0 0
$$466$$ 0 0
$$467$$ −7.50000 + 12.9904i −0.347059 + 0.601123i −0.985726 0.168360i $$-0.946153\pi$$
0.638667 + 0.769483i $$0.279486\pi$$
$$468$$ 0 0
$$469$$ 40.5000 7.79423i 1.87012 0.359904i
$$470$$ 0 0
$$471$$ −10.5000 + 18.1865i −0.483814 + 0.837991i
$$472$$ 0 0
$$473$$ −6.00000 −0.275880
$$474$$ 0 0
$$475$$ 12.5000 + 21.6506i 0.573539 + 0.993399i
$$476$$ 0 0
$$477$$ −13.5000 + 23.3827i −0.618123 + 1.07062i
$$478$$ 0 0
$$479$$ 0 0 −0.866025 0.500000i $$-0.833333\pi$$
0.866025 + 0.500000i $$0.166667\pi$$
$$480$$ 0 0
$$481$$ 10.5000 6.06218i 0.478759 0.276412i
$$482$$ 0 0
$$483$$ −3.00000 15.5885i −0.136505 0.709299i
$$484$$ 0 0
$$485$$ 0 0
$$486$$ 0 0
$$487$$ −13.5000 + 7.79423i −0.611743 + 0.353190i −0.773647 0.633616i $$-0.781570\pi$$
0.161904 + 0.986807i $$0.448236\pi$$
$$488$$ 0 0
$$489$$ 13.5000 + 23.3827i 0.610491 + 1.05740i
$$490$$ 0 0
$$491$$ 7.50000 + 4.33013i 0.338470 + 0.195416i 0.659595 0.751621i $$-0.270728\pi$$
−0.321125 + 0.947037i $$0.604061\pi$$
$$492$$ 0 0
$$493$$ −4.50000 2.59808i −0.202670 0.117011i
$$494$$ 0 0
$$495$$ 0 0
$$496$$ 0 0
$$497$$ 27.0000 5.19615i 1.21112 0.233079i
$$498$$ 0 0
$$499$$ −3.00000 + 1.73205i −0.134298 + 0.0775372i −0.565644 0.824650i $$-0.691372\pi$$
0.431346 + 0.902187i $$0.358039\pi$$
$$500$$ 0 0
$$501$$ −31.5000 + 18.1865i −1.40732 + 0.812514i
$$502$$ 0 0
$$503$$ 24.0000 1.07011 0.535054 0.844818i $$-0.320291\pi$$
0.535054 + 0.844818i $$0.320291\pi$$
$$504$$ 0 0
$$505$$ 0 0
$$506$$ 0 0
$$507$$ 17.3205i 0.769231i
$$508$$ 0 0
$$509$$ −30.0000 + 17.3205i −1.32973 + 0.767718i −0.985257 0.171080i $$-0.945274\pi$$
−0.344469 + 0.938798i $$0.611941\pi$$
$$510$$ 0 0
$$511$$ 3.00000 + 3.46410i 0.132712 + 0.153243i
$$512$$ 0 0
$$513$$ 22.5000 + 12.9904i 0.993399 + 0.573539i
$$514$$ 0 0
$$515$$ 0 0
$$516$$ 0 0
$$517$$ 27.0000 + 15.5885i 1.18746 + 0.685580i
$$518$$ 0 0
$$519$$ 16.5000 28.5788i 0.724270 1.25447i
$$520$$ 0 0
$$521$$ 19.5000 11.2583i 0.854311 0.493236i −0.00779240 0.999970i $$-0.502480\pi$$
0.862103 + 0.506733i $$0.169147\pi$$
$$522$$ 0 0
$$523$$ 6.50000 11.2583i 0.284225 0.492292i −0.688196 0.725525i $$-0.741597\pi$$
0.972421 + 0.233233i $$0.0749303\pi$$
$$524$$ 0 0
$$525$$ −15.0000 17.3205i −0.654654 0.755929i
$$526$$ 0 0
$$527$$ −1.50000 + 0.866025i −0.0653410 + 0.0377247i
$$528$$ 0 0
$$529$$ −5.50000 + 9.52628i −0.239130 + 0.414186i
$$530$$ 0 0
$$531$$ 22.5000 + 38.9711i 0.976417 + 1.69120i
