Defining parameters
Level: | \( N \) | \(=\) | \( 1008 = 2^{4} \cdot 3^{2} \cdot 7 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 1008.cq (of order \(6\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 84 \) |
Character field: | \(\Q(\zeta_{6})\) | ||
Newform subspaces: | \( 3 \) | ||
Sturm bound: | \(384\) | ||
Trace bound: | \(7\) | ||
Distinguishing \(T_p\): | \(5\), \(19\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(1008, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 432 | 32 | 400 |
Cusp forms | 336 | 32 | 304 |
Eisenstein series | 96 | 0 | 96 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(1008, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
1008.2.cq.a | $8$ | $8.049$ | 8.0.796594176.1 | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q-\beta _{3}q^{5}-\beta _{6}q^{7}+(-\beta _{1}-\beta _{4})q^{11}+\cdots\) |
1008.2.cq.b | $12$ | $8.049$ | \(\mathbb{Q}[x]/(x^{12} + \cdots)\) | None | \(0\) | \(0\) | \(0\) | \(-2\) | \(q+\beta _{2}q^{5}+\beta _{5}q^{7}+(-\beta _{1}+\beta _{8})q^{11}+\cdots\) |
1008.2.cq.c | $12$ | $8.049$ | \(\mathbb{Q}[x]/(x^{12} + \cdots)\) | None | \(0\) | \(0\) | \(0\) | \(2\) | \(q+\beta _{2}q^{5}-\beta _{5}q^{7}+(\beta _{1}-\beta _{8})q^{11}+(-1+\cdots)q^{13}+\cdots\) |
Decomposition of \(S_{2}^{\mathrm{old}}(1008, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(1008, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(84, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(252, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(336, [\chi])\)\(^{\oplus 2}\)