Properties

Label 1008.2.bt.d.17.8
Level $1008$
Weight $2$
Character 1008.17
Analytic conductor $8.049$
Analytic rank $0$
Dimension $16$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1008,2,Mod(17,1008)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1008, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 3, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1008.17"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1008 = 2^{4} \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1008.bt (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,0,0,0,0,8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(8.04892052375\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} + 10x^{14} + 61x^{12} + 266x^{10} + 852x^{8} + 1438x^{6} + 1933x^{4} + 3038x^{2} + 2401 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{10} \)
Twist minimal: no (minimal twist has level 504)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 17.8
Root \(-1.45333 - 1.51725i\) of defining polynomial
Character \(\chi\) \(=\) 1008.17
Dual form 1008.2.bt.d.593.8

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.45333 + 2.51725i) q^{5} +(2.64571 + 0.0146827i) q^{7} +(-1.08853 - 0.628464i) q^{11} +5.32679i q^{13} +(0.880708 - 1.52543i) q^{17} +(6.69849 - 3.86738i) q^{19} +(-4.43392 + 2.55992i) q^{23} +(-1.72435 + 2.98667i) q^{25} +8.74013i q^{29} +(-2.18272 - 1.26019i) q^{31} +(3.80814 + 6.68124i) q^{35} +(-3.66400 - 6.34623i) q^{37} -3.09603 q^{41} -1.15729 q^{43} +(-3.44334 - 5.96403i) q^{47} +(6.99957 + 0.0776922i) q^{49} +(11.3057 + 6.52735i) q^{53} -3.65347i q^{55} +(-3.13525 + 5.43042i) q^{59} +(2.19449 - 1.26699i) q^{61} +(-13.4088 + 7.74160i) q^{65} +(0.689860 - 1.19487i) q^{67} +8.65477i q^{71} +(4.38121 + 2.52949i) q^{73} +(-2.87071 - 1.67872i) q^{77} +(7.63142 + 13.2180i) q^{79} -3.75373 q^{83} +5.11985 q^{85} +(-3.55321 - 6.15434i) q^{89} +(-0.0782115 + 14.0931i) q^{91} +(19.4703 + 11.2412i) q^{95} +4.03874i q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 8 q^{7} - 12 q^{19} + 12 q^{25} - 24 q^{31} + 4 q^{37} - 8 q^{43} + 32 q^{49} + 28 q^{67} - 60 q^{73} + 32 q^{79} - 32 q^{85} + 84 q^{91}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1008\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(577\) \(757\) \(785\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{6}\right)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 1.45333 + 2.51725i 0.649950 + 1.12575i 0.983134 + 0.182885i \(0.0585436\pi\)
−0.333184 + 0.942862i \(0.608123\pi\)
\(6\) 0 0
\(7\) 2.64571 + 0.0146827i 0.999985 + 0.00554953i
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −1.08853 0.628464i −0.328205 0.189489i 0.326839 0.945080i \(-0.394016\pi\)
−0.655044 + 0.755591i \(0.727350\pi\)
\(12\) 0 0
\(13\) 5.32679i 1.47739i 0.674042 + 0.738693i \(0.264557\pi\)
−0.674042 + 0.738693i \(0.735443\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 0.880708 1.52543i 0.213603 0.369971i −0.739236 0.673446i \(-0.764813\pi\)
0.952840 + 0.303475i \(0.0981467\pi\)
\(18\) 0 0
\(19\) 6.69849 3.86738i 1.53674 0.887237i 0.537712 0.843128i \(-0.319289\pi\)
0.999027 0.0441085i \(-0.0140447\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −4.43392 + 2.55992i −0.924536 + 0.533781i −0.885079 0.465440i \(-0.845896\pi\)
−0.0394566 + 0.999221i \(0.512563\pi\)
\(24\) 0 0
\(25\) −1.72435 + 2.98667i −0.344871 + 0.597333i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 8.74013i 1.62300i 0.584352 + 0.811500i \(0.301349\pi\)
−0.584352 + 0.811500i \(0.698651\pi\)
\(30\) 0 0
\(31\) −2.18272 1.26019i −0.392027 0.226337i 0.291011 0.956720i \(-0.406008\pi\)
−0.683038 + 0.730383i \(0.739342\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 3.80814 + 6.68124i 0.643693 + 1.12934i
\(36\) 0 0
\(37\) −3.66400 6.34623i −0.602358 1.04331i −0.992463 0.122544i \(-0.960895\pi\)
0.390106 0.920770i \(-0.372439\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −3.09603 −0.483519 −0.241760 0.970336i \(-0.577725\pi\)
−0.241760 + 0.970336i \(0.577725\pi\)
\(42\) 0 0
\(43\) −1.15729 −0.176484 −0.0882422 0.996099i \(-0.528125\pi\)
−0.0882422 + 0.996099i \(0.528125\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −3.44334 5.96403i −0.502262 0.869944i −0.999997 0.00261431i \(-0.999168\pi\)
0.497734 0.867330i \(-0.334165\pi\)
\(48\) 0 0
\(49\) 6.99957 + 0.0776922i 0.999938 + 0.0110989i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 11.3057 + 6.52735i 1.55296 + 0.896600i 0.997899 + 0.0647890i \(0.0206374\pi\)
0.555058 + 0.831811i \(0.312696\pi\)
\(54\) 0 0
\(55\) 3.65347i 0.492634i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −3.13525 + 5.43042i −0.408175 + 0.706980i −0.994685 0.102962i \(-0.967168\pi\)
0.586510 + 0.809942i \(0.300501\pi\)
\(60\) 0 0
\(61\) 2.19449 1.26699i 0.280976 0.162221i −0.352889 0.935665i \(-0.614801\pi\)
