Properties

Label 1008.2.cs.p.271.1
Level 1008
Weight 2
Character 1008.271
Analytic conductor 8.049
Analytic rank 0
Dimension 4
CM no
Inner twists 4

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 1008 = 2^{4} \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1008.cs (of order \(6\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(8.04892052375\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\sqrt{-3}, \sqrt{5})\)
Defining polynomial: \(x^{4} - x^{3} + 2 x^{2} + x + 1\)
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{2}\cdot 3 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 271.1
Root \(0.809017 + 1.40126i\) of defining polynomial
Character \(\chi\) \(=\) 1008.271
Dual form 1008.2.cs.p.703.1

$q$-expansion

\(f(q)\) \(=\) \(q+(-3.35410 - 1.93649i) q^{5} +(2.50000 + 0.866025i) q^{7} +O(q^{10})\) \(q+(-3.35410 - 1.93649i) q^{5} +(2.50000 + 0.866025i) q^{7} +(-3.35410 + 1.93649i) q^{11} +3.46410i q^{13} +(2.00000 - 3.46410i) q^{19} +(6.70820 + 3.87298i) q^{23} +(5.00000 + 8.66025i) q^{25} +6.70820 q^{29} +(-0.500000 - 0.866025i) q^{31} +(-6.70820 - 7.74597i) q^{35} +(-2.00000 + 3.46410i) q^{37} +7.74597i q^{41} -6.92820i q^{43} +(6.70820 - 11.6190i) q^{47} +(5.50000 + 4.33013i) q^{49} +(3.35410 + 5.80948i) q^{53} +15.0000 q^{55} +(3.35410 + 5.80948i) q^{59} +(9.00000 + 5.19615i) q^{61} +(6.70820 - 11.6190i) q^{65} +(-6.00000 + 3.46410i) q^{67} +7.74597i q^{71} +(-6.00000 + 3.46410i) q^{73} +(-10.0623 + 1.93649i) q^{77} +(10.5000 + 6.06218i) q^{79} -6.70820 q^{83} +(-6.70820 - 3.87298i) q^{89} +(-3.00000 + 8.66025i) q^{91} +(-13.4164 + 7.74597i) q^{95} -5.19615i q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4q + 10q^{7} + O(q^{10}) \) \( 4q + 10q^{7} + 8q^{19} + 20q^{25} - 2q^{31} - 8q^{37} + 22q^{49} + 60q^{55} + 36q^{61} - 24q^{67} - 24q^{73} + 42q^{79} - 12q^{91} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1008\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(577\) \(757\) \(785\)
\(\chi(n)\) \(-1\) \(e\left(\frac{5}{6}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −3.35410 1.93649i −1.50000 0.866025i −0.500000 0.866025i \(-0.666667\pi\)
−1.00000 \(1.00000\pi\)
\(6\) 0 0
\(7\) 2.50000 + 0.866025i 0.944911 + 0.327327i
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −3.35410 + 1.93649i −1.01130 + 0.583874i −0.911572 0.411141i \(-0.865131\pi\)
−0.0997278 + 0.995015i \(0.531797\pi\)
\(12\) 0 0
\(13\) 3.46410i 0.960769i 0.877058 + 0.480384i \(0.159503\pi\)
−0.877058 + 0.480384i \(0.840497\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(18\) 0 0
\(19\) 2.00000 3.46410i 0.458831 0.794719i −0.540068 0.841621i \(-0.681602\pi\)
0.998899 + 0.0469020i \(0.0149348\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 6.70820 + 3.87298i 1.39876 + 0.807573i 0.994263 0.106967i \(-0.0341141\pi\)
0.404495 + 0.914540i \(0.367447\pi\)
\(24\) 0 0
\(25\) 5.00000 + 8.66025i 1.00000 + 1.73205i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 6.70820 1.24568 0.622841 0.782348i \(-0.285978\pi\)
0.622841 + 0.782348i \(0.285978\pi\)
\(30\) 0 0
\(31\) −0.500000 0.866025i −0.0898027 0.155543i 0.817625 0.575751i \(-0.195290\pi\)
−0.907428 + 0.420208i \(0.861957\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −6.70820 7.74597i −1.13389 1.30931i
\(36\) 0 0
\(37\) −2.00000 + 3.46410i −0.328798 + 0.569495i −0.982274 0.187453i \(-0.939977\pi\)
0.653476 + 0.756948i \(0.273310\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 7.74597i 1.20972i 0.796333 + 0.604858i \(0.206770\pi\)
−0.796333 + 0.604858i \(0.793230\pi\)
\(42\) 0 0
\(43\) 6.92820i 1.05654i −0.849076 0.528271i \(-0.822841\pi\)
