Properties

Label 1008.2.cs.m.703.1
Level $1008$
Weight $2$
Character 1008.703
Analytic conductor $8.049$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $2$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 1008 = 2^{4} \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1008.cs (of order \(6\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(8.04892052375\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
Defining polynomial: \(x^{2} - x + 1\)
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 336)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 703.1
Root \(0.500000 + 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 1008.703
Dual form 1008.2.cs.m.271.1

$q$-expansion

\(f(q)\) \(=\) \(q+(3.00000 - 1.73205i) q^{5} +(-0.500000 + 2.59808i) q^{7} +O(q^{10})\) \(q+(3.00000 - 1.73205i) q^{5} +(-0.500000 + 2.59808i) q^{7} +(-3.00000 - 1.73205i) q^{11} +5.19615i q^{13} +(6.00000 + 3.46410i) q^{17} +(3.50000 + 6.06218i) q^{19} +(3.50000 - 6.06218i) q^{25} +(2.50000 - 4.33013i) q^{31} +(3.00000 + 8.66025i) q^{35} +(-0.500000 - 0.866025i) q^{37} -10.3923i q^{41} -1.73205i q^{43} +(3.00000 + 5.19615i) q^{47} +(-6.50000 - 2.59808i) q^{49} -12.0000 q^{55} +(9.00000 + 15.5885i) q^{65} +(-1.50000 - 0.866025i) q^{67} -3.46410i q^{71} +(7.50000 + 4.33013i) q^{73} +(6.00000 - 6.92820i) q^{77} +(13.5000 - 7.79423i) q^{79} -6.00000 q^{83} +24.0000 q^{85} +(-6.00000 + 3.46410i) q^{89} +(-13.5000 - 2.59808i) q^{91} +(21.0000 + 12.1244i) q^{95} -6.92820i q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2q + 6q^{5} - q^{7} + O(q^{10}) \) \( 2q + 6q^{5} - q^{7} - 6q^{11} + 12q^{17} + 7q^{19} + 7q^{25} + 5q^{31} + 6q^{35} - q^{37} + 6q^{47} - 13q^{49} - 24q^{55} + 18q^{65} - 3q^{67} + 15q^{73} + 12q^{77} + 27q^{79} - 12q^{83} + 48q^{85} - 12q^{89} - 27q^{91} + 42q^{95} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1008\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(577\) \(757\) \(785\)
\(\chi(n)\) \(-1\) \(e\left(\frac{1}{6}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 3.00000 1.73205i 1.34164 0.774597i 0.354593 0.935021i \(-0.384620\pi\)
0.987048 + 0.160424i \(0.0512862\pi\)
\(6\) 0 0
\(7\) −0.500000 + 2.59808i −0.188982 + 0.981981i
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −3.00000 1.73205i −0.904534 0.522233i −0.0258656 0.999665i \(-0.508234\pi\)
−0.878668 + 0.477432i \(0.841568\pi\)
\(12\) 0 0
\(13\) 5.19615i 1.44115i 0.693375 + 0.720577i \(0.256123\pi\)
−0.693375 + 0.720577i \(0.743877\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 6.00000 + 3.46410i 1.45521 + 0.840168i 0.998770 0.0495842i \(-0.0157896\pi\)
0.456444 + 0.889752i \(0.349123\pi\)
\(18\) 0 0
\(19\) 3.50000 + 6.06218i 0.802955 + 1.39076i 0.917663 + 0.397360i \(0.130073\pi\)
−0.114708 + 0.993399i \(0.536593\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(24\) 0 0
\(25\) 3.50000 6.06218i 0.700000 1.21244i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(30\) 0 0
\(31\) 2.50000 4.33013i 0.449013 0.777714i −0.549309 0.835619i \(-0.685109\pi\)
0.998322 + 0.0579057i \(0.0184423\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 3.00000 + 8.66025i 0.507093 + 1.46385i
\(36\) 0 0
\(37\) −0.500000 0.866025i −0.0821995 0.142374i 0.821995 0.569495i \(-0.192861\pi\)
−0.904194 + 0.427121i \(0.859528\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 10.3923i 1.62301i −0.584349 0.811503i \(-0.698650\pi\)
0.584349 0.811503i \(-0.301350\pi\)
\(42\) 0 0
\(43\) 1.73205i 0.264135i −0.991241 0.132068i \(-0.957838\pi\)