0.633865 + 0.773444i \(0.281467\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −13.4088 + 7.74160i −1.66316 + 0.960227i
\(66\) 0 0
\(67\) 0.689860 1.19487i 0.0842798 0.145977i −0.820804 0.571210i \(-0.806474\pi\)
0.905084 + 0.425233i \(0.139808\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 8.65477i 1.02713i 0.858050 + 0.513566i \(0.171676\pi\)
−0.858050 + 0.513566i \(0.828324\pi\)
\(72\) 0 0
\(73\) 4.38121 + 2.52949i 0.512782 + 0.296055i 0.733976 0.679175i \(-0.237662\pi\)
−0.221195 + 0.975230i \(0.570996\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −2.87071 1.67872i −0.327148 0.191308i
\(78\) 0 0
\(79\) 7.63142 + 13.2180i 0.858602 + 1.48714i 0.873262 + 0.487250i \(0.162000\pi\)
−0.0146603 + 0.999893i \(0.504667\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −3.75373 −0.412025 −0.206013 0.978549i \(-0.566049\pi\)
−0.206013 + 0.978549i \(0.566049\pi\)
\(84\) 0 0
\(85\) 5.11985 0.555326
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −3.55321 6.15434i −0.376640 0.652359i 0.613931 0.789359i \(-0.289587\pi\)
−0.990571 + 0.137001i \(0.956254\pi\)
\(90\) 0 0
\(91\) −0.0782115 + 14.0931i −0.00819880 + 1.47736i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 19.4703 + 11.2412i 1.99761 + 1.15332i
\(96\) 0 0
\(97\) 4.03874i 0.410072i 0.978754 + 0.205036i \(0.0657311\pi\)
−0.978754 + 0.205036i \(0.934269\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 3.39249 5.87597i 0.337565 0.584681i −0.646409 0.762991i \(-0.723730\pi\)
0.983974 + 0.178311i \(0.0570632\pi\)
\(102\) 0 0
\(103\) 5.39758 3.11629i 0.531839 0.307057i −0.209926 0.977717i \(-0.567322\pi\)
0.741765 + 0.670660i \(0.233989\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 8.41950 4.86100i 0.813944 0.469931i −0.0343796 0.999409i \(-0.510946\pi\)
0.848324 + 0.529478i \(0.177612\pi\)
\(108\) 0 0
\(109\) 7.34463 12.7213i 0.703488 1.21848i −0.263746 0.964592i \(-0.584958\pi\)
0.967234 0.253885i \(-0.0817086\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 19.1169i 1.79837i −0.437572 0.899184i \(-0.644161\pi\)
0.437572 0.899184i \(-0.355839\pi\)
\(114\) 0 0
\(115\) −12.8879 7.44084i −1.20180 0.693862i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 2.35250 4.02292i 0.215653 0.368780i
\(120\) 0 0
\(121\) −4.71007 8.15807i −0.428188 0.741643i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 4.50909 0.403305
\(126\) 0 0
\(127\) −14.2906 −1.26808 −0.634041 0.773299i \(-0.718605\pi\)
−0.634041 + 0.773299i \(0.718605\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −6.07057 10.5145i −0.530388 0.918659i −0.999371 0.0354521i \(-0.988713\pi\)
0.468983 0.883207i \(-0.344620\pi\)
\(132\) 0 0
\(133\) 17.7791 10.1336i 1.54164 0.878695i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −0.986259 0.569417i −0.0842618 0.0486486i 0.457277 0.889324i \(-0.348825\pi\)
−0.541539 + 0.840676i \(0.682158\pi\)
\(138\) 0 0
\(139\) 20.6610i 1.75245i 0.481906 + 0.876223i \(0.339945\pi\)
−0.481906 + 0.876223i \(0.660055\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 3.34770 5.79838i 0.279948 0.484885i
\(144\) 0 0
\(145\) −22.0011 + 12.7023i −1.82709 + 1.05487i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −5.28425 + 3.05086i −0.432903 + 0.249936i −0.700582 0.713572i \(-0.747076\pi\)
0.267680 + 0.963508i \(0.413743\pi\)
\(150\) 0 0
\(151\) 3.66443 6.34698i 0.298207 0.516510i −0.677519 0.735505i \(-0.736945\pi\)
0.975726 + 0.218996i \(0.0702781\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 7.32591i 0.588432i
\(156\) 0 0
\(157\) 3.32800 + 1.92142i 0.265603 + 0.153346i 0.626888 0.779110i \(-0.284328\pi\)
−0.361285 + 0.932456i \(0.617662\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −11.7685 + 6.70772i −0.927484 + 0.528642i
\(162\) 0 0
\(163\) −7.97206 13.8080i −0.624420 1.08153i −0.988653 0.150219i \(-0.952002\pi\)
0.364233 0.931308i \(-0.381331\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −24.1419 −1.86816 −0.934079 0.357067i \(-0.883777\pi\)
−0.934079 + 0.357067i \(0.883777\pi\)
\(168\) 0 0
\(169\) −15.3747 −1.18267
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 6.78641 + 11.7544i 0.515962 + 0.893672i 0.999828 + 0.0185299i \(0.00589860\pi\)
−0.483867 + 0.875142i \(0.660768\pi\)
\(174\) 0 0
\(175\) −4.60599 + 7.87654i −0.348180 + 0.595410i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −1.62646 0.939035i −0.121567 0.0701868i 0.437983 0.898983i \(-0.355693\pi\)
−0.559550 + 0.828796i \(0.689026\pi\)
\(180\) 0 0
\(181\) 5.36975i 0.399130i −0.979885 0.199565i \(-0.936047\pi\)
0.979885 0.199565i \(-0.0639530\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 10.6500 18.4464i 0.783005 1.35620i
\(186\) 0 0
\(187\) −1.91736 + 1.10699i −0.140211 + 0.0809509i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 14.3153 8.26495i 1.03582 0.598031i 0.117173 0.993111i \(-0.462617\pi\)
0.918646 + 0.395081i \(0.129283\pi\)
\(192\) 0 0
\(193\) −6.24013 + 10.8082i −0.449174 + 0.777993i −0.998332 0.0577258i \(-0.981615\pi\)