0.849076 0.528271i \(-0.177159\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 6.70820 11.6190i 0.978492 1.69480i 0.310599 0.950541i \(-0.399470\pi\)
0.667893 0.744257i \(-0.267196\pi\)
\(48\) 0 0
\(49\) 5.50000 + 4.33013i 0.785714 + 0.618590i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 3.35410 + 5.80948i 0.460721 + 0.797993i 0.998997 0.0447760i \(-0.0142574\pi\)
−0.538276 + 0.842769i \(0.680924\pi\)
\(54\) 0 0
\(55\) 15.0000 2.02260
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 3.35410 + 5.80948i 0.436667 + 0.756329i 0.997430 0.0716470i \(-0.0228255\pi\)
−0.560763 + 0.827976i \(0.689492\pi\)
\(60\) 0 0
\(61\) 9.00000 + 5.19615i 1.15233 + 0.665299i 0.949454 0.313905i \(-0.101637\pi\)
0.202878 + 0.979204i \(0.434971\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 6.70820 11.6190i 0.832050 1.44115i
\(66\) 0 0
\(67\) −6.00000 + 3.46410i −0.733017 + 0.423207i −0.819525 0.573044i \(-0.805762\pi\)
0.0865081 + 0.996251i \(0.472429\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 7.74597i 0.919277i 0.888106 + 0.459639i \(0.152021\pi\)
−0.888106 + 0.459639i \(0.847979\pi\)
\(72\) 0 0
\(73\) −6.00000 + 3.46410i −0.702247 + 0.405442i −0.808184 0.588930i \(-0.799549\pi\)
0.105937 + 0.994373i \(0.466216\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −10.0623 + 1.93649i −1.14671 + 0.220684i
\(78\) 0 0
\(79\) 10.5000 + 6.06218i 1.18134 + 0.682048i 0.956325 0.292306i \(-0.0944227\pi\)
0.225018 + 0.974355i \(0.427756\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −6.70820 −0.736321 −0.368161 0.929762i \(-0.620012\pi\)
−0.368161 + 0.929762i \(0.620012\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −6.70820 3.87298i −0.711068 0.410535i 0.100388 0.994948i \(-0.467992\pi\)
−0.811456 + 0.584413i \(0.801325\pi\)
\(90\) 0 0
\(91\) −3.00000 + 8.66025i −0.314485 + 0.907841i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −13.4164 + 7.74597i −1.37649 + 0.794719i
\(96\) 0 0
\(97\) 5.19615i 0.527589i −0.964579 0.263795i \(-0.915026\pi\)
0.964579 0.263795i \(-0.0849741\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(102\) 0 0
\(103\) 4.00000 6.92820i 0.394132 0.682656i −0.598858 0.800855i \(-0.704379\pi\)
0.992990 + 0.118199i \(0.0377120\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 10.0623 + 5.80948i 0.972760 + 0.561623i 0.900076 0.435732i \(-0.143510\pi\)
0.0726833 + 0.997355i \(0.476844\pi\)
\(108\) 0 0
\(109\) 2.00000 + 3.46410i 0.191565 + 0.331801i 0.945769 0.324840i \(-0.105310\pi\)
−0.754204 + 0.656640i \(0.771977\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −13.4164 −1.26211 −0.631055 0.775738i \(-0.717378\pi\)
−0.631055 + 0.775738i \(0.717378\pi\)
\(114\) 0 0
\(115\) −15.0000 25.9808i −1.39876 2.42272i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 2.00000 3.46410i 0.181818 0.314918i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 19.3649i 1.73205i
\(126\) 0 0
\(127\) 12.1244i 1.07586i 0.842989 + 0.537931i \(0.180794\pi\)
−0.842989 + 0.537931i \(0.819206\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 3.35410 5.80948i 0.293049 0.507576i −0.681480 0.731837i \(-0.738663\pi\)
0.974529 + 0.224261i \(0.0719967\pi\)
\(132\) 0 0
\(133\) 8.00000 6.92820i 0.693688 0.600751i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(138\) 0 0
\(139\) −2.00000 −0.169638 −0.0848189 0.996396i \(-0.527031\pi\)
−0.0848189 + 0.996396i \(0.527031\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −6.70820 11.6190i −0.560968 0.971625i
\(144\) 0 0
\(145\) −22.5000 12.9904i −1.86852 1.07879i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −6.70820 + 11.6190i −0.549557 + 0.951861i 0.448747 + 0.893659i \(0.351870\pi\)
