Newspace parameters
| Level: | \( N \) | \(=\) | \( 1008 = 2^{4} \cdot 3^{2} \cdot 7 \) |
| Weight: | \( k \) | \(=\) | \( 2 \) |
| Character orbit: | \([\chi]\) | \(=\) | 1008.b (of order \(2\), degree \(1\), minimal) |
Newform invariants
| Self dual: | no |
| Analytic conductor: | \(8.04892052375\) |
| Analytic rank: | \(0\) |
| Dimension: | \(4\) |
| Coefficient field: | \(\Q(\sqrt{-6}, \sqrt{7})\) |
|
|
|
| Defining polynomial: |
\( x^{4} + 24x^{2} + 81 \)
|
| Coefficient ring: | \(\Z[a_1, \ldots, a_{7}]\) |
| Coefficient ring index: | \( 2 \) |
| Twist minimal: | yes |
| Sato-Tate group: | $\mathrm{U}(1)[D_{2}]$ |
Embedding invariants
| Embedding label | 559.3 | ||
| Root | \(-2.01563i\) of defining polynomial | ||
| Character | \(\chi\) | \(=\) | 1008.559 |
| Dual form | 1008.2.b.i.559.1 |
$q$-expansion
Character values
We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1008\mathbb{Z}\right)^\times\).
| \(n\) | \(127\) | \(577\) | \(757\) | \(785\) |
| \(\chi(n)\) | \(-1\) | \(-1\) | \(1\) | \(1\) |
Coefficient data
For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).
(See \(a_n\) instead)
(See \(a_n\) instead)
(See \(a_n\) instead)
(See only \(a_p\))
(See only \(a_p\))
(See only \(a_p\))
| \(n\) | \(a_n\) | \(a_n / n^{(k-1)/2}\) | \( \alpha_n \) | \( \theta_n \) | ||||||
|---|---|---|---|---|---|---|---|---|---|---|
| \(p\) | \(a_p\) | \(a_p / p^{(k-1)/2}\) | \( \alpha_p\) | \( \theta_p \) | ||||||
| \(2\) | 0 | 0 | ||||||||
| \(3\) | 0 | 0 | ||||||||
| \(4\) | 0 | 0 | ||||||||
| \(5\) | 2.44949i | 1.09545i | 0.836660 | + | 0.547723i | \(0.184505\pi\) | ||||
| −0.836660 | + | 0.547723i | \(0.815495\pi\) | |||||||
| \(6\) | 0 | 0 | ||||||||
| \(7\) | −2.64575 | −1.00000 | ||||||||
| \(8\) | 0 | 0 | ||||||||
| \(9\) | 0 | 0 | ||||||||
| \(10\) | 0 | 0 | ||||||||
| \(11\) | 6.48074i | 1.95402i | 0.213201 | + | 0.977008i | \(0.431611\pi\) | ||||
| −0.213201 | + | 0.977008i | \(0.568389\pi\) | |||||||
| \(12\) | 0 | 0 | ||||||||
| \(13\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(14\) | 0 | 0 | ||||||||
| \(15\) | 0 | 0 | ||||||||
| \(16\) | 0 | 0 | ||||||||
| \(17\) | − 7.34847i | − 1.78227i | −0.453743 | − | 0.891133i | \(-0.649911\pi\) | ||||
| 0.453743 | − | 0.891133i | \(-0.350089\pi\) | |||||||
| \(18\) | 0 | 0 | ||||||||
| \(19\) | −5.29150 | −1.21395 | −0.606977 | − | 0.794719i | \(-0.707618\pi\) | ||||
| −0.606977 | + | 0.794719i | \(0.707618\pi\) | |||||||
| \(20\) | 0 | 0 | ||||||||
| \(21\) | 0 | 0 | ||||||||
| \(22\) | 0 | 0 | ||||||||
| \(23\) | − 6.48074i | − 1.35133i | −0.737210 | − | 0.675664i | \(-0.763857\pi\) | ||||
| 0.737210 | − | 0.675664i | \(-0.236143\pi\) | |||||||
| \(24\) | 0 | 0 | ||||||||
| \(25\) | −1.00000 | −0.200000 | ||||||||
| \(26\) | 0 | 0 | ||||||||
| \(27\) | 0 | 0 | ||||||||
| \(28\) | 0 | 0 | ||||||||
| \(29\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(30\) | 0 | 0 | ||||||||
| \(31\) | −10.5830 | −1.90076 | −0.950382 | − | 0.311086i | \(-0.899307\pi\) | ||||
| −0.950382 | + | 0.311086i | \(0.899307\pi\) | |||||||
| \(32\) | 0 | 0 | ||||||||
| \(33\) | 0 | 0 | ||||||||
| \(34\) | 0 | 0 | ||||||||
| \(35\) | − 6.48074i | − 1.09545i | ||||||||
| \(36\) | 0 | 0 | ||||||||
