Properties

Label 1008.2.cq
Level $1008$
Weight $2$
Character orbit 1008.cq
Rep. character $\chi_{1008}(431,\cdot)$
Character field $\Q(\zeta_{6})$
Dimension $32$
Newform subspaces $3$
Sturm bound $384$
Trace bound $7$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1008 = 2^{4} \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1008.cq (of order \(6\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 84 \)
Character field: \(\Q(\zeta_{6})\)
Newform subspaces: \( 3 \)
Sturm bound: \(384\)
Trace bound: \(7\)
Distinguishing \(T_p\): \(5\), \(19\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(1008, [\chi])\).

Total New Old
Modular forms 432 32 400
Cusp forms 336 32 304
Eisenstein series 96 0 96

Trace form

\( 32 q - 16 q^{13} - 8 q^{25} - 8 q^{37} - 16 q^{49} + 16 q^{61} - 40 q^{73} + 96 q^{85} + 80 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(1008, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
1008.2.cq.a 1008.cq 84.n $8$ $8.049$ 8.0.796594176.1 None 1008.2.cq.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{6}]$ \(q-\beta _{3}q^{5}-\beta _{6}q^{7}+(-\beta _{1}-\beta _{4})q^{11}+\cdots\)
1008.2.cq.b 1008.cq 84.n $12$ $8.049$ \(\mathbb{Q}[x]/(x^{12} + \cdots)\) None 1008.2.cq.b \(0\) \(0\) \(0\) \(-2\) $\mathrm{SU}(2)[C_{6}]$ \(q+\beta _{2}q^{5}+\beta _{5}q^{7}+(-\beta _{1}+\beta _{8})q^{11}+\cdots\)
1008.2.cq.c 1008.cq 84.n $12$ $8.049$ \(\mathbb{Q}[x]/(x^{12} + \cdots)\) None 1008.2.cq.b \(0\) \(0\) \(0\) \(2\) $\mathrm{SU}(2)[C_{6}]$ \(q+\beta _{2}q^{5}-\beta _{5}q^{7}+(\beta _{1}-\beta _{8})q^{11}+(-1+\cdots)q^{13}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(1008, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(1008, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(84, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(252, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(336, [\chi])\)\(^{\oplus 2}\)