0.549158 + 0.835718i \(0.314948\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 19.7258i 1.40541i −0.711482 0.702704i \(-0.751976\pi\)
0.711482 0.702704i \(-0.248024\pi\)
\(198\) 0 0
\(199\) −21.2771 12.2844i −1.50830 0.870815i −0.999953 0.00966023i \(-0.996925\pi\)
−0.508343 0.861155i \(-0.669742\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −0.128328 + 23.1238i −0.00900689 + 1.62298i
\(204\) 0 0
\(205\) −4.49957 7.79348i −0.314264 0.544320i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −9.72203 −0.672487
\(210\) 0 0
\(211\) 16.0173 1.10267 0.551337 0.834283i \(-0.314118\pi\)
0.551337 + 0.834283i \(0.314118\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −1.68192 2.91317i −0.114706 0.198677i
\(216\) 0 0
\(217\) −5.75633 3.36615i −0.390765 0.228509i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 8.12565 + 4.69135i 0.546590 + 0.315574i
\(222\) 0 0
\(223\) 24.7358i 1.65643i −0.560410 0.828215i \(-0.689356\pi\)
0.560410 0.828215i \(-0.310644\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 11.1431 19.3005i 0.739597 1.28102i −0.213080 0.977035i \(-0.568350\pi\)
0.952677 0.303984i \(-0.0983171\pi\)
\(228\) 0 0
\(229\) −14.5011 + 8.37219i −0.958257 + 0.553250i −0.895636 0.444788i \(-0.853279\pi\)
−0.0626207 + 0.998037i \(0.519946\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 1.45707 0.841243i 0.0954561 0.0551116i −0.451512 0.892265i \(-0.649115\pi\)
0.546968 + 0.837153i \(0.315782\pi\)
\(234\) 0 0
\(235\) 10.0086 17.3355i 0.652891 1.13084i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 7.79777i 0.504396i −0.967676 0.252198i \(-0.918847\pi\)
0.967676 0.252198i \(-0.0811534\pi\)
\(240\) 0 0
\(241\) −12.1503 7.01500i −0.782672 0.451876i 0.0547042 0.998503i \(-0.482578\pi\)
−0.837377 + 0.546627i \(0.815912\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 9.97713 + 17.7326i 0.637416 + 1.13289i
\(246\) 0 0
\(247\) 20.6007 + 35.6815i 1.31079 + 2.27036i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −9.34078 −0.589585 −0.294792 0.955561i \(-0.595251\pi\)
−0.294792 + 0.955561i \(0.595251\pi\)
\(252\) 0 0
\(253\) 6.43528 0.404583
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −4.12814 7.15016i −0.257507 0.446015i 0.708067 0.706146i \(-0.249568\pi\)
−0.965573 + 0.260131i \(0.916234\pi\)
\(258\) 0 0
\(259\) −9.60070 16.8441i −0.596558 1.04664i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −17.7171 10.2290i −1.09248 0.630746i −0.158248 0.987399i \(-0.550584\pi\)
−0.934237 + 0.356653i \(0.883918\pi\)
\(264\) 0 0
\(265\) 37.9456i 2.33098i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 15.1726 26.2797i 0.925088 1.60230i 0.133668 0.991026i \(-0.457324\pi\)
0.791420 0.611273i \(-0.209342\pi\)
\(270\) 0 0
\(271\) 5.16870 2.98415i 0.313976 0.181274i −0.334728 0.942315i \(-0.608645\pi\)
0.648704 + 0.761041i \(0.275311\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 3.75403 2.16739i 0.226376 0.130698i
\(276\) 0 0
\(277\) 1.11836 1.93706i 0.0671958 0.116387i −0.830470 0.557063i \(-0.811928\pi\)
0.897666 + 0.440677i \(0.145261\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 16.2683i 0.970484i 0.874380 + 0.485242i \(0.161268\pi\)
−0.874380 + 0.485242i \(0.838732\pi\)
\(282\) 0 0
\(283\) −3.84235 2.21838i −0.228404 0.131869i 0.381432 0.924397i \(-0.375431\pi\)
−0.609836 + 0.792528i \(0.708765\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −8.19121 0.0454581i −0.483512 0.00268331i
\(288\) 0 0
\(289\) 6.94871 + 12.0355i 0.408747 + 0.707971i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 8.48448 0.495669 0.247834 0.968802i \(-0.420281\pi\)
0.247834 + 0.968802i \(0.420281\pi\)
\(294\) 0 0
\(295\) −18.2263 −1.06117
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −13.6362 23.6186i −0.788601 1.36590i
\(300\) 0 0
\(301\) −3.06184 0.0169920i −0.176482 0.000979405i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 6.37865 + 3.68272i 0.365241 + 0.210872i
\(306\) 0 0
\(307\) 2.06321i 0.117753i 0.998265 + 0.0588767i \(0.0187519\pi\)
−0.998265 + 0.0588767i \(0.981248\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 13.4339 23.2683i 0.761768 1.31942i −0.180170 0.983635i \(-0.557665\pi\)
0.941938 0.335786i \(-0.109002\pi\)
\(312\) 0 0
\(313\) −10.6333 + 6.13912i −0.601028 + 0.347004i −0.769446 0.638712i \(-0.779468\pi\)
0.168418 + 0.985716i \(0.446134\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 1.29866 0.749784i 0.0729403 0.0421121i −0.463086 0.886313i \(-0.653258\pi\)
0.536027 + 0.844201i \(0.319925\pi\)
\(318\) 0 0
\(319\) 5.49286 9.51391i 0.307541 0.532676i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 13.6241i 0.758066i
\(324\) 0 0
\(325\) −15.9094 9.18527i −0.882492 0.509507i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −9.02251 15.8297i −0.497427 0.872718i
\(330\) 0 0
\(331\) 7.53641 + 13.0534i 0.414239 + 0.717482i 0.995348 0.0963430i \(-0.0307146\pi\)