−0.998305 + 0.0582028i \(0.981463\pi\)
\(150\) 0 0
\(151\) −13.5000 + 7.79423i −1.09861 + 0.634285i −0.935857 0.352381i \(-0.885372\pi\)
−0.162758 + 0.986666i \(0.552039\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 3.87298i 0.311086i
\(156\) 0 0
\(157\) −18.0000 + 10.3923i −1.43656 + 0.829396i −0.997609 0.0691164i \(-0.977982\pi\)
−0.438948 + 0.898513i \(0.644649\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 13.4164 + 15.4919i 1.05736 + 1.22094i
\(162\) 0 0
\(163\) −9.00000 5.19615i −0.704934 0.406994i 0.104248 0.994551i \(-0.466756\pi\)
−0.809183 + 0.587557i \(0.800090\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(168\) 0 0
\(169\) 1.00000 0.0769231
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 13.4164 + 7.74597i 1.02003 + 0.588915i 0.914113 0.405460i \(-0.132889\pi\)
0.105918 + 0.994375i \(0.466222\pi\)
\(174\) 0 0
\(175\) 5.00000 + 25.9808i 0.377964 + 1.96396i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 20.1246 11.6190i 1.50418 0.868441i 0.504196 0.863589i \(-0.331789\pi\)
0.999988 0.00485178i \(-0.00154438\pi\)
\(180\) 0 0
\(181\) 24.2487i 1.80239i −0.433411 0.901196i \(-0.642690\pi\)
0.433411 0.901196i \(-0.357310\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 13.4164 7.74597i 0.986394 0.569495i
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −13.4164 7.74597i −0.970777 0.560478i −0.0713041 0.997455i \(-0.522716\pi\)
−0.899473 + 0.436976i \(0.856049\pi\)
\(192\) 0 0
\(193\) −3.50000 6.06218i −0.251936 0.436365i 0.712123 0.702055i \(-0.247734\pi\)
−0.964059 + 0.265689i \(0.914400\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 13.4164 0.955879 0.477940 0.878393i \(-0.341384\pi\)
0.477940 + 0.878393i \(0.341384\pi\)
\(198\) 0 0
\(199\) −4.00000 6.92820i −0.283552 0.491127i 0.688705 0.725042i \(-0.258180\pi\)
−0.972257 + 0.233915i \(0.924846\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 16.7705 + 5.80948i 1.17706 + 0.407745i
\(204\) 0 0
\(205\) 15.0000 25.9808i 1.04765 1.81458i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 15.4919i 1.07160i
\(210\) 0 0
\(211\) 10.3923i 0.715436i −0.933830 0.357718i \(-0.883555\pi\)
0.933830 0.357718i \(-0.116445\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −13.4164 + 23.2379i −0.914991 + 1.58481i
\(216\) 0 0
\(217\) −0.500000 2.59808i −0.0339422 0.176369i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 23.0000 1.54019 0.770097 0.637927i \(-0.220208\pi\)
0.770097 + 0.637927i \(0.220208\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 3.35410 + 5.80948i 0.222620 + 0.385588i 0.955603 0.294658i \(-0.0952059\pi\)
−0.732983 + 0.680247i \(0.761873\pi\)
\(228\) 0 0
\(229\) −15.0000 8.66025i −0.991228 0.572286i −0.0855868 0.996331i \(-0.527276\pi\)
−0.905641 + 0.424045i \(0.860610\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(234\) 0 0
\(235\) −45.0000 + 25.9808i −2.93548 + 1.69480i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 23.2379i 1.50313i −0.659656 0.751567i \(-0.729298\pi\)
0.659656 0.751567i \(-0.270702\pi\)
\(240\) 0 0
\(241\) 13.5000 7.79423i 0.869611 0.502070i 0.00239235 0.999997i \(-0.499238\pi\)
0.867219 + 0.497927i \(0.165905\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −10.0623 25.1744i −0.642857 1.60833i
\(246\) 0 0
\(247\) 12.0000 + 6.92820i 0.763542 + 0.440831i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 6.70820 0.423418 0.211709 0.977333i \(-0.432097\pi\)
0.211709 + 0.977333i \(0.432097\pi\)
\(252\) 0 0
\(253\) −30.0000 −1.88608