0.991241 0.132068i \(-0.0421616\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 3.00000 + 5.19615i 0.437595 + 0.757937i 0.997503 0.0706177i \(-0.0224970\pi\)
−0.559908 + 0.828554i \(0.689164\pi\)
\(48\) 0 0
\(49\) −6.50000 2.59808i −0.928571 0.371154i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(54\) 0 0
\(55\) −12.0000 −1.61808
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(60\) 0 0
\(61\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 9.00000 + 15.5885i 1.11631 + 1.93351i
\(66\) 0 0
\(67\) −1.50000 0.866025i −0.183254 0.105802i 0.405567 0.914066i \(-0.367074\pi\)
−0.588821 + 0.808264i \(0.700408\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 3.46410i 0.411113i −0.978645 0.205557i \(-0.934100\pi\)
0.978645 0.205557i \(-0.0659005\pi\)
\(72\) 0 0
\(73\) 7.50000 + 4.33013i 0.877809 + 0.506803i 0.869935 0.493166i \(-0.164160\pi\)
0.00787336 + 0.999969i \(0.497494\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 6.00000 6.92820i 0.683763 0.789542i
\(78\) 0 0
\(79\) 13.5000 7.79423i 1.51887 0.876919i 0.519115 0.854704i \(-0.326261\pi\)
0.999753 0.0222151i \(-0.00707187\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −6.00000 −0.658586 −0.329293 0.944228i \(-0.606810\pi\)
−0.329293 + 0.944228i \(0.606810\pi\)
\(84\) 0 0
\(85\) 24.0000 2.60317
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −6.00000 + 3.46410i −0.635999 + 0.367194i −0.783072 0.621932i \(-0.786348\pi\)
0.147073 + 0.989126i \(0.453015\pi\)
\(90\) 0 0
\(91\) −13.5000 2.59808i −1.41518 0.272352i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 21.0000 + 12.1244i 2.15455 + 1.24393i
\(96\) 0 0
\(97\) 6.92820i 0.703452i −0.936103 0.351726i \(-0.885595\pi\)
0.936103 0.351726i \(-0.114405\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 3.00000 + 1.73205i 0.298511 + 0.172345i 0.641774 0.766894i \(-0.278199\pi\)
−0.343263 + 0.939239i \(0.611532\pi\)
\(102\) 0 0
\(103\) 2.50000 + 4.33013i 0.246332 + 0.426660i 0.962505 0.271263i \(-0.0874412\pi\)
−0.716173 + 0.697923i \(0.754108\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −6.00000 + 3.46410i −0.580042 + 0.334887i −0.761150 0.648576i \(-0.775365\pi\)
0.181108 + 0.983463i \(0.442032\pi\)
\(108\) 0 0
\(109\) −2.50000 + 4.33013i −0.239457 + 0.414751i −0.960558 0.278078i \(-0.910303\pi\)
0.721102 + 0.692829i \(0.243636\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −6.00000 −0.564433 −0.282216 0.959351i \(-0.591070\pi\)
−0.282216 + 0.959351i \(0.591070\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −12.0000 + 13.8564i −1.10004 + 1.27021i
\(120\) 0 0
\(121\) 0.500000 + 0.866025i 0.0454545 + 0.0787296i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 6.92820i 0.619677i
\(126\) 0 0
\(127\) 15.5885i 1.38325i 0.722256 + 0.691626i \(0.243105\pi\)
−0.722256 + 0.691626i \(0.756895\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −9.00000 15.5885i −0.786334 1.36197i −0.928199 0.372084i \(-0.878643\pi\)
0.141865 0.989886i \(1.54531\pi\)
\(132\) 0 0
\(133\) −17.5000 + 6.06218i −1.51744 + 0.525657i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −6.00000 + 10.3923i −0.512615 + 0.887875i 0.487278 + 0.873247i \(0.337990\pi\)
−0.999893 + 0.0146279i \(0.995344\pi\)
\(138\) 0 0
\(139\) −5.00000 −0.424094 −0.212047 0.977259i \(-0.568013\pi\)
−0.212047 + 0.977259i \(0.568013\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 9.00000 15.5885i 0.752618 1.30357i
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −6.00000 10.3923i −0.491539 0.851371i 0.508413 0.861113i \(-0.330232\pi\)