−0.581110 + 0.813825i \(0.697381\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 4.01039 0.219111
\(336\) 0 0
\(337\) 15.3414 0.835700 0.417850 0.908516i \(-0.362784\pi\)
0.417850 + 0.908516i \(0.362784\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 1.58397 + 2.74352i 0.0857768 + 0.148570i
\(342\) 0 0
\(343\) 18.5177 + 0.308324i 0.999861 + 0.0166479i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 13.4995 + 7.79393i 0.724691 + 0.418400i 0.816477 0.577378i \(-0.195924\pi\)
−0.0917861 + 0.995779i \(0.529258\pi\)
\(348\) 0 0
\(349\) 1.35182i 0.0723613i −0.999345 0.0361806i \(-0.988481\pi\)
0.999345 0.0361806i \(-0.0115192\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 9.91110 17.1665i 0.527515 0.913682i −0.471971 0.881614i \(-0.656457\pi\)
0.999486 0.0320680i \(-0.0102093\pi\)
\(354\) 0 0
\(355\) −21.7862 + 12.5783i −1.15629 + 0.667585i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −18.9382 + 10.9340i −0.999521 + 0.577074i −0.908107 0.418739i \(-0.862472\pi\)
−0.0914146 + 0.995813i \(0.529139\pi\)
\(360\) 0 0
\(361\) 20.4132 35.3567i 1.07438 1.86088i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 14.7048i 0.769683i
\(366\) 0 0
\(367\) −0.591012 0.341221i −0.0308506 0.0178116i 0.484495 0.874794i \(-0.339003\pi\)
−0.515346 + 0.856982i \(0.672337\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 29.8158 + 17.4355i 1.54796 + 0.905205i
\(372\) 0 0
\(373\) 12.5153 + 21.6772i 0.648020 + 1.12240i 0.983595 + 0.180390i \(0.0577360\pi\)
−0.335575 + 0.942013i \(0.608931\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −46.5568 −2.39780
\(378\) 0 0
\(379\) 10.7220 0.550752 0.275376 0.961337i \(-0.411198\pi\)
0.275376 + 0.961337i \(0.411198\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 11.8748 + 20.5677i 0.606772 + 1.05096i 0.991769 + 0.128042i \(0.0408692\pi\)
−0.384997 + 0.922918i \(0.625797\pi\)
\(384\) 0 0
\(385\) 0.0536427 9.66602i 0.00273389 0.492626i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 13.6648 + 7.88939i 0.692834 + 0.400008i 0.804673 0.593718i \(-0.202341\pi\)
−0.111839 + 0.993726i \(0.535674\pi\)
\(390\) 0 0
\(391\) 9.01818i 0.456069i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −22.1820 + 38.4203i −1.11610 + 1.93314i
\(396\) 0 0
\(397\) −13.9468 + 8.05218i −0.699969 + 0.404127i −0.807336 0.590092i \(-0.799091\pi\)
0.107367 + 0.994219i \(0.465758\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 14.4857 8.36335i 0.723384 0.417646i −0.0926131 0.995702i \(-0.529522\pi\)
0.815997 + 0.578056i \(0.196189\pi\)
\(402\) 0 0
\(403\) 6.71278 11.6269i 0.334387 0.579176i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 9.21076i 0.456561i
\(408\) 0 0
\(409\) 10.1106 + 5.83733i 0.499935 + 0.288637i 0.728687 0.684847i \(-0.240131\pi\)
−0.228752 + 0.973485i \(0.573464\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −8.37471 + 14.3213i −0.412092 + 0.704704i
\(414\) 0 0
\(415\) −5.45542 9.44906i −0.267796 0.463836i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 8.16399 0.398837 0.199419 0.979914i \(-0.436095\pi\)
0.199419 + 0.979914i \(0.436095\pi\)
\(420\) 0 0
\(421\) −7.71744 −0.376125 −0.188063 0.982157i \(-0.560221\pi\)
−0.188063 + 0.982157i \(0.560221\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 3.03730 + 5.26076i 0.147331 + 0.255185i
\(426\) 0 0
\(427\) 5.82459 3.31987i 0.281872 0.160660i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 24.1483 + 13.9420i 1.16318 + 0.671563i 0.952064 0.305898i \(-0.0989566\pi\)
0.211117 + 0.977461i \(0.432290\pi\)
\(432\) 0 0
\(433\) 19.8885i 0.955779i −0.878420 0.477889i \(-0.841402\pi\)
0.878420 0.477889i \(-0.158598\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −19.8004 + 34.2953i −0.947180 + 1.64056i
\(438\) 0 0
\(439\) −6.61654 + 3.82006i −0.315790 + 0.182322i −0.649515 0.760349i \(-0.725028\pi\)
0.333724 + 0.942671i \(0.391695\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −17.4681 + 10.0852i −0.829933 + 0.479162i −0.853830 0.520553i \(-0.825726\pi\)
0.0238969 + 0.999714i \(0.492393\pi\)
\(444\) 0 0
\(445\) 10.3280 17.8886i 0.489594 0.848002i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 2.27122i 0.107185i −0.998563 0.0535926i \(-0.982933\pi\)
0.998563 0.0535926i \(-0.0170672\pi\)
\(450\) 0 0
\(451\) 3.37013 + 1.94575i 0.158693 + 0.0916216i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −35.5896 + 20.2852i −1.66847 + 0.950983i
\(456\) 0 0
\(457\) −5.74056 9.94294i −0.268532 0.465111i 0.699951 0.714191i \(-0.253205\pi\)
−0.968483 + 0.249080i \(0.919872\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −25.2339 −1.17526 −0.587630 0.809130i \(-0.699939\pi\)
−0.587630 + 0.809130i \(0.699939\pi\)
\(462\) 0 0
\(463\) −17.8323 −0.828736 −0.414368 0.910110i \(-0.635997\pi\)
−0.414368 + 0.910110i \(0.635997\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −2.62598 4.54833i −0.121516 0.210472i 0.798850 0.601531i \(-0.205442\pi\)