$$532$$ 0 0
$$533$$ 1.50000 + 2.59808i 0.0649722 + 0.112535i
$$534$$ 0 0
$$535$$ 0 0
$$536$$ 0 0
$$537$$ 21.0000 0.906217
$$538$$ 0 0
$$539$$ −24.0000 3.46410i −1.03375 0.149209i
$$540$$ 0 0
$$541$$ −21.5000 + 37.2391i −0.924357 + 1.60103i −0.131765 + 0.991281i $$0.542065\pi$$
−0.792592 + 0.609753i $$0.791269\pi$$
$$542$$ 0 0
$$543$$ 12.0000 20.7846i 0.514969 0.891953i
$$544$$ 0 0
$$545$$ 0 0
$$546$$ 0 0
$$547$$ −7.50000 + 4.33013i −0.320677 + 0.185143i −0.651694 0.758482i $$-0.725941\pi$$
0.331017 + 0.943625i $$0.392608\pi$$
$$548$$ 0 0
$$549$$ −4.50000 + 2.59808i −0.192055 + 0.110883i
$$550$$ 0 0
$$551$$ −15.0000 −0.639021
$$552$$ 0 0
$$553$$ 4.50000 0.866025i 0.191359 0.0368271i
$$554$$ 0 0
$$555$$ 0 0
$$556$$ 0 0
$$557$$ 16.5000 + 28.5788i 0.699127 + 1.21092i 0.968769 + 0.247964i $$0.0797613\pi$$
−0.269642 + 0.962961i $$0.586905\pi$$
$$558$$ 0 0
$$559$$ 3.00000 0.126886
$$560$$ 0 0
$$561$$ 9.00000 + 5.19615i 0.379980 + 0.219382i
$$562$$ 0 0
$$563$$ −21.0000 −0.885044 −0.442522 0.896758i $$-0.645916\pi$$
−0.442522 + 0.896758i $$0.645916\pi$$
$$564$$ 0 0
$$565$$ 0 0
$$566$$ 0 0
$$567$$ −22.5000 7.79423i −0.944911 0.327327i
$$568$$ 0 0
$$569$$ 3.00000 0.125767 0.0628833 0.998021i $$-0.479970\pi$$
0.0628833 + 0.998021i $$0.479970\pi$$
$$570$$ 0 0
$$571$$ 39.8372i 1.66713i 0.552419 + 0.833567i $$0.313705\pi$$
−0.552419 + 0.833567i $$0.686295\pi$$
$$572$$ 0 0
$$573$$ 1.50000 2.59808i 0.0626634 0.108536i
$$574$$ 0 0
$$575$$ 17.3205i 0.722315i
$$576$$ 0 0
$$577$$ −22.5000 + 12.9904i −0.936687 + 0.540797i −0.888920 0.458062i $$-0.848544\pi$$
−0.0477669 + 0.998859i $$0.515210\pi$$
$$578$$ 0 0
$$579$$ −25.5000 14.7224i −1.05974 0.611843i
$$580$$ 0 0
$$581$$ −18.0000 + 15.5885i −0.746766 + 0.646718i
$$582$$ 0 0
$$583$$ 31.1769i 1.29122i
$$584$$ 0 0
$$585$$ 0 0
$$586$$ 0 0
$$587$$ −13.5000 23.3827i −0.557205 0.965107i −0.997728 0.0673658i $$-0.978541\pi$$
0.440524 0.897741i $$-0.354793\pi$$
$$588$$ 0 0
$$589$$ −2.50000 + 4.33013i −0.103011 + 0.178420i
$$590$$ 0 0
$$591$$ 9.00000 + 5.19615i 0.370211 + 0.213741i
$$592$$ 0 0
$$593$$ 7.50000 + 4.33013i 0.307988 + 0.177817i 0.646026 0.763316i $$-0.276430\pi$$
−0.338038 + 0.941133i $$0.609763\pi$$
$$594$$ 0 0
$$595$$ 0 0
$$596$$ 0 0
$$597$$ 1.73205i 0.0708881i
$$598$$ 0 0
$$599$$ 36.3731i 1.48616i −0.669201 0.743082i $$-0.733363\pi$$
0.669201 0.743082i $$-0.266637\pi$$