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 6.70820 + 3.87298i 0.418446 + 0.241590i 0.694412 0.719577i \(-0.255664\pi\)
−0.275966 + 0.961167i \(0.588998\pi\)
\(258\) 0 0
\(259\) −8.00000 + 6.92820i −0.497096 + 0.430498i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 13.4164 7.74597i 0.827291 0.477637i −0.0256331 0.999671i \(-0.508160\pi\)
0.852924 + 0.522035i \(0.174827\pi\)
\(264\) 0 0
\(265\) 25.9808i 1.59599i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −23.4787 + 13.5554i −1.43152 + 0.826490i −0.997237 0.0742854i \(-0.976332\pi\)
−0.434285 + 0.900775i \(0.642999\pi\)
\(270\) 0 0
\(271\) −3.50000 + 6.06218i −0.212610 + 0.368251i −0.952531 0.304443i \(-0.901530\pi\)
0.739921 + 0.672694i \(0.234863\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −33.5410 19.3649i −2.02260 1.16775i
\(276\) 0 0
\(277\) 10.0000 + 17.3205i 0.600842 + 1.04069i 0.992694 + 0.120660i \(0.0385012\pi\)
−0.391852 + 0.920028i \(0.628166\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −26.8328 −1.60071 −0.800356 0.599525i \(-0.795356\pi\)
−0.800356 + 0.599525i \(0.795356\pi\)
\(282\) 0 0
\(283\) −10.0000 17.3205i −0.594438 1.02960i −0.993626 0.112728i \(-0.964041\pi\)
0.399188 0.916869i \(1.63071\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −6.70820 + 19.3649i −0.395973 + 1.14307i
\(288\) 0 0
\(289\) −8.50000 + 14.7224i −0.500000 + 0.866025i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 11.6190i 0.678786i −0.940645 0.339393i \(-0.889778\pi\)
0.940645 0.339393i \(-0.110222\pi\)
\(294\) 0 0
\(295\) 25.9808i 1.51266i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −13.4164 + 23.2379i −0.775891 + 1.34388i
\(300\) 0 0
\(301\) 6.00000 17.3205i 0.345834 0.998337i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −20.1246 34.8569i −1.15233 1.99590i
\(306\) 0 0
\(307\) 14.0000 0.799022 0.399511 0.916728i \(-0.369180\pi\)
0.399511 + 0.916728i \(0.369180\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 6.70820 + 11.6190i 0.380387 + 0.658850i 0.991118 0.132989i \(-0.0424573\pi\)
−0.610730 + 0.791839i \(0.709124\pi\)
\(312\) 0 0
\(313\) 1.50000 + 0.866025i 0.0847850 + 0.0489506i 0.541793 0.840512i \(-0.317746\pi\)
−0.457008 + 0.889463i \(0.651079\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −10.0623 + 17.4284i −0.565155 + 0.978878i 0.431880 + 0.901931i \(0.357850\pi\)
−0.997035 + 0.0769467i \(0.975483\pi\)
\(318\) 0 0
\(319\) −22.5000 + 12.9904i −1.25976 + 0.727322i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 0 0
\(324\) 0 0
\(325\) −30.0000 + 17.3205i −1.66410 + 0.960769i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 26.8328 23.2379i 1.47934 1.28115i
\(330\) 0 0
\(331\) −6.00000 3.46410i −0.329790 0.190404i 0.325958 0.945384i \(-0.394313\pi\)
−0.655748 + 0.754980i \(0.727647\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 26.8328 1.46603
\(336\) 0 0
\(337\) −1.00000 −0.0544735 −0.0272367 0.999629i \(-0.508671\pi\)
−0.0272367 + 0.999629i \(0.508671\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 3.35410 + 1.93649i 0.181635 + 0.104867i
\(342\) 0 0
\(343\) 10.0000 + 15.5885i 0.539949 + 0.841698i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −6.70820 + 3.87298i −0.360115 + 0.207913i −0.669131 0.743144i \(-0.733334\pi\)
0.309016 + 0.951057i \(0.400000\pi\)
\(348\) 0 0
\(349\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −13.4164 + 7.74597i −0.714083 + 0.412276i −0.812571 0.582862i \(-0.801933\pi\)
0.0984878 + 0.995138i \(0.468599\pi\)
\(354\) 0 0
\(355\) 15.0000 25.9808i 0.796117 1.37892i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(360\) 0 0