−0.920366 + 0.391059i \(0.872109\pi\)
\(468\) 0 0
\(469\) 1.84271 3.15116i 0.0850887 0.145507i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 1.25974 + 0.727312i 0.0579230 + 0.0334419i
\(474\) 0 0
\(475\) 26.6749i 1.22393i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 17.2216 29.8287i 0.786875 1.36291i −0.140997 0.990010i \(-0.545031\pi\)
0.927873 0.372898i \(-0.121636\pi\)
\(480\) 0 0
\(481\) 33.8050 19.5173i 1.54138 0.889915i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −10.1665 + 5.86963i −0.461637 + 0.266526i
\(486\) 0 0
\(487\) −12.3207 + 21.3401i −0.558304 + 0.967010i 0.439335 + 0.898324i \(0.355214\pi\)
−0.997638 + 0.0686868i \(0.978119\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 6.90125i 0.311449i 0.987801 + 0.155725i \(0.0497712\pi\)
−0.987801 + 0.155725i \(0.950229\pi\)
\(492\) 0 0
\(493\) 13.3325 + 7.69750i 0.600464 + 0.346678i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −0.127075 + 22.8980i −0.00570010 + 1.02712i
\(498\) 0 0
\(499\) −3.72644 6.45437i −0.166818 0.288938i 0.770481 0.637463i \(-0.220016\pi\)
−0.937299 + 0.348525i \(0.886683\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 0.0638301 0.00284605 0.00142302 0.999999i \(-0.499547\pi\)
0.00142302 + 0.999999i \(0.499547\pi\)
\(504\) 0 0
\(505\) 19.7217 0.877603
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −6.76796 11.7225i −0.299985 0.519588i 0.676148 0.736766i \(-0.263648\pi\)
−0.976132 + 0.217178i \(0.930315\pi\)
\(510\) 0 0
\(511\) 11.5543 + 6.75663i 0.511131 + 0.298896i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 15.6890 + 9.05802i 0.691338 + 0.399144i
\(516\) 0 0
\(517\) 8.65605i 0.380693i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −6.01202 + 10.4131i −0.263391 + 0.456207i −0.967141 0.254241i \(-0.918174\pi\)
0.703750 + 0.710448i \(0.251508\pi\)
\(522\) 0 0
\(523\) −18.1014 + 10.4508i −0.791517 + 0.456983i −0.840496 0.541817i \(-0.817737\pi\)
0.0489792 + 0.998800i \(0.484403\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −3.84467 + 2.21972i −0.167477 + 0.0966926i
\(528\) 0 0
\(529\) 1.60642 2.78241i 0.0698445 0.120974i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 16.4919i 0.714345i
\(534\) 0 0
\(535\) 24.4727 + 14.1293i 1.05805 + 0.610863i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −7.57043 4.48355i −0.326081 0.193120i
\(540\) 0 0
\(541\) −5.07613 8.79211i −0.218240 0.378003i 0.736030 0.676949i \(-0.236698\pi\)
−0.954270 + 0.298946i \(0.903365\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 42.6968 1.82893
\(546\) 0 0
\(547\) 3.99041 0.170618 0.0853088 0.996355i \(-0.472812\pi\)
0.0853088 + 0.996355i \(0.472812\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 33.8014 + 58.5457i 1.43999 + 2.49413i
\(552\) 0 0
\(553\) 19.9965 + 35.0831i 0.850336 + 1.49188i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 6.41758 + 3.70519i 0.271921 + 0.156994i 0.629760 0.776789i \(-0.283153\pi\)
−0.357839 + 0.933783i \(0.616486\pi\)
\(558\) 0 0
\(559\) 6.16462i 0.260736i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 0.851583 1.47499i 0.0358899 0.0621632i −0.847522 0.530759i \(-0.821907\pi\)
0.883412 + 0.468596i \(0.155240\pi\)
\(564\) 0 0
\(565\) 48.1220 27.7832i 2.02451 1.16885i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −14.3339 + 8.27566i −0.600907 + 0.346934i −0.769398 0.638769i \(-0.779444\pi\)
0.168491 + 0.985703i \(0.446110\pi\)
\(570\) 0 0
\(571\) −3.49034 + 6.04545i −0.146066 + 0.252994i −0.929770 0.368140i \(-0.879995\pi\)
0.783704 + 0.621135i \(0.213328\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 17.6569i 0.736342i
\(576\) 0 0
\(577\) −28.5904 16.5067i −1.19023 0.687182i −0.231875 0.972746i \(-0.574486\pi\)
−0.958360 + 0.285564i \(0.907819\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −9.93128 0.0551148i −0.412019 0.00228655i
\(582\) 0 0
\(583\) −8.20441 14.2105i −0.339792 0.588537i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −28.1690 −1.16266 −0.581330 0.813668i \(-0.697467\pi\)
−0.581330 + 0.813668i \(0.697467\pi\)
\(588\) 0 0
\(589\) −19.4945 −0.803259
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −7.04923 12.2096i −0.289477 0.501389i 0.684208 0.729287i \(-0.260148\pi\)
−0.973685 + 0.227898i \(0.926815\pi\)
\(594\) 0 0
\(595\) 13.5456 + 0.0751731i 0.555317 + 0.00308180i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 27.9852 + 16.1573i 1.14345 + 0.660169i 0.947282 0.320402i \(-0.103818\pi\)
0.196164 + 0.980571i \(0.437151\pi\)
\(600\) 0 0
\(601\) 11.9359i 0.486877i −0.969916 0.243439i \(-0.921725\pi\)
0.969916 0.243439i \(-0.0782754\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 13.6906 23.7128i 0.556602 0.964062i
\(606\) 0 0
\(607\) 19.8863 11.4813i 0.807159 0.466013i −0.0388095 0.999247i \(-0.512357\pi\)
0.845968 + 0.533233i \(0.179023\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 31.7692 18.3419i 1.28524 0.742035i