−0.999953 + 0.00974235i \(0.996899\pi\)
\(150\) 0 0
\(151\) 9.00000 + 5.19615i 0.732410 + 0.422857i 0.819303 0.573361i \(-0.194361\pi\)
−0.0868934 + 0.996218i \(0.527694\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 17.3205i 1.39122i
\(156\) 0 0
\(157\) −12.0000 6.92820i −0.957704 0.552931i −0.0622385 0.998061i \(-0.519824\pi\)
−0.895466 + 0.445130i \(0.853157\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 3.00000 1.73205i 0.234978 0.135665i −0.377888 0.925851i \(-0.623350\pi\)
0.612866 + 0.790186i \(0.290016\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 6.00000 0.464294 0.232147 0.972681i \(-0.425425\pi\)
0.232147 + 0.972681i \(0.425425\pi\)
\(168\) 0 0
\(169\) −14.0000 −1.07692
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(174\) 0 0
\(175\) 14.0000 + 12.1244i 1.05830 + 0.916515i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −15.0000 8.66025i −1.12115 0.647298i −0.179458 0.983766i \(-0.557434\pi\)
−0.941695 + 0.336468i \(0.890768\pi\)
\(180\) 0 0
\(181\) 15.5885i 1.15868i 0.815086 + 0.579340i \(0.196690\pi\)
−0.815086 + 0.579340i \(0.803310\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −3.00000 1.73205i −0.220564 0.127343i
\(186\) 0 0
\(187\) −12.0000 20.7846i −0.877527 1.51992i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −3.00000 + 1.73205i −0.217072 + 0.125327i −0.604594 0.796534i \(-0.706665\pi\)
0.387522 + 0.921861i \(0.373331\pi\)
\(192\) 0 0
\(193\) −6.50000 + 11.2583i −0.467880 + 0.810392i −0.999326 0.0366998i \(-0.988315\pi\)
0.531446 + 0.847092i \(0.321649\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −12.0000 −0.854965 −0.427482 0.904024i \(-0.640599\pi\)
−0.427482 + 0.904024i \(0.640599\pi\)
\(198\) 0 0
\(199\) 8.00000 13.8564i 0.567105 0.982255i −0.429745 0.902950i \(-0.641397\pi\)
0.996850 0.0793045i \(-0.0252700\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) −18.0000 31.1769i −1.25717 2.17749i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 24.2487i 1.67732i
\(210\) 0 0
\(211\) 17.3205i 1.19239i −0.802839 0.596196i \(-0.796678\pi\)
0.802839 0.596196i \(-0.203322\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −3.00000 5.19615i −0.204598 0.354375i
\(216\) 0 0
\(217\) 10.0000 + 8.66025i 0.678844 + 0.587896i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −18.0000 + 31.1769i −1.21081 + 2.09719i
\(222\) 0 0
\(223\) 8.00000 0.535720 0.267860 0.963458i \(-0.413684\pi\)
0.267860 + 0.963458i \(0.413684\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 15.0000 25.9808i 0.995585 1.72440i 0.416503 0.909134i \(-0.363255\pi\)
0.579082 0.815270i \(-0.303411\pi\)
\(228\) 0 0
\(229\) 1.50000 0.866025i 0.0991228 0.0572286i −0.449619 0.893220i \(-0.648440\pi\)
0.548742 + 0.835992i \(0.315107\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −9.00000 15.5885i −0.589610 1.02123i −0.994283 0.106773i \(-0.965948\pi\)
0.404674 0.914461i \(-0.367385\pi\)
\(234\) 0 0
\(235\) 18.0000 + 10.3923i 1.17419 + 0.677919i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 17.3205i 1.12037i −0.828367 0.560185i \(-0.810730\pi\)
0.828367 0.560185i \(-0.189270\pi\)
\(240\) 0 0
\(241\) −12.0000 6.92820i −0.772988 0.446285i 0.0609515 0.998141i \(-0.480586\pi\)
−0.833939 + 0.551856i \(0.813920\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −24.0000 + 3.46410i −1.53330 + 0.221313i
\(246\) 0 0
\(247\) −31.5000 + 18.1865i −2.00430 + 1.15718i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −24.0000 −1.51487 −0.757433 0.652913i \(-0.773547\pi\)