\(361\) 1.50000 + 2.59808i 0.0789474 + 0.136741i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 26.8328 1.40449
\(366\) 0 0
\(367\) −5.50000 9.52628i −0.287098 0.497268i 0.686018 0.727585i \(-0.259357\pi\)
−0.973116 + 0.230317i \(0.926024\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 3.35410 + 17.4284i 0.174136 + 0.904839i
\(372\) 0 0
\(373\) 5.00000 8.66025i 0.258890 0.448411i −0.707055 0.707159i \(-0.749977\pi\)
0.965945 + 0.258748i \(0.0833099\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 23.2379i 1.19681i
\(378\) 0 0
\(379\) 17.3205i 0.889695i 0.895606 + 0.444847i \(0.146742\pi\)
−0.895606 + 0.444847i \(0.853258\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −6.70820 + 11.6190i −0.342773 + 0.593701i −0.984947 0.172859i \(-0.944700\pi\)
0.642173 + 0.766559i \(0.278033\pi\)
\(384\) 0 0
\(385\) 37.5000 + 12.9904i 1.91118 + 0.662051i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 6.70820 + 11.6190i 0.340119 + 0.589104i 0.984455 0.175639i \(-0.0561992\pi\)
−0.644335 + 0.764743i \(0.722866\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −23.4787 40.6663i −1.18134 2.04614i
\(396\) 0 0
\(397\) 12.0000 + 6.92820i 0.602263 + 0.347717i 0.769931 0.638127i \(-0.220290\pi\)
−0.167668 + 0.985843i \(0.553624\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(402\) 0 0
\(403\) 3.00000 1.73205i 0.149441 0.0862796i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 15.4919i 0.767907i
\(408\) 0 0
\(409\) −7.50000 + 4.33013i −0.370851 + 0.214111i −0.673830 0.738886i \(-0.735352\pi\)
0.302979 + 0.952997i \(0.402019\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 3.35410 + 17.4284i 0.165045 + 0.857597i
\(414\) 0 0
\(415\) 22.5000 + 12.9904i 1.10448 + 0.637673i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(420\) 0 0
\(421\) 34.0000 1.65706 0.828529 0.559946i \(-0.189178\pi\)
0.828529 + 0.559946i \(0.189178\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 18.0000 + 20.7846i 0.871081 + 1.00584i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 33.5410 19.3649i 1.61561 0.932775i 0.627578 0.778554i \(-0.284046\pi\)
0.988036 0.154221i \(-0.0492869\pi\)
\(432\) 0 0
\(433\) 6.92820i 0.332948i 0.986046 + 0.166474i \(0.0532382\pi\)
−0.986046 + 0.166474i \(0.946762\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 26.8328 15.4919i 1.28359 0.741080i
\(438\) 0 0
\(439\) 18.5000 32.0429i 0.882957 1.52933i 0.0349192 0.999390i \(-0.488883\pi\)
0.848038 0.529936i \(-0.177784\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 3.35410 + 1.93649i 0.159358 + 0.0920055i 0.577558 0.816349i \(-0.304006\pi\)
−0.418200 + 0.908355i \(0.637339\pi\)
\(444\) 0 0
\(445\) 15.0000 + 25.9808i 0.711068 + 1.23161i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 13.4164 0.633159 0.316580 0.948566i \(-0.397466\pi\)
0.316580 + 0.948566i \(0.397466\pi\)
\(450\) 0 0
\(451\) −15.0000 25.9808i −0.706322 1.22339i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 26.8328 23.2379i 1.25794 1.08941i
\(456\) 0 0
\(457\) −14.5000 + 25.1147i −0.678281 + 1.17482i 0.297217 + 0.954810i \(0.403942\pi\)
−0.975498 + 0.220008i \(0.929392\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 15.4919i 0.721531i −0.932657 0.360766i \(-0.882515\pi\)
0.932657 0.360766i \(-0.117485\pi\)
\(462\) 0 0
\(463\) 24.2487i 1.12693i 0.826139 + 0.563467i \(0.190533\pi\)
−0.826139 + 0.563467i \(0.809467\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(468\) 0 0
\(469\) −18.0000 + 3.46410i −0.831163 + 0.159957i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 13.4164 + 23.2379i 0.616887 + 1.06848i
\(474\) 0 0
\(475\) 40.0000 1.83533