\(612\) 0 0
\(613\) −18.5772 + 32.1766i −0.750325 + 1.29960i 0.197339 + 0.980335i \(0.436770\pi\)
−0.947665 + 0.319267i \(0.896563\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 2.34437i 0.0943806i −0.998886 0.0471903i \(-0.984973\pi\)
0.998886 0.0471903i \(-0.0150267\pi\)
\(618\) 0 0
\(619\) 25.9709 + 14.9943i 1.04386 + 0.602673i 0.920924 0.389742i \(-0.127436\pi\)
0.122936 + 0.992415i \(0.460769\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −9.31040 16.3348i −0.373013 0.654439i
\(624\) 0 0
\(625\) 15.1750 + 26.2838i 0.606999 + 1.05135i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −12.9077 −0.514662
\(630\) 0 0
\(631\) 43.6780 1.73879 0.869396 0.494116i \(-0.164508\pi\)
0.869396 + 0.494116i \(0.164508\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −20.7689 35.9729i −0.824190 1.42754i
\(636\) 0 0
\(637\) −0.413850 + 37.2852i −0.0163973 + 1.47729i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 14.6850 + 8.47841i 0.580024 + 0.334877i 0.761143 0.648584i \(-0.224639\pi\)
−0.181119 + 0.983461i \(0.557972\pi\)
\(642\) 0 0
\(643\) 15.2731i 0.602311i 0.953575 + 0.301156i \(0.0973723\pi\)
−0.953575 + 0.301156i \(0.902628\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −1.66472 + 2.88338i −0.0654469 + 0.113357i −0.896892 0.442249i \(-0.854181\pi\)
0.831445 + 0.555607i \(0.187514\pi\)
\(648\) 0 0
\(649\) 6.82565 3.94079i 0.267930 0.154689i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 11.0441 6.37633i 0.432190 0.249525i −0.268089 0.963394i \(-0.586392\pi\)
0.700279 + 0.713869i \(0.253059\pi\)
\(654\) 0 0
\(655\) 17.6451 30.5622i 0.689452 1.19417i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 45.3768i 1.76763i 0.467837 + 0.883815i \(0.345033\pi\)
−0.467837 + 0.883815i \(0.654967\pi\)
\(660\) 0 0
\(661\) −12.0610 6.96341i −0.469118 0.270845i 0.246753 0.969079i \(-0.420637\pi\)
−0.715870 + 0.698233i \(0.753970\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 51.3477 + 30.0268i 1.99118 + 1.16439i
\(666\) 0 0
\(667\) −22.3741 38.7530i −0.866327 1.50052i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −3.18503 −0.122957
\(672\) 0 0
\(673\) −26.2388 −1.01143 −0.505716 0.862700i \(-0.668772\pi\)
−0.505716 + 0.862700i \(0.668772\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −21.6453 37.4908i −0.831897 1.44089i −0.896532 0.442980i \(-0.853921\pi\)
0.0646342 0.997909i \(-0.479412\pi\)
\(678\) 0 0
\(679\) −0.0592995 + 10.6853i −0.00227571 + 0.410066i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −23.5578 13.6011i −0.901416 0.520433i −0.0237567 0.999718i \(-0.507563\pi\)
−0.877659 + 0.479285i \(0.840896\pi\)
\(684\) 0 0
\(685\) 3.31021i 0.126477i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −34.7698 + 60.2231i −1.32462 + 2.29432i
\(690\) 0 0
\(691\) −3.16588 + 1.82782i −0.120436 + 0.0695336i −0.559008 0.829162i \(-0.688818\pi\)
0.438572 + 0.898696i \(0.355484\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −52.0089 + 30.0274i −1.97281 + 1.13900i
\(696\) 0 0
\(697\) −2.72670 + 4.72279i −0.103281 + 0.178888i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 31.5686i 1.19233i 0.802863 + 0.596164i \(0.203309\pi\)
−0.802863 + 0.596164i \(0.796691\pi\)
\(702\) 0 0
\(703\) −49.0865 28.3401i −1.85133 1.06887i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 9.06182 15.4963i 0.340805 0.582798i
\(708\) 0 0
\(709\) 16.1056 + 27.8956i 0.604857 + 1.04764i 0.992074 + 0.125655i \(0.0401031\pi\)
−0.387217 + 0.921989i \(0.626564\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 12.9040 0.483258
\(714\) 0 0
\(715\) 19.4613 0.727810
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 2.07969 + 3.60213i 0.0775595 + 0.134337i 0.902196 0.431325i \(-0.141954\pi\)
−0.824637 + 0.565662i \(0.808621\pi\)
\(720\) 0 0
\(721\) 14.3262 8.16556i 0.533535 0.304101i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −26.1039 15.0711i −0.969473 0.559725i
\(726\) 0 0
\(727\) 42.3925i 1.57225i 0.618067 + 0.786125i \(0.287916\pi\)
−0.618067 + 0.786125i \(0.712084\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −1.01923 + 1.76536i −0.0376976 + 0.0652942i
\(732\) 0 0
\(733\) −11.7565 + 6.78764i −0.434237 + 0.250707i −0.701150 0.713014i \(-0.747330\pi\)
0.266913 + 0.963721i \(0.413996\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −1.50187 + 0.867105i −0.0553221 + 0.0319402i
\(738\) 0 0
\(739\) −6.46273 + 11.1938i −0.237735 + 0.411770i −0.960064 0.279780i \(-0.909738\pi\)
0.722329 + 0.691550i \(0.243072\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 18.9462i 0.695068i −0.937667 0.347534i \(-0.887019\pi\)
0.937667 0.347534i \(-0.112981\pi\)
\(744\) 0 0
\(745\) −15.3595 8.86784i −0.562730 0.324892i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 22.3469 12.7372i 0.816539 0.465407i
\(750\) 0 0
\(751\) −11.4733 19.8723i −0.418666 0.725150i 0.577140 0.816645i \(-0.304169\pi\)