| \(37\) | −8.00000 | −1.31519 | −0.657596 | − | 0.753371i | \(-0.728427\pi\) | ||||
| −0.657596 | + | 0.753371i | \(0.728427\pi\) | |||||||
| \(38\) | 0 | 0 | ||||||||
| \(39\) | 0 | 0 | ||||||||
| \(40\) | 0 | 0 | ||||||||
| \(41\) | 12.2474i | 1.91273i | 0.292174 | + | 0.956365i | \(0.405621\pi\) | ||||
| −0.292174 | + | 0.956365i | \(0.594379\pi\) | |||||||
| \(42\) | 0 | 0 | ||||||||
| \(43\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(44\) | 0 | 0 | ||||||||
| \(45\) | 0 | 0 | ||||||||
| \(46\) | 0 | 0 | ||||||||
| \(47\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(48\) | 0 | 0 | ||||||||
| \(49\) | 7.00000 | 1.00000 | ||||||||
| \(50\) | 0 | 0 | ||||||||
| \(51\) | 0 | 0 | ||||||||
| \(52\) | 0 | 0 | ||||||||
| \(53\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(54\) | 0 | 0 | ||||||||
| \(55\) | −15.8745 | −2.14052 | ||||||||
| \(56\) | 0 | 0 | ||||||||
| \(57\) | 0 | 0 | ||||||||
| \(58\) | 0 | 0 | ||||||||
| \(59\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(60\) | 0 | 0 | ||||||||
| \(61\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(62\) | 0 | 0 | ||||||||
| \(63\) | 0 | 0 | ||||||||
| \(64\) | 0 | 0 | ||||||||
| \(65\) | 0 | 0 | ||||||||
| \(66\) | 0 | 0 | ||||||||
| \(67\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(68\) | 0 | 0 | ||||||||
| \(69\) | 0 | 0 | ||||||||
| \(70\) | 0 | 0 | ||||||||
| \(71\) | 6.48074i | 0.769122i | 0.923099 | + | 0.384561i | \(0.125647\pi\) | ||||
| −0.923099 | + | 0.384561i | \(0.874353\pi\) | |||||||
| \(72\) | 0 | 0 | ||||||||
| \(73\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(74\) | 0 | 0 | ||||||||
| \(75\) | 0 | 0 | ||||||||
| \(76\) | 0 | 0 | ||||||||
| \(77\) | − 17.1464i | − 1.95402i | ||||||||
| \(78\) | 0 | 0 | ||||||||
| \(79\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(80\) | 0 | 0 | ||||||||
| \(81\) | 0 | 0 | ||||||||
| \(82\) | 0 | 0 | ||||||||
| \(83\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(84\) | 0 | 0 | ||||||||
| \(85\) | 18.0000 | 1.95237 | ||||||||
| \(86\) | 0 | 0 | ||||||||
| \(87\) | 0 | 0 | ||||||||
| \(88\) | 0 | 0 | ||||||||
| \(89\) | − 2.44949i | − 0.259645i | −0.991537 | − | 0.129823i | \(-0.958559\pi\) | ||||
| 0.991537 | − | 0.129823i | \(-0.0414408\pi\) | |||||||
| \(90\) | 0 | 0 | ||||||||
| \(91\) | 0 | 0 | ||||||||
| \(92\) | 0 | 0 | ||||||||
| \(93\) | 0 | 0 | ||||||||
| \(94\) | 0 | 0 | ||||||||
| \(95\) | − 12.9615i | − 1.32982i | ||||||||
| \(96\) | 0 | 0 | ||||||||
| \(97\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(98\) | 0 | 0 | ||||||||
| \(99\) | 0 | 0 | ||||||||
| \(100\) | 0 | 0 | ||||||||
| \(101\) | 7.34847i | 0.731200i | 0.930772 | + | 0.365600i | \(0.119136\pi\) | ||||
| −0.930772 | + | 0.365600i | \(0.880864\pi\) | |||||||
| \(102\) | 0 | 0 | ||||||||
| \(103\) | −10.5830 | −1.04277 | −0.521387 | − | 0.853320i | \(-0.674585\pi\) | ||||
| −0.521387 | + | 0.853320i | \(0.674585\pi\) | |||||||
| \(104\) | 0 | 0 | ||||||||
| \(105\) | 0 | 0 | ||||||||
| \(106\) | 0 | 0 | ||||||||
| \(107\) | 19.4422i | 1.87955i | 0.341793 | + | 0.939775i | \(0.388966\pi\) | ||||
| −0.341793 | + | 0.939775i | \(0.611034\pi\) | |||||||
| \(108\) | 0 | 0 | ||||||||
| \(109\) | −10.0000 | −0.957826 | −0.478913 | − | 0.877862i | \(-0.658969\pi\) | ||||