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 13.4164 + 23.2379i 0.613011 + 1.06177i 0.990730 + 0.135846i \(0.0433753\pi\)
−0.377719 + 0.925920i \(0.623291\pi\)
\(480\) 0 0
\(481\) −12.0000 6.92820i −0.547153 0.315899i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −10.0623 + 17.4284i −0.456906 + 0.791384i
\(486\) 0 0
\(487\) 10.5000 6.06218i 0.475800 0.274703i −0.242864 0.970060i \(-0.578087\pi\)
0.718665 + 0.695357i \(0.244754\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 19.3649i 0.873926i −0.899479 0.436963i \(-0.856054\pi\)
0.899479 0.436963i \(-0.143946\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −6.70820 + 19.3649i −0.300904 + 0.868635i
\(498\) 0 0
\(499\) 15.0000 + 8.66025i 0.671492 + 0.387686i 0.796642 0.604452i \(-0.206608\pi\)
−0.125150 + 0.992138i \(0.539941\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −26.8328 −1.19642 −0.598208 0.801341i \(-0.704120\pi\)
−0.598208 + 0.801341i \(0.704120\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −10.0623 5.80948i −0.446004 0.257500i 0.260137 0.965572i \(-0.416232\pi\)
−0.706141 + 0.708071i \(0.749566\pi\)
\(510\) 0 0
\(511\) −18.0000 + 3.46410i −0.796273 + 0.153243i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −26.8328 + 15.4919i −1.18240 + 0.682656i
\(516\) 0 0
\(517\) 51.9615i 2.28527i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 13.4164 7.74597i 0.587784 0.339357i −0.176437 0.984312i \(-0.556457\pi\)
0.764221 + 0.644955i \(0.223124\pi\)
\(522\) 0 0
\(523\) −11.0000 + 19.0526i −0.480996 + 0.833110i −0.999762 0.0218062i \(-0.993058\pi\)
0.518766 + 0.854916i \(0.326392\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) 18.5000 + 32.0429i 0.804348 + 1.39317i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −26.8328 −1.16226
\(534\) 0 0
\(535\) −22.5000 38.9711i −0.972760 1.68487i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −26.8328 3.87298i −1.15577 0.166821i
\(540\) 0 0
\(541\) 16.0000 27.7128i 0.687894 1.19147i −0.284624 0.958639i \(-0.591869\pi\)
0.972518 0.232828i \(-0.0747978\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 15.4919i 0.663602i
\(546\) 0 0
\(547\) 41.5692i 1.77737i −0.458517 0.888686i \(-0.651619\pi\)
0.458517 0.888686i \(-0.348381\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 13.4164 23.2379i 0.571558 0.989968i
\(552\) 0 0
\(553\) 21.0000 + 24.2487i 0.893011 + 1.03116i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −16.7705 29.0474i −0.710589 1.23078i −0.964636 0.263585i \(-0.915095\pi\)
0.254047 0.967192i \(-0.418238\pi\)
\(558\) 0 0
\(559\) 24.0000 1.01509
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 16.7705 + 29.0474i 0.706793 + 1.22420i 0.966041 + 0.258390i \(0.0831920\pi\)
−0.259248 + 0.965811i \(0.583475\pi\)
\(564\) 0 0
\(565\) 45.0000 + 25.9808i 1.89316 + 1.09302i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 13.4164 23.2379i 0.562445 0.974183i −0.434837 0.900509i \(-0.643194\pi\)
0.997282 0.0736744i \(-0.0234726\pi\)
\(570\) 0 0
\(571\) 15.0000 8.66025i 0.627730 0.362420i −0.152142 0.988359i \(-0.548617\pi\)
0.779873 + 0.625938i \(0.215284\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 77.4597i 3.23029i
\(576\) 0 0
\(577\) −19.5000 + 11.2583i −0.811796 + 0.468690i −0.847579 0.530669i \(-0.821941\pi\)
0.0357834 + 0.999360i \(0.488607\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −16.7705 5.80948i −0.695758 0.241018i
\(582\) 0 0
\(583\) −22.5000 12.9904i −0.931855 0.538007i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −6.70820 −0.276877 −0.138439 0.990371i \(-0.544208\pi\)
−0.138439 + 0.990371i \(0.544208\pi\)
\(588\) 0 0
\(589\) −4.00000 −0.164817