−0.995806 + 0.0914950i \(0.970835\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 21.3025 0.775279
\(756\) 0 0
\(757\) −6.87010 −0.249698 −0.124849 0.992176i \(-0.539845\pi\)
−0.124849 + 0.992176i \(0.539845\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 18.6164 + 32.2445i 0.674843 + 1.16886i 0.976515 + 0.215451i \(0.0691221\pi\)
−0.301671 + 0.953412i \(0.597545\pi\)
\(762\) 0 0
\(763\) 19.6186 33.5490i 0.710239 1.21455i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −28.9267 16.7008i −1.04448 0.603032i
\(768\) 0 0
\(769\) 18.5757i 0.669856i −0.942244 0.334928i \(-0.891288\pi\)
0.942244 0.334928i \(-0.108712\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 2.99548 5.18832i 0.107740 0.186611i −0.807114 0.590395i \(-0.798972\pi\)
0.914854 + 0.403784i \(0.132305\pi\)
\(774\) 0 0
\(775\) 7.52755 4.34603i 0.270398 0.156114i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −20.7388 + 11.9735i −0.743043 + 0.428996i
\(780\) 0 0
\(781\) 5.43921 9.42099i 0.194630 0.337110i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 11.1698i 0.398669i
\(786\) 0 0
\(787\) 21.5679 + 12.4522i 0.768813 + 0.443875i 0.832451 0.554098i \(-0.186937\pi\)
−0.0636377 + 0.997973i \(0.520270\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 0.280687 50.5778i 0.00998009 1.79834i
\(792\) 0 0
\(793\) 6.74899 + 11.6896i 0.239664 + 0.415110i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −12.4955 −0.442612 −0.221306 0.975204i \(-0.571032\pi\)
−0.221306 + 0.975204i \(0.571032\pi\)
\(798\) 0 0
\(799\) −12.1303 −0.429139
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −3.17939 5.50686i −0.112198 0.194333i
\(804\) 0 0
\(805\) −33.9885 19.8755i −1.19794 0.700521i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 32.8616 + 18.9727i 1.15535 + 0.667043i 0.950186 0.311684i \(-0.100893\pi\)
0.205167 + 0.978727i \(0.434226\pi\)
\(810\) 0 0
\(811\) 38.7451i 1.36053i −0.732968 0.680263i \(-0.761866\pi\)
0.732968 0.680263i \(-0.238134\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 23.1721 40.1353i 0.811683 1.40588i
\(816\) 0 0
\(817\) −7.75207 + 4.47566i −0.271210 + 0.156583i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 6.53706 3.77417i 0.228145 0.131720i −0.381571 0.924340i \(-0.624617\pi\)
0.609716 + 0.792620i \(0.291283\pi\)
\(822\) 0 0
\(823\) −10.6203 + 18.3949i −0.370200 + 0.641205i −0.989596 0.143874i \(-0.954044\pi\)
0.619396 + 0.785078i \(0.287377\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 17.9188i 0.623098i 0.950230 + 0.311549i \(0.100848\pi\)
−0.950230 + 0.311549i \(0.899152\pi\)
\(828\) 0 0
\(829\) −26.9593 15.5649i −0.936334 0.540592i −0.0475245 0.998870i \(-0.515133\pi\)
−0.888809 + 0.458278i \(0.848467\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 6.28309 10.6089i 0.217696 0.367578i
\(834\) 0 0
\(835\) −35.0862 60.7712i −1.21421 2.10307i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 18.3438 0.633297 0.316649 0.948543i \(-0.397442\pi\)
0.316649 + 0.948543i \(0.397442\pi\)
\(840\) 0 0
\(841\) −47.3898 −1.63413
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −22.3446 38.7019i −0.768676 1.33139i
\(846\) 0 0
\(847\) −12.3417 21.6531i −0.424065 0.744008i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 32.4917 + 18.7591i 1.11380 + 0.643054i
\(852\) 0 0
\(853\) 45.2905i 1.55072i 0.631521 + 0.775359i \(0.282431\pi\)
−0.631521 + 0.775359i \(0.717569\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 21.2703 36.8413i 0.726581 1.25847i −0.231739 0.972778i \(-0.574442\pi\)
0.958320 0.285697i \(-0.0922250\pi\)
\(858\) 0 0
\(859\) −20.5225 + 11.8487i −0.700218 + 0.404271i −0.807429 0.589965i \(-0.799141\pi\)
0.107210 + 0.994236i \(0.465808\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −32.4202 + 18.7178i −1.10360 + 0.637162i −0.937163 0.348891i \(-0.886558\pi\)
−0.166433 + 0.986053i \(0.553225\pi\)
\(864\) 0 0
\(865\) −19.7258 + 34.1662i −0.670699 + 1.16168i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 19.1843i 0.650783i
\(870\) 0 0
\(871\) 6.36484 + 3.67474i 0.215664 + 0.124514i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 11.9298 + 0.0662055i 0.403299 + 0.00223816i
\(876\) 0 0
\(877\) −0.532842 0.922910i −0.0179928 0.0311645i 0.856889 0.515501i \(-0.172394\pi\)
−0.874882 + 0.484337i \(0.839061\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 44.4036 1.49600 0.747998 0.663701i \(-0.231015\pi\)
0.747998 + 0.663701i \(0.231015\pi\)
\(882\) 0 0
\(883\) −26.3117 −0.885458 −0.442729 0.896656i \(-0.645990\pi\)
−0.442729 + 0.896656i \(0.645990\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −20.4691 35.4536i −0.687286 1.19041i −0.972713 0.232013i \(-0.925469\pi\)
0.285427 0.958400i \(-0.407865\pi\)
\(888\) 0 0
\(889\) −37.8087 0.209824i −1.26806 0.00703726i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −46.1303 26.6334i −1.54369 0.891251i
\(894\) 0 0