$$600$$ 0 0
$$601$$ −31.5000 + 18.1865i −1.28491 + 0.741844i −0.977742 0.209811i $$-0.932715\pi$$
−0.307170 + 0.951655i $$0.599382\pi$$
$$602$$ 0 0
$$603$$ 40.5000 23.3827i 1.64929 0.952217i
$$604$$ 0 0
$$605$$ 0 0
$$606$$ 0 0
$$607$$ 16.0000 + 27.7128i 0.649420 + 1.12483i 0.983262 + 0.182199i $$0.0583216\pi$$
−0.333842 + 0.942629i $$0.608345\pi$$
$$608$$ 0 0
$$609$$ 13.5000 2.59808i 0.547048 0.105279i
$$610$$ 0 0
$$611$$ −13.5000 7.79423i −0.546152 0.315321i
$$612$$ 0 0
$$613$$ −17.5000 30.3109i −0.706818 1.22425i −0.966031 0.258425i $$-0.916796\pi$$
0.259213 0.965820i $$-0.416537\pi$$
$$614$$ 0 0
$$615$$ 0 0
$$616$$ 0 0
$$617$$ −13.5000 + 23.3827i −0.543490 + 0.941351i 0.455211 + 0.890384i $$0.349564\pi$$
−0.998700 + 0.0509678i $$0.983769\pi$$
$$618$$ 0 0
$$619$$ 14.0000 24.2487i 0.562708 0.974638i −0.434551 0.900647i $$-0.643093\pi$$
0.997259 0.0739910i $$-0.0235736\pi$$
$$620$$ 0 0
$$621$$ −9.00000 15.5885i −0.361158 0.625543i
$$622$$ 0 0
$$623$$ −1.50000 + 4.33013i −0.0600962 + 0.173483i
$$624$$ 0 0
$$625$$ −12.5000 21.6506i −0.500000 0.866025i
$$626$$ 0 0
$$627$$ 30.0000 1.19808
$$628$$ 0 0
$$629$$ 12.1244i 0.483430i
$$630$$ 0 0
$$631$$ 31.1769i 1.24113i 0.784154 + 0.620567i $$0.213097\pi$$
−0.784154 + 0.620567i $$0.786903\pi$$
$$632$$ 0 0
$$633$$ −10.5000 18.1865i −0.417338 0.722850i
$$634$$ 0 0
$$635$$ 0 0
$$636$$ 0 0
$$637$$ 12.0000 + 1.73205i 0.475457 + 0.0686264i
$$638$$ 0 0
$$639$$ 27.0000 15.5885i 1.06810 0.616670i
$$640$$ 0 0
$$641$$ −3.00000 + 5.19615i −0.118493 + 0.205236i −0.919171 0.393860i $$-0.871140\pi$$
0.800678 + 0.599095i $$0.204473\pi$$
$$642$$ 0 0
$$643$$ −6.50000 + 11.2583i −0.256335 + 0.443985i −0.965257 0.261301i $$-0.915848\pi$$
0.708922 + 0.705287i $$0.249182\pi$$
$$644$$ 0 0
$$645$$ 0 0
$$646$$ 0 0
$$647$$ 7.50000 + 12.9904i 0.294855 + 0.510705i 0.974951 0.222419i $$-0.0713952\pi$$
−0.680096 + 0.733123i $$0.738062\pi$$
$$648$$ 0 0
$$649$$ 45.0000 + 25.9808i 1.76640 + 1.01983i
$$650$$ 0 0
$$651$$ 1.50000 4.33013i 0.0587896 0.169711i
$$652$$ 0 0
$$653$$ −15.0000 25.9808i −0.586995 1.01671i −0.994623 0.103558i $$-0.966977\pi$$
0.407628 0.913148i $$-0.366356\pi$$
$$654$$ 0 0
$$655$$ 0 0
$$656$$ 0 0
$$657$$ 4.50000 + 2.59808i 0.175562 + 0.101361i
$$658$$ 0 0
$$659$$ −19.5000 + 11.2583i −0.759612 + 0.438562i −0.829156 0.559017i $$-0.811179\pi$$
0.0695443 + 0.997579i $$0.477845\pi$$
$$660$$ 0 0
