# Properties

 Label 1008.2.cz.d Level $1008$ Weight $2$ Character orbit 1008.cz Analytic conductor $8.049$ Analytic rank $0$ Dimension $2$ CM no Inner twists $2$

# Related objects

## Newspace parameters

 Level: $$N$$ $$=$$ $$1008 = 2^{4} \cdot 3^{2} \cdot 7$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 1008.cz (of order $$6$$, degree $$2$$, minimal)

## Newform invariants

 Self dual: no Analytic conductor: $$8.04892052375$$ Analytic rank: $$0$$ Dimension: $$2$$ Coefficient field: $$\Q(\sqrt{-3})$$ Defining polynomial: $$x^{2} - x + 1$$ Coefficient ring: $$\Z[a_1, a_2, a_3]$$ Coefficient ring index: $$1$$ Twist minimal: yes Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

## $q$-expansion

Coefficients of the $$q$$-expansion are expressed in terms of a primitive root of unity $$\zeta_{6}$$. We also show the integral $$q$$-expansion of the trace form.

 $$f(q)$$ $$=$$ $$q + ( 2 - \zeta_{6} ) q^{3} + ( 2 - 3 \zeta_{6} ) q^{7} + ( 3 - 3 \zeta_{6} ) q^{9} +O(q^{10})$$ $$q + ( 2 - \zeta_{6} ) q^{3} + ( 2 - 3 \zeta_{6} ) q^{7} + ( 3 - 3 \zeta_{6} ) q^{9} + ( 4 - 2 \zeta_{6} ) q^{11} + ( -2 + \zeta_{6} ) q^{13} + ( 1 + \zeta_{6} ) q^{17} + 5 \zeta_{6} q^{19} + ( 1 - 5 \zeta_{6} ) q^{21} + ( -2 - 2 \zeta_{6} ) q^{23} -5 \zeta_{6} q^{25} + ( 3 - 6 \zeta_{6} ) q^{27} + ( -3 + 3 \zeta_{6} ) q^{29} - q^{31} + ( 6 - 6 \zeta_{6} ) q^{33} -7 \zeta_{6} q^{37} + ( -3 + 3 \zeta_{6} ) q^{39} + ( -2 + \zeta_{6} ) q^{41} + ( -1 - \zeta_{6} ) q^{43} + 9 q^{47} + ( -5 - 3 \zeta_{6} ) q^{49} + 3 q^{51} + ( 9 - 9 \zeta_{6} ) q^{53} + ( 5 + 5 \zeta_{6} ) q^{57} + 15 q^{59} + ( 1 - 2 \zeta_{6} ) q^{61} + ( -3 - 6 \zeta_{6} ) q^{63} + ( -9 + 18 \zeta_{6} ) q^{67} -6 q^{69} + ( -6 + 12 \zeta_{6} ) q^{71} + ( 1 + \zeta_{6} ) q^{73} + ( -5 - 5 \zeta_{6} ) q^{75} + ( 2 - 10 \zeta_{6} ) q^{77} + ( -1 + 2 \zeta_{6} ) q^{79} -9 \zeta_{6} q^{81} + ( 9 - 9 \zeta_{6} ) q^{83} + ( -3 + 6 \zeta_{6} ) q^{87} + ( 2 - \zeta_{6} ) q^{89} + ( -1 + 5 \zeta_{6} ) q^{91} + ( -2 + \zeta_{6} ) q^{93} + ( -1 - \zeta_{6} ) q^{97} + ( 6 - 12 \zeta_{6} ) q^{99} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$2q + 3q^{3} + q^{7} + 3q^{9} + O(q^{10})$$ $$2q + 3q^{3} + q^{7} + 3q^{9} + 6q^{11} - 3q^{13} + 3q^{17} + 5q^{19} - 3q^{21} - 6q^{23} - 5q^{25} - 3q^{29} - 2q^{31} + 6q^{33} - 7q^{37} - 3q^{39} - 3q^{41} - 3q^{43} + 18q^{47} - 13q^{49} + 6q^{51} + 9q^{53} + 15q^{57} + 30q^{59} - 12q^{63} - 12q^{69} + 3q^{73} - 15q^{75} - 6q^{77} - 9q^{81} + 9q^{83} + 3q^{89} + 3q^{91} - 3q^{93} - 3q^{97} + O(q^{100})$$