\(895\) 5.45892i 0.182472i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 11.0142 19.0772i 0.367345 0.636261i
\(900\) 0 0
\(901\) 19.9140 11.4974i 0.663433 0.383033i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 13.5170 7.80404i 0.449320 0.259415i
\(906\) 0 0
\(907\) −24.8508 + 43.0428i −0.825156 + 1.42921i 0.0766447 + 0.997058i \(0.475579\pi\)
−0.901800 + 0.432153i \(0.857754\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 14.2074i 0.470713i −0.971909 0.235356i \(-0.924374\pi\)
0.971909 0.235356i \(-0.0756257\pi\)
\(912\) 0 0
\(913\) 4.08605 + 2.35908i 0.135229 + 0.0780743i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −15.9066 27.9075i −0.525282 0.921588i
\(918\) 0 0
\(919\) 21.5364 + 37.3022i 0.710421 + 1.23048i 0.964699 + 0.263354i \(0.0848286\pi\)
−0.254279 + 0.967131i \(0.581838\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −46.1022 −1.51747
\(924\) 0 0
\(925\) 25.2721 0.830942
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −14.8978 25.8038i −0.488782 0.846595i 0.511135 0.859501i \(-0.329225\pi\)
−0.999917 + 0.0129053i \(0.995892\pi\)
\(930\) 0 0
\(931\) 47.1870 26.5495i 1.54649 0.870126i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −5.57312 3.21764i −0.182260 0.105228i
\(936\) 0 0
\(937\) 45.6131i 1.49012i −0.667000 0.745058i \(-0.732422\pi\)
0.667000 0.745058i \(-0.267578\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −7.94839 + 13.7670i −0.259110 + 0.448792i −0.966004 0.258528i \(-0.916763\pi\)
0.706894 + 0.707320i \(0.250096\pi\)
\(942\) 0 0
\(943\) 13.7276 7.92561i 0.447031 0.258093i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 42.1286 24.3229i 1.36900 0.790390i 0.378195 0.925726i \(-0.376545\pi\)
0.990800 + 0.135336i \(0.0432115\pi\)
\(948\) 0 0
\(949\) −13.4741 + 23.3378i −0.437387 + 0.757576i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 3.50929i 0.113677i −0.998383 0.0568386i \(-0.981898\pi\)
0.998383 0.0568386i \(-0.0181020\pi\)
\(954\) 0 0
\(955\) 41.6098 + 24.0234i 1.34646 + 0.777380i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −2.60100 1.52099i −0.0839906 0.0491155i
\(960\) 0 0
\(961\) −12.3238 21.3455i −0.397543 0.688565i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −36.2759 −1.16776
\(966\) 0 0
\(967\) −25.6422 −0.824599 −0.412299 0.911048i \(-0.635274\pi\)
−0.412299 + 0.911048i \(0.635274\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 21.9164 + 37.9603i 0.703331 + 1.21820i 0.967291 + 0.253671i \(0.0816380\pi\)
−0.263960 + 0.964534i \(0.585029\pi\)
\(972\) 0 0
\(973\) −0.303359 + 54.6631i −0.00972525 + 1.75242i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −18.5853 10.7303i −0.594598 0.343291i 0.172315 0.985042i \(-0.444875\pi\)
−0.766913 + 0.641750i \(0.778208\pi\)
\(978\) 0 0
\(979\) 8.93226i 0.285476i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −9.50371 + 16.4609i −0.303121 + 0.525022i −0.976841 0.213965i \(-0.931362\pi\)
0.673720 + 0.738987i \(0.264695\pi\)
\(984\) 0 0
\(985\) 49.6548 28.6682i 1.58213 0.913445i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 5.13131 2.96256i 0.163166 0.0942040i
\(990\) 0 0
\(991\) −6.99686 + 12.1189i −0.222262 + 0.384970i −0.955495 0.295008i \(-0.904678\pi\)
0.733232 + 0.679978i \(0.238011\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 71.4131i 2.26395i
\(996\) 0 0
\(997\) −0.764764 0.441537i −0.0242203 0.0139836i 0.487841 0.872933i \(-0.337785\pi\)
−0.512061 + 0.858949i \(0.671118\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1008.2.bt.d.17.8 16
3.2 odd 2 inner 1008.2.bt.d.17.1 16
4.3 odd 2 504.2.bl.a.17.8 yes 16
7.3 odd 6 7056.2.k.h.881.16 16
7.4 even 3 7056.2.k.h.881.2 16
7.5 odd 6 inner 1008.2.bt.d.593.1 16
12.11 even 2 504.2.bl.a.17.1 16
21.5 even 6 inner 1008.2.bt.d.593.8 16
21.11 odd 6 7056.2.k.h.881.15 16
21.17 even 6 7056.2.k.h.881.1 16
28.3 even 6 3528.2.k.b.881.15 16
28.11 odd 6 3528.2.k.b.881.1 16
28.19 even 6 504.2.bl.a.89.1 yes 16
28.23 odd 6 3528.2.bl.a.1097.8 16
28.27 even 2 3528.2.bl.a.521.1 16
84.11 even 6 3528.2.k.b.881.16 16
84.23 even 6 3528.2.bl.a.1097.1 16
84.47 odd 6 504.2.bl.a.89.8 yes 16
84.59 odd 6 3528.2.k.b.881.2 16
84.83 odd 2 3528.2.bl.a.521.8 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
504.2.bl.a.17.1 16 12.11 even 2
504.2.bl.a.17.8 yes 16 4.3 odd 2
504.2.bl.a.89.1 yes 16 28.19 even 6
504.2.bl.a.89.8 yes 16 84.47 odd 6
1008.2.bt.d.17.1 16 3.2 odd 2 inner
1008.2.bt.d.17.8 16 1.1 even 1 trivial
1008.2.bt.d.593.1 16 7.5 odd 6 inner
1008.2.bt.d.593.8 16 21.5 even 6 inner
3528.2.k.b.881.1 16 28.11 odd 6
3528.2.k.b.881.2 16 84.59 odd 6
3528.2.k.b.881.15 16 28.3 even 6
3528.2.k.b.881.16 16 84.11 even 6
3528.2.bl.a.521.1 16 28.27 even 2
3528.2.bl.a.521.8 16 84.83 odd 2
3528.2.bl.a.1097.1 16 84.23 even 6
3528.2.bl.a.1097.8 16 28.23 odd 6
7056.2.k.h.881.1 16 21.17 even 6
7056.2.k.h.881.2 16 7.4 even 3
7056.2.k.h.881.15 16 21.11 odd 6
7056.2.k.h.881.16 16 7.3 odd 6