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 6.70820 + 3.87298i 0.275473 + 0.159044i 0.631372 0.775480i \(-0.282492\pi\)
−0.355899 + 0.934524i \(0.615825\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −26.8328 + 15.4919i −1.09636 + 0.632983i −0.935262 0.353955i \(-0.884836\pi\)
−0.161097 + 0.986939i \(0.551503\pi\)
\(600\) 0 0
\(601\) 43.3013i 1.76630i −0.469095 0.883148i \(-0.655420\pi\)
0.469095 0.883148i \(-0.344580\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −13.4164 + 7.74597i −0.545455 + 0.314918i
\(606\) 0 0
\(607\) −5.50000 + 9.52628i −0.223238 + 0.386660i −0.955789 0.294052i \(-0.904996\pi\)
0.732551 + 0.680712i \(0.238329\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 40.2492 + 23.2379i 1.62831 + 0.940105i
\(612\) 0 0
\(613\) 5.00000 + 8.66025i 0.201948 + 0.349784i 0.949156 0.314806i \(-0.101939\pi\)
−0.747208 + 0.664590i \(0.768606\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −40.2492 −1.62037 −0.810186 0.586172i \(-0.800634\pi\)
−0.810186 + 0.586172i \(0.800634\pi\)
\(618\) 0 0
\(619\) 19.0000 + 32.9090i 0.763674 + 1.32272i 0.940945 + 0.338561i \(0.109940\pi\)
−0.177270 + 0.984162i \(0.556727\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −13.4164 15.4919i −0.537517 0.620671i
\(624\) 0 0
\(625\) −12.5000 + 21.6506i −0.500000 + 0.866025i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) 36.3731i 1.44799i −0.689806 0.723994i \(-0.742304\pi\)
0.689806 0.723994i \(-0.257696\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 23.4787 40.6663i 0.931724 1.61379i
\(636\) 0 0
\(637\) −15.0000 + 19.0526i −0.594322 + 0.754890i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 6.70820 + 11.6190i 0.264958 + 0.458921i 0.967553 0.252669i \(-0.0813085\pi\)
−0.702595 + 0.711590i \(0.747975\pi\)
\(642\) 0 0
\(643\) 8.00000 0.315489 0.157745 0.987480i \(-0.449578\pi\)
0.157745 + 0.987480i \(0.449578\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −20.1246 34.8569i −0.791180 1.37036i −0.925237 0.379390i \(-0.876134\pi\)
0.134057 0.990974i \(1.54280\pi\)
\(648\) 0 0
\(649\) −22.5000 12.9904i −0.883202 0.509917i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 23.4787 40.6663i 0.918793 1.59140i 0.117542 0.993068i \(-0.462499\pi\)
0.801251 0.598328i \(-0.204168\pi\)
\(654\) 0 0
\(655\) −22.5000 + 12.9904i −0.879148 + 0.507576i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 7.74597i 0.301740i 0.988554 + 0.150870i \(0.0482075\pi\)
−0.988554 + 0.150870i \(0.951793\pi\)
\(660\) 0 0
\(661\) −6.00000 + 3.46410i −0.233373 + 0.134738i −0.612127 0.790759i \(-0.709686\pi\)
0.378754 + 0.925497i \(0.376353\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −40.2492 + 7.74597i −1.56080 + 0.300376i
\(666\) 0 0
\(667\) 45.0000 + 25.9808i 1.74241 + 1.00598i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −40.2492 −1.55380
\(672\) 0 0
\(673\) 13.0000 0.501113 0.250557 0.968102i \(-0.419386\pi\)
0.250557 + 0.968102i \(0.419386\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −3.35410 1.93649i −0.128909 0.0744254i 0.434159 0.900836i \(-0.357046\pi\)
−0.563068 + 0.826411i \(0.690379\pi\)
\(678\) 0 0
\(679\) 4.50000 12.9904i 0.172694 0.498525i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −3.35410 + 1.93649i −0.128341 + 0.0740978i −0.562796 0.826596i \(-0.690274\pi\)
0.434455 + 0.900694i \(0.356941\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −20.1246 + 11.6190i −0.766687 + 0.442647i
\(690\) 0 0
\(691\) 7.00000 12.1244i 0.266293 0.461232i −0.701609 0.712562i \(-0.747535\pi\)
0.967901 + 0.251330i \(0.0808679\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 6.70820 + 3.87298i 0.254457 + 0.146911i