$$661$$ 8.66025i 0.336845i −0.985715 0.168422i $$-0.946133\pi$$
0.985715 0.168422i $$-0.0538673\pi$$
$$662$$ 0 0
$$663$$ −4.50000 2.59808i −0.174766 0.100901i
$$664$$ 0 0
$$665$$ 0 0
$$666$$ 0 0
$$667$$ 9.00000 + 5.19615i 0.348481 + 0.201196i
$$668$$ 0 0
$$669$$ 8.66025i 0.334825i
$$670$$ 0 0
$$671$$ −3.00000 + 5.19615i −0.115814 + 0.200595i
$$672$$ 0 0
$$673$$ −3.50000 6.06218i −0.134915 0.233680i 0.790650 0.612268i $$-0.209743\pi$$
−0.925565 + 0.378589i $$0.876409\pi$$
$$674$$ 0 0
$$675$$ −22.5000 12.9904i −0.866025 0.500000i
$$676$$ 0 0
$$677$$ 1.73205i 0.0665681i 0.999446 + 0.0332841i $$0.0105966\pi$$
−0.999446 + 0.0332841i $$0.989403\pi$$
$$678$$ 0 0
$$679$$ −3.00000 3.46410i −0.115129 0.132940i
$$680$$ 0 0
$$681$$ 18.0000 10.3923i 0.689761 0.398234i
$$682$$ 0 0
$$683$$ −37.5000 + 21.6506i −1.43490 + 0.828439i −0.997489 0.0708242i $$-0.977437\pi$$
−0.437409 + 0.899263i $$0.644104\pi$$
$$684$$ 0 0
$$685$$ 0 0
$$686$$ 0 0
$$687$$ 24.0000 0.915657
$$688$$ 0 0
$$689$$ 15.5885i 0.593873i
$$690$$ 0 0
$$691$$ 5.00000 0.190209 0.0951045 0.995467i $$-0.469681\pi$$
0.0951045 + 0.995467i $$0.469681\pi$$
$$692$$ 0 0
$$693$$ −27.0000 + 5.19615i −1.02565 + 0.197386i
$$694$$ 0 0
$$695$$ 0 0
$$696$$ 0 0
$$697$$ −3.00000 −0.113633
$$698$$ 0 0
$$699$$ 31.5000 18.1865i 1.19144 0.687878i
$$700$$ 0 0
$$701$$ 18.0000 0.679851 0.339925 0.940452i $$-0.389598\pi$$
0.339925 + 0.940452i $$0.389598\pi$$
$$702$$ 0 0
$$703$$ 17.5000 + 30.3109i 0.660025 + 1.14320i
$$704$$ 0 0
$$705$$ 0 0
$$706$$ 0 0
$$707$$ 12.0000 34.6410i 0.451306 1.30281i
$$708$$ 0 0
$$709$$ −37.0000 −1.38956 −0.694782 0.719220i $$-0.744499\pi$$
−0.694782 + 0.719220i $$0.744499\pi$$
$$710$$ 0 0
$$711$$ 4.50000 2.59808i 0.168763 0.0974355i
$$712$$ 0 0
$$713$$ 3.00000 1.73205i 0.112351 0.0648658i
$$714$$ 0 0
$$715$$ 0 0
$$716$$ 0 0
$$717$$ 19.5000 + 33.7750i 0.728241 + 1.26135i
$$718$$ 0 0
$$719$$ −13.5000 + 23.3827i −0.503465 + 0.872027i 0.496527 + 0.868021i $$0.334608\pi$$
−0.999992 + 0.00400572i $$0.998725\pi$$
$$720$$ 0 0
$$721$$ 16.0000 13.8564i 0.595871 0.516040i
$$722$$ 0 0
$$723$$ −18.0000 31.1769i −0.669427 1.15948i
$$724$$ 0 0
$$725$$ 15.0000 0.557086
$$726$$ 0 0
$$727$$ −17.5000 30.3109i −0.649039 1.12417i −0.983353 0.181707i $$-0.941838\pi$$
0.334314 0.942462i $$-0.391496\pi$$
$$728$$ 0 0
$$729$$ −27.0000 −1.00000
$$730$$ 0 0
$$731$$ −1.50000 + 2.59808i −0.0554795 + 0.0960933i