−0.757433 + 0.652913i \(0.773547\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 9.00000 5.19615i 0.561405 0.324127i −0.192304 0.981335i \(-0.561596\pi\)
0.753709 + 0.657208i \(0.228263\pi\)
\(258\) 0 0
\(259\) 2.50000 0.866025i 0.155342 0.0538122i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 24.0000 + 13.8564i 1.47990 + 0.854423i 0.999741 0.0227570i \(-0.00724440\pi\)
0.480162 + 0.877180i \(0.340578\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 27.0000 + 15.5885i 1.64622 + 0.950445i 0.978556 + 0.205982i \(0.0660387\pi\)
0.667663 + 0.744463i \(0.267295\pi\)
\(270\) 0 0
\(271\) −8.00000 13.8564i −0.485965 0.841717i 0.513905 0.857847i \(-0.328199\pi\)
−0.999870 + 0.0161307i \(0.994865\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −21.0000 + 12.1244i −1.26635 + 0.731126i
\(276\) 0 0
\(277\) 8.50000 14.7224i 0.510716 0.884585i −0.489207 0.872167i \(-0.662714\pi\)
0.999923 0.0124177i \(-0.00395278\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −12.0000 −0.715860 −0.357930 0.933748i \(-0.616517\pi\)
−0.357930 + 0.933748i \(0.616517\pi\)
\(282\) 0 0
\(283\) −2.50000 + 4.33013i −0.148610 + 0.257399i −0.930714 0.365748i \(-0.880813\pi\)
0.782104 + 0.623148i \(0.214146\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 27.0000 + 5.19615i 1.59376 + 0.306719i
\(288\) 0 0
\(289\) 15.5000 + 26.8468i 0.911765 + 1.57922i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 20.7846i 1.21425i 0.794606 + 0.607125i \(0.207677\pi\)
−0.794606 + 0.607125i \(0.792323\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) 4.50000 + 0.866025i 0.259376 + 0.0499169i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) −25.0000 −1.42683 −0.713413 0.700744i \(-0.752851\pi\)
−0.713413 + 0.700744i \(0.752851\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −9.00000 + 15.5885i −0.510343 + 0.883940i 0.489585 + 0.871956i \(0.337148\pi\)
−0.999928 + 0.0119847i \(0.996185\pi\)
\(312\) 0 0
\(313\) 13.5000 7.79423i 0.763065 0.440556i −0.0673300 0.997731i \(-0.521448\pi\)
0.830395 + 0.557175i \(0.188115\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −6.00000 10.3923i −0.336994 0.583690i 0.646872 0.762598i \(-0.276077\pi\)
−0.983866 + 0.178908i \(0.942743\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 48.4974i 2.69847i
\(324\) 0 0
\(325\) 31.5000 + 18.1865i 1.74731 + 1.00881i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −15.0000 + 5.19615i −0.826977 + 0.286473i
\(330\) 0 0
\(331\) −7.50000 + 4.33013i −0.412237 + 0.238005i −0.691751 0.722137i \(-0.743160\pi\)
0.279513 + 0.960142i \(0.409827\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −6.00000 −0.327815
\(336\) 0 0
\(337\) −19.0000 −1.03500 −0.517498 0.855684i \(-0.673136\pi\)
−0.517498 + 0.855684i \(0.673136\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −15.0000 + 8.66025i −0.812296 + 0.468979i
\(342\) 0 0
\(343\) 10.0000 15.5885i 0.539949 0.841698i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 30.0000 + 17.3205i 1.61048 + 0.929814i 0.989258 + 0.146183i \(0.0466988\pi\)
0.621227 + 0.783631i \(0.286635\pi\)
\(348\) 0 0
\(349\) 13.8564i 0.741716i −0.928689 0.370858i \(-0.879064\pi\)
0.928689 0.370858i \(-0.120936\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −15.0000 8.66025i −0.798369 0.460939i 0.0445312 0.999008i \(-0.485821\pi\)
−0.842901 + 0.538069i \(0.819154\pi\)
\(354\) 0 0
\(355\) −6.00000 10.3923i −0.318447 0.551566i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 6.00000 3.46410i 0.316668 0.182828i −0.333238 0.942843i \(-0.608141\pi\)
0.649906 + 0.760014i \(0.274808\pi\)