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 20.1246 0.760096 0.380048 0.924967i \(-0.375907\pi\)
0.380048 + 0.924967i \(0.375907\pi\)
\(702\) 0 0
\(703\) 8.00000 + 13.8564i 0.301726 + 0.522604i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 11.0000 19.0526i 0.413114 0.715534i −0.582115 0.813107i \(-0.697775\pi\)
0.995228 + 0.0975728i \(0.0311079\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 7.74597i 0.290089i
\(714\) 0 0
\(715\) 51.9615i 1.94325i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 20.1246 34.8569i 0.750521 1.29994i −0.197049 0.980394i \(-0.563136\pi\)
0.947570 0.319547i \(-0.103531\pi\)
\(720\) 0 0
\(721\) 16.0000 13.8564i 0.595871 0.516040i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 33.5410 + 58.0948i 1.24568 + 2.15758i
\(726\) 0 0
\(727\) −5.00000 −0.185440 −0.0927199 0.995692i \(-0.529556\pi\)
−0.0927199 + 0.995692i \(0.529556\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) 6.00000 + 3.46410i 0.221615 + 0.127950i 0.606698 0.794933i \(-0.292494\pi\)
−0.385083 + 0.922882i \(0.625827\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 13.4164 23.2379i 0.494200 0.855979i
\(738\) 0 0
\(739\) −3.00000 + 1.73205i −0.110357 + 0.0637145i −0.554162 0.832409i \(-0.686961\pi\)
0.443806 + 0.896123i \(0.353628\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 15.4919i 0.568344i −0.958773 0.284172i \(-0.908281\pi\)
0.958773 0.284172i \(-0.0917187\pi\)
\(744\) 0 0
\(745\) 45.0000 25.9808i 1.64867 0.951861i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 20.1246 + 23.2379i 0.735337 + 0.849094i
\(750\) 0 0
\(751\) −43.5000 25.1147i −1.58734 0.916450i −0.993744 0.111685i \(-0.964375\pi\)
−0.593594 0.804765i \(1.29771\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 60.3738 2.19723
\(756\) 0 0
\(757\) −34.0000 −1.23575 −0.617876 0.786276i \(-0.712006\pi\)
−0.617876 + 0.786276i \(0.712006\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −20.1246 11.6190i −0.729517 0.421187i 0.0887287 0.996056i \(-0.471720\pi\)
−0.818245 + 0.574869i \(0.805053\pi\)
\(762\) 0 0
\(763\) 2.00000 + 10.3923i 0.0724049 + 0.376227i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −20.1246 + 11.6190i −0.726658 + 0.419536i
\(768\) 0 0
\(769\) 12.1244i 0.437215i 0.975813 + 0.218608i \(0.0701515\pi\)
−0.975813 + 0.218608i \(0.929848\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 13.4164 7.74597i 0.482555 0.278603i −0.238926 0.971038i \(-0.576795\pi\)
0.721480 + 0.692435i \(0.243462\pi\)
\(774\) 0 0
\(775\) 5.00000 8.66025i 0.179605 0.311086i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 26.8328 + 15.4919i 0.961385 + 0.555056i
\(780\) 0 0
\(781\) −15.0000 25.9808i −0.536742 0.929665i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 80.4984 2.87311
\(786\) 0 0
\(787\) 7.00000 + 12.1244i 0.249523 + 0.432187i 0.963394 0.268091i \(-0.0863928\pi\)
−0.713871 + 0.700278i \(0.753059\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −33.5410 11.6190i −1.19258 0.413122i
\(792\) 0 0
\(793\) −18.0000 + 31.1769i −0.639199 + 1.10712i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 50.3488i 1.78345i 0.452582 + 0.891723i \(0.350503\pi\)
−0.452582 + 0.891723i \(0.649497\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 13.4164 23.2379i 0.473455 0.820048i
\(804\) 0 0
\(805\) −15.0000 77.9423i −0.528681 2.74710i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 13.4164 + 23.2379i 0.471696 + 0.817001i 0.999476 0.0323801i \(-0.0103087\pi\)
−0.527780 + 0.849381i \(0.676975\pi\)
\(810\) 0 0
\(811\) −44.0000 −1.54505 −0.772524