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/1008\mathbb{Z}\right)^\times$$.

 $$n$$ $$127$$ $$577$$ $$757$$ $$785$$ $$\chi(n)$$ $$-1$$ $$\zeta_{6}$$ $$1$$ $$-\zeta_{6}$$

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

Label $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
367.1
 0.5 + 0.866025i 0.5 − 0.866025i
0 1.50000 0.866025i 0 0 0 0.500000 2.59808i 0 1.50000 2.59808i 0
607.1 0 1.50000 + 0.866025i 0 0 0 0.500000 + 2.59808i 0 1.50000 + 2.59808i 0
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
252.bj even 6 1 inner

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1008.2.cz.d yes 2
3.b odd 2 1 3024.2.cz.b 2
4.b odd 2 1 1008.2.cz.a yes 2
7.d odd 6 1 1008.2.bf.b 2
9.c even 3 1 1008.2.bf.c yes 2
9.d odd 6 1 3024.2.bf.c 2
12.b even 2 1 3024.2.cz.a 2
21.g even 6 1 3024.2.bf.b 2
28.f even 6 1 1008.2.bf.c yes 2
36.f odd 6 1 1008.2.bf.b 2
36.h even 6 1 3024.2.bf.b 2
63.i even 6 1 3024.2.cz.a 2
63.t odd 6 1 1008.2.cz.a yes 2
84.j odd 6 1 3024.2.bf.c 2
252.r odd 6 1 3024.2.cz.b 2
252.bj even 6 1 inner 1008.2.cz.d yes 2

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1008.2.bf.b 2 7.d odd 6 1
1008.2.bf.b 2 36.f odd 6 1
1008.2.bf.c yes 2 9.c even 3 1
1008.2.bf.c yes 2 28.f even 6 1
1008.2.cz.a yes 2 4.b odd 2 1
1008.2.cz.a yes 2 63.t odd 6 1
1008.2.cz.d yes 2 1.a even 1 1 trivial
1008.2.cz.d yes 2 252.bj even 6 1 inner
3024.2.bf.b 2 21.g even 6 1
3024.2.bf.b 2 36.h even 6 1
3024.2.bf.c 2 9.d odd 6 1
3024.2.bf.c 2 84.j odd 6 1
3024.2.cz.a 2 12.b even 2 1
3024.2.cz.a 2 63.i even 6 1
3024.2.cz.b 2 3.b odd 2 1
3024.2.cz.b 2 252.r odd 6 1

## Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{2}^{\mathrm{new}}(1008, [\chi])$$:

 $$T_{5}$$ $$T_{11}^{2} - 6 T_{11} + 12$$

## Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$T^{2}$$
$3$ $$3 - 3 T + T^{2}$$
$5$ $$T^{2}$$
$7$ $$7 - T + T^{2}$$
$11$ $$12 - 6 T + T^{2}$$
$13$ $$3 + 3 T + T^{2}$$
$17$ $$3 - 3 T + T^{2}$$
$19$ $$25 - 5 T + T^{2}$$
$23$ $$12 + 6 T + T^{2}$$
$29$ $$9 + 3 T + T^{2}$$
$31$ $$( 1 + T )^{2}$$
$37$ $$49 + 7 T + T^{2}$$
$41$ $$3 + 3 T + T^{2}$$
$43$ $$3 + 3 T + T^{2}$$
$47$ $$( -9 + T )^{2}$$
$53$ $$81 - 9 T + T^{2}$$
$59$ $$( -15 + T )^{2}$$
$61$ $$3 + T^{2}$$
$67$ $$243 + T^{2}$$
$71$ $$108 + T^{2}$$
$73$ $$3 - 3 T + T^{2}$$
$79$ $$3 + T^{2}$$
$83$ $$81 - 9 T + T^{2}$$
$89$ $$3 - 3 T + T^{2}$$
$97$ $$3 + 3 T + T^{2}$$