\(360\) 0 0
\(361\) −15.0000 + 25.9808i −0.789474 + 1.36741i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 30.0000 1.57027
\(366\) 0 0
\(367\) 18.5000 32.0429i 0.965692 1.67263i 0.257948 0.966159i \(-0.416954\pi\)
0.707744 0.706469i \(-0.249713\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) −5.50000 9.52628i −0.284779 0.493252i 0.687776 0.725923i \(-0.258587\pi\)
−0.972556 + 0.232671i \(0.925254\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) 12.1244i 0.622786i 0.950281 + 0.311393i \(0.100796\pi\)
−0.950281 + 0.311393i \(0.899204\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −18.0000 31.1769i −0.919757 1.59307i −0.799783 0.600289i \(-0.795052\pi\)
−0.119974 0.992777i \(1.46172\pi\)
\(384\) 0 0
\(385\) 6.00000 31.1769i 0.305788 1.58892i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 15.0000 25.9808i 0.760530 1.31728i −0.182047 0.983290i \(-0.558272\pi\)
0.942578 0.333987i \(-0.108394\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 27.0000 46.7654i 1.35852 2.35302i
\(396\) 0 0
\(397\) 4.50000 2.59808i 0.225849 0.130394i −0.382807 0.923828i \(-0.625043\pi\)
0.608655 + 0.793435i \(0.291709\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 12.0000 + 20.7846i 0.599251 + 1.03793i 0.992932 + 0.118686i \(0.0378683\pi\)
−0.393680 + 0.919247i \(0.628798\pi\)
\(402\) 0 0
\(403\) 22.5000 + 12.9904i 1.12080 + 0.647097i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 3.46410i 0.171709i
\(408\) 0 0
\(409\) 16.5000 + 9.52628i 0.815872 + 0.471044i 0.848991 0.528407i \(-0.177211\pi\)
−0.0331186 + 0.999451i \(0.510544\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) −18.0000 + 10.3923i −0.883585 + 0.510138i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −30.0000 −1.46560 −0.732798 0.680446i \(-0.761786\pi\)
−0.732798 + 0.680446i \(0.761786\pi\)
\(420\) 0 0
\(421\) −29.0000 −1.41337 −0.706687 0.707527i \(-0.749811\pi\)
−0.706687 + 0.707527i \(0.749811\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 42.0000 24.2487i 2.03730 1.17624i
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 15.0000 + 8.66025i 0.722525 + 0.417150i 0.815681 0.578502i \(-0.196362\pi\)
−0.0931566 + 0.995651i \(0.529696\pi\)
\(432\) 0 0
\(433\) 29.4449i 1.41503i −0.706698 0.707515i \(-0.749816\pi\)
0.706698 0.707515i \(-0.250184\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) 8.00000 + 13.8564i 0.381819 + 0.661330i 0.991322 0.131453i \(-0.0419644\pi\)
−0.609503 + 0.792784i \(0.708631\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 6.00000 3.46410i 0.285069 0.164584i −0.350647 0.936508i \(-0.614038\pi\)
0.635716 + 0.771923i \(0.280705\pi\)
\(444\) 0 0
\(445\) −12.0000 + 20.7846i −0.568855 + 0.985285i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 6.00000 0.283158 0.141579 0.989927i \(-0.454782\pi\)
0.141579 + 0.989927i \(0.454782\pi\)
\(450\) 0 0
\(451\) −18.0000 + 31.1769i −0.847587 + 1.46806i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −45.0000 + 15.5885i −2.10963 + 0.730798i
\(456\) 0 0
\(457\) −2.50000 4.33013i −0.116945 0.202555i 0.801611 0.597847i \(-0.203977\pi\)
−0.918556 + 0.395292i \(0.870643\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 13.8564i 0.645357i 0.946509 + 0.322679i \(0.104583\pi\)
−0.946509 + 0.322679i \(0.895417\pi\)
\(462\) 0 0
\(463\) 12.1244i 0.563467i −0.959493 0.281733i \(-0.909091\pi\)
0.959493 0.281733i \(-0.0909093\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 3.00000 + 5.19615i 0.138823 + 0.240449i 0.927052 0.374934i \(-0.122335\pi\)