$$732$$ 0 0
$$733$$ 18.0000 10.3923i 0.664845 0.383849i −0.129275 0.991609i $$-0.541265\pi$$
0.794121 + 0.607760i $$0.207932\pi$$
$$734$$ 0 0
$$735$$ 0 0
$$736$$ 0 0
$$737$$ 27.0000 46.7654i 0.994558 1.72262i
$$738$$ 0 0
$$739$$ −13.5000 + 7.79423i −0.496606 + 0.286715i −0.727311 0.686308i $$-0.759230\pi$$
0.230705 + 0.973024i $$0.425897\pi$$
$$740$$ 0 0
$$741$$ −15.0000 −0.551039
$$742$$ 0 0
$$743$$ −10.5000 6.06218i −0.385208 0.222400i 0.294874 0.955536i $$-0.404722\pi$$
−0.680082 + 0.733136i $$0.738056\pi$$
$$744$$ 0 0
$$745$$ 0 0
$$746$$ 0 0
$$747$$ −13.5000 + 23.3827i −0.493939 + 0.855528i
$$748$$ 0 0
$$749$$ −1.50000 + 4.33013i −0.0548088 + 0.158219i
$$750$$ 0 0
$$751$$ 15.0000 8.66025i 0.547358 0.316017i −0.200698 0.979653i $$-0.564321\pi$$
0.748056 + 0.663636i $$0.230988\pi$$
$$752$$ 0 0
$$753$$ 0 0
$$754$$ 0 0
$$755$$ 0 0
$$756$$ 0 0
$$757$$ 2.00000 0.0726912 0.0363456 0.999339i $$-0.488428\pi$$
0.0363456 + 0.999339i $$0.488428\pi$$
$$758$$ 0 0
$$759$$ −18.0000 10.3923i −0.653359 0.377217i
$$760$$ 0 0
$$761$$ −42.0000 + 24.2487i −1.52250 + 0.879015i −0.522852 + 0.852423i $$0.675132\pi$$
−0.999646 + 0.0265919i $$0.991535\pi$$
$$762$$ 0 0
$$763$$ 22.0000 19.0526i 0.796453 0.689749i
$$764$$ 0 0
$$765$$ 0 0
$$766$$ 0 0
$$767$$ −22.5000 12.9904i −0.812428 0.469055i
$$768$$ 0 0
$$769$$ 4.50000 + 2.59808i 0.162274 + 0.0936890i 0.578938 0.815372i $$-0.303467\pi$$
−0.416664 + 0.909061i $$0.636801\pi$$
$$770$$ 0 0
$$771$$ −48.0000 −1.72868
$$772$$ 0 0
$$773$$ −28.5000 + 16.4545i −1.02507 + 0.591827i −0.915570 0.402160i $$-0.868260\pi$$
−0.109504 + 0.993986i $$0.534926\pi$$
$$774$$ 0 0
$$775$$ 2.50000 4.33013i 0.0898027 0.155543i
$$776$$ 0 0
$$777$$ −21.0000 24.2487i −0.753371 0.869918i
$$778$$ 0 0
$$779$$ −7.50000 + 4.33013i −0.268715 + 0.155143i
$$780$$ 0 0
$$781$$ 18.0000 31.1769i 0.644091 1.11560i
$$782$$ 0 0
$$783$$ 13.5000 7.79423i 0.482451 0.278543i
$$784$$ 0 0
$$785$$ 0 0
$$786$$ 0 0
$$787$$ −13.0000 −0.463400 −0.231700 0.972787i $$-0.574429\pi$$
−0.231700 + 0.972787i $$0.574429\pi$$
$$788$$ 0 0
$$789$$ −27.0000 46.7654i −0.961225 1.66489i
$$790$$ 0 0
$$791$$ 22.5000 + 7.79423i 0.800008 + 0.277131i
$$792$$ 0 0
$$793$$ 1.50000 2.59808i 0.0532666 0.0922604i
$$794$$ 0 0
$$795$$ 0 0
$$796$$ 0 0
$$797$$ 28.5000 + 16.4545i 1.00952 + 0.582848i 0.911052 0.412292i $$-0.135272\pi$$
0.0984702 + 0.995140i $$0.468605\pi$$
$$798$$ 0