| −0.478913 | + | 0.877862i | \(0.658969\pi\) | |||||||
| \(110\) | 0 | 0 | ||||||||
| \(111\) | 0 | 0 | ||||||||
| \(112\) | 0 | 0 | ||||||||
| \(113\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(114\) | 0 | 0 | ||||||||
| \(115\) | 15.8745 | 1.48031 | ||||||||
| \(116\) | 0 | 0 | ||||||||
| \(117\) | 0 | 0 | ||||||||
| \(118\) | 0 | 0 | ||||||||
| \(119\) | 19.4422i | 1.78227i | ||||||||
| \(120\) | 0 | 0 | ||||||||
| \(121\) | −31.0000 | −2.81818 | ||||||||
| \(122\) | 0 | 0 | ||||||||
| \(123\) | 0 | 0 | ||||||||
| \(124\) | 0 | 0 | ||||||||
| \(125\) | 9.79796i | 0.876356i | ||||||||
| \(126\) | 0 | 0 | ||||||||
| \(127\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(128\) | 0 | 0 | ||||||||
| \(129\) | 0 | 0 | ||||||||
| \(130\) | 0 | 0 | ||||||||
| \(131\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(132\) | 0 | 0 | ||||||||
| \(133\) | 14.0000 | 1.21395 | ||||||||
| \(134\) | 0 | 0 | ||||||||
| \(135\) | 0 | 0 | ||||||||
| \(136\) | 0 | 0 | ||||||||
| \(137\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(138\) | 0 | 0 | ||||||||
| \(139\) | 21.1660 | 1.79528 | 0.897639 | − | 0.440732i | \(-0.145281\pi\) | ||||
| 0.897639 | + | 0.440732i | \(0.145281\pi\) | |||||||
| \(140\) | 0 | 0 | ||||||||
| \(141\) | 0 | 0 | ||||||||
| \(142\) | 0 | 0 | ||||||||
| \(143\) | 0 | 0 | ||||||||
| \(144\) | 0 | 0 | ||||||||
| \(145\) | 0 | 0 | ||||||||
| \(146\) | 0 | 0 | ||||||||
| \(147\) | 0 | 0 | ||||||||
| \(148\) | 0 | 0 | ||||||||
| \(149\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(150\) | 0 | 0 | ||||||||
| \(151\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(152\) | 0 | 0 | ||||||||
| \(153\) | 0 | 0 | ||||||||
| \(154\) | 0 | 0 | ||||||||
| \(155\) | − 25.9230i | − 2.08218i | ||||||||
| \(156\) | 0 | 0 | ||||||||
| \(157\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(158\) | 0 | 0 | ||||||||
| \(159\) | 0 | 0 | ||||||||
| \(160\) | 0 | 0 | ||||||||
| \(161\) | 17.1464i | 1.35133i | ||||||||
| \(162\) | 0 | 0 | ||||||||
| \(163\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(164\) | 0 | 0 | ||||||||
| \(165\) | 0 | 0 | ||||||||
| \(166\) | 0 | 0 | ||||||||
| \(167\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(168\) | 0 | 0 | ||||||||
| \(169\) | 13.0000 | 1.00000 | ||||||||
| \(170\) | 0 | 0 | ||||||||
| \(171\) | 0 | 0 | ||||||||
| \(172\) | 0 | 0 | ||||||||
| \(173\) | − 2.44949i | − 0.186231i | −0.995655 | − | 0.0931156i | \(-0.970317\pi\) | ||||
| 0.995655 | − | 0.0931156i | \(-0.0296826\pi\) | |||||||
| \(174\) | 0 | 0 | ||||||||
| \(175\) | 2.64575 | 0.200000 | ||||||||
| \(176\) | 0 | 0 | ||||||||
| \(177\) | 0 | 0 | ||||||||
| \(178\) | 0 | 0 | ||||||||
| \(179\) | − 19.4422i | − 1.45318i | −0.687071 | − | 0.726590i | \(-0.741104\pi\) | ||||
| 0.687071 | − | 0.726590i | \(-0.258896\pi\) | |||||||
| \(180\) | 0 | 0 | ||||||||
| \(181\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(182\) | 0 | 0 | ||||||||
| \(183\) | 0 | 0 | ||||||||
| \(184\) | 0 | 0 | ||||||||
| \(185\) | − 19.5959i | − 1.44072i | ||||||||
| \(186\) | 0 | 0 | ||||||||
| \(187\) | 47.6235 | 3.48258 | ||||||||
| \(188\) | 0 | 0 | ||||||||
| \(189\) | 0 | 0 | ||||||||
| \(190\) | 0 | 