−0.788228 + 0.615383i \(0.789001\pi\)
\(468\) 0 0
\(469\) 3.00000 3.46410i 0.138527 0.159957i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −3.00000 + 5.19615i −0.137940 + 0.238919i
\(474\) 0 0
\(475\) 49.0000 2.24827
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −12.0000 + 20.7846i −0.548294 + 0.949673i 0.450098 + 0.892979i \(0.351389\pi\)
−0.998392 + 0.0566937i \(0.981944\pi\)
\(480\) 0 0
\(481\) 4.50000 2.59808i 0.205182 0.118462i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −12.0000 20.7846i −0.544892 0.943781i
\(486\) 0 0
\(487\) −10.5000 6.06218i −0.475800 0.274703i 0.242864 0.970060i \(-0.421913\pi\)
−0.718665 + 0.695357i \(0.755246\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 20.7846i 0.937996i −0.883199 0.468998i \(-0.844615\pi\)
0.883199 0.468998i \(-0.155385\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 9.00000 + 1.73205i 0.403705 + 0.0776931i
\(498\) 0 0
\(499\) 10.5000 6.06218i 0.470045 0.271380i −0.246214 0.969216i \(-0.579187\pi\)
0.716258 + 0.697835i \(0.245853\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −30.0000 −1.33763 −0.668817 0.743427i \(-0.733199\pi\)
−0.668817 + 0.743427i \(0.733199\pi\)
\(504\) 0 0
\(505\) 12.0000 0.533993
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 3.00000 1.73205i 0.132973 0.0767718i −0.432038 0.901855i \(-0.642205\pi\)
0.565011 + 0.825084i \(0.308872\pi\)
\(510\) 0 0
\(511\) −15.0000 + 17.3205i −0.663561 + 0.766214i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 15.0000 + 8.66025i 0.660979 + 0.381616i
\(516\) 0 0
\(517\) 20.7846i 0.914106i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 12.0000 + 6.92820i 0.525730 + 0.303530i 0.739276 0.673403i \(-0.235168\pi\)
−0.213546 + 0.976933i \(0.568501\pi\)
\(522\) 0 0
\(523\) −0.500000 0.866025i −0.0218635 0.0378686i 0.854887 0.518815i \(-0.173627\pi\)
−0.876750 + 0.480946i \(0.840293\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 30.0000 17.3205i 1.30682 0.754493i
\(528\) 0 0
\(529\) −11.5000 + 19.9186i −0.500000 + 0.866025i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 54.0000 2.33900
\(534\) 0 0
\(535\) −12.0000 + 20.7846i −0.518805 + 0.898597i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 15.0000 + 19.0526i 0.646096 + 0.820652i
\(540\) 0 0
\(541\) 20.5000 + 35.5070i 0.881364 + 1.52657i 0.849825 + 0.527064i \(0.176707\pi\)
0.0315385 + 0.999503i \(0.489959\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 17.3205i 0.741929i
\(546\) 0 0
\(547\) 10.3923i 0.444343i −0.975008 0.222171i \(-0.928686\pi\)
0.975008 0.222171i \(-0.0713145\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 13.5000 + 38.9711i 0.574078 + 1.65722i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 9.00000 15.5885i 0.381342 0.660504i −0.609912 0.792469i \(-0.708795\pi\)
0.991254 + 0.131965i \(0.0421286\pi\)
\(558\) 0 0
\(559\) 9.00000 0.380659
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −9.00000 + 15.5885i −0.379305 + 0.656975i −0.990961 0.134148i \(-0.957170\pi\)
0.611656 + 0.791123i \(0.290503\pi\)
\(564\) 0 0
\(565\) −18.0000 + 10.3923i −0.757266 + 0.437208i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −3.00000 5.19615i −0.125767 0.217834i 0.796266 0.604947i \(-0.206806\pi\)
−0.922032 + 0.387113i \(0.873472\pi\)
\(570\) 0 0
\(571\) 22.5000 + 12.9904i 0.941596 + 0.543631i 0.890460 0.455061i \(-0.150383\pi\)
0.0511355 + 0.998692i \(0.483716\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) −1.50000 0.866025i −0.0624458 0.0360531i 0.468452 0.883489i \(-0.344812\pi\)
−0.530898 + 0.847436i \(0.678145\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 3.00000 15.5885i 0.124461 0.646718i
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 12.0000 0.495293 0.247647 0.968850i \(-0.420343\pi\)
0.247647 + 0.968850i \(0.420343\pi\)
\(588\) 0 0
\(589\) 35.0000 1.44215
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 33.0000 19.0526i 1.35515 0.782395i 0.366182 0.930543i \(-0.380665\pi\)
0.988965 + 0.148148i \(0.0473313\pi\)
\(594\) 0 0
\(595\) −12.0000 + 62.3538i −0.491952 + 2.55626i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 6.00000 + 3.46410i 0.245153 + 0.141539i 0.617543 0.786537i \(-0.288128\pi\)
−0.372390 + 0.928076i \(0.621461\pi\)
\(600\) 0 0
\(601\) 25.9808i 1.05978i −0.848067 0.529889i \(-0.822234\pi\)
0.848067 0.529889i \(-0.177766\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 3.00000 + 1.73205i 0.121967 + 0.0704179i
\(606\) 0 0
\(607\) 18.5000 + 32.0429i 0.750892 + 1.30058i 0.947391 + 0.320079i \(0.103709\pi\)
−0.196499 + 0.980504i \(0.562957\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −27.0000 + 15.5885i −1.09230 + 0.630641i
\(612\) 0 0
\(613\) 11.0000 19.0526i 0.444286 0.769526i −0.553716 0.832705i \(-0.686791\pi\)
0.998002 + 0.0631797i \(0.0201241\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 42.0000 1.69086 0.845428 0.534089i \(-0.179345\pi\)
0.845428 + 0.534089i \(0.179345\pi\)
\(618\) 0 0
\(619\) 17.5000 30.3109i 0.703384 1.21830i −0.263887 0.964554i \(-0.585005\pi\)
0.967271 0.253744i \(-0.0816620\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −6.00000 17.3205i −0.240385 0.693932i
\(624\) 0 0
\(625\) 5.50000 + 9.52628i 0.220000 + 0.381051i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 6.92820i 0.276246i
\(630\) 0 0
\(631\) 3.46410i 0.137904i −0.997620 0.0689519i \(-0.978035\pi\)
0.997620 0.0689519i \(-0.0219655\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 27.0000 + 46.7654i 1.07146 + 1.85583i
\(636\) 0 0
\(637\) 13.5000 33.7750i 0.534889 1.33821i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −18.0000 + 31.1769i −0.710957 + 1.23141i 0.253541 + 0.967325i \(0.418405\pi\)
−0.964498 + 0.264089i \(0.914929\pi\)
\(642\) 0 0
\(643\) −43.0000 −1.69575 −0.847877 0.530193i \(-0.822120\pi\)
−0.847877 + 0.530193i \(0.822120\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 9.00000 15.5885i 0.353827 0.612845i −0.633090 0.774078i \(-0.718214\pi\)
0.986916 + 0.161233i \(0.0515470\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −9.00000 15.5885i −0.352197 0.610023i 0.634437 0.772975i \(-0.281232\pi\)
−0.986634 + 0.162951i \(0.947899\pi\)
\(654\) 0 0
\(655\) −54.0000 31.1769i −2.10995 1.21818i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 20.7846i 0.809653i 0.914393 + 0.404827i \(0.132668\pi\)
−0.914393 + 0.404827i \(0.867332\pi\)
\(660\) 0 0
\(661\) 16.5000 + 9.52628i 0.641776 + 0.370529i 0.785298 0.619118i \(-0.212510\pi\)
−0.143523 + 0.989647i \(0.545843\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −42.0000 + 48.4974i −1.62869 + 1.88065i
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 1.00000 0.0385472 0.0192736 0.999814i \(-0.493865\pi\)
0.0192736 + 0.999814i \(0.493865\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −30.0000 + 17.3205i −1.15299 + 0.665681i −0.949615 0.313419i \(-0.898526\pi\)
−0.203379 + 0.979100i \(0.565192\pi\)
\(678\) 0 0
\(679\) 18.0000 + 3.46410i 0.690777 + 0.132940i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −36.0000 20.7846i −1.37750 0.795301i −0.385643 0.922648i \(-0.626021\pi\)
−0.991858 + 0.127347i \(0.959354\pi\)
\(684\) 0 0
\(685\) 41.5692i 1.58828i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) −6.50000 11.2583i −0.247272 0.428287i 0.715496 0.698617i \(-0.246201\pi\)
−0.962768 + 0.270330i \(0.912867\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −15.0000 + 8.66025i −0.568982 + 0.328502i
\(696\) 0 0
\(697\) 36.0000 62.3538i 1.36360 2.36182i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(702\) 0 0
\(703\) 3.50000 6.06218i 0.132005 0.228639i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −6.00000 + 6.92820i −0.225653 + 0.260562i
\(708\) 0 0
\(709\) 5.00000 + 8.66025i 0.187779 + 0.325243i 0.944509 0.328484i \(-0.106538\pi\)
−0.756730 + 0.653727i \(0.773204\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 62.3538i 2.33190i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 9.00000 + 15.5885i 0.335643 + 0.581351i 0.983608 0.180319i \(-0.0577130\pi\)
−0.647965 + 0.761670i \(0.724380\pi\)
\(720\) 0 0
\(721\) −12.5000 + 4.33013i −0.465524 + 0.161262i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 1.00000 0.0370879 0.0185440 0.999828i \(-0.494097\pi\)
0.0185440 + 0.999828i \(0.494097\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 6.00000 10.3923i 0.221918 0.384373i
\(732\) 0 0
\(733\) −31.5000 + 18.1865i −1.16348 + 0.671735i −0.952135 0.305677i \(-0.901117\pi\)
−0.211344 + 0.977412i \(0.567784\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 3.00000 + 5.19615i 0.110506 + 0.191403i
\(738\) 0 0
\(739\) −31.5000 18.1865i −1.15875 0.669002i −0.207743 0.978183i \(-0.566612\pi\)
−0.951003 + 0.309181i \(0.899945\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 3.46410i 0.127086i 0.997979 + 0.0635428i \(0.0202399\pi\)
−0.997979 + 0.0635428i \(0.979760\pi\)
\(744\) 0 0
\(745\) −36.0000 20.7846i −1.31894 0.761489i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −6.00000 17.3205i −0.219235 0.632878i
\(750\) 0 0
\(751\) 40.5000 23.3827i 1.47787 0.853246i 0.478179 0.878262i \(-0.341297\pi\)
0.999687 + 0.0250161i \(0.00796370\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 36.0000 1.31017
\(756\) 0 0
\(757\) −22.0000 −0.799604 −0.399802 0.916602i \(-0.630921\pi\)
−0.399802 + 0.916602i \(0.630921\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −30.0000 + 17.3205i −1.08750 + 0.627868i −0.932910 0.360111i \(-0.882739\pi\)
−0.154590 + 0.987979i \(0.549406\pi\)
\(762\) 0 0
\(763\) −10.0000 8.66025i −0.362024 0.313522i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) 29.4449i 1.06181i −0.847432 0.530904i \(-0.821852\pi\)
0.847432 0.530904i \(-0.178148\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 27.0000 + 15.5885i 0.971123 + 0.560678i 0.899578 0.436760i \(-0.143874\pi\)
0.0715442 + 0.997437i \(0.477207\pi\)
\(774\) 0 0
\(775\) −17.5000 30.3109i −0.628619 1.08880i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 63.0000 36.3731i 2.25721 1.30320i
\(780\) 0 0
\(781\) −6.00000 + 10.3923i −0.214697 + 0.371866i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −48.0000 −1.71319
\(786\) 0 0
\(787\) 4.00000 6.92820i 0.142585 0.246964i −0.785885 0.618373i \(-0.787792\pi\)
0.928469 + 0.371409i \(0.121125\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 3.00000 15.5885i 0.106668 0.554262i
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 41.5692i 1.47246i −0.676733 0.736229i \(-0.736605\pi\)
0.676733 0.736229i \(-0.263395\pi\)
\(798\) 0 0
\(799\) 41.5692i 1.47061i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −15.0000 25.9808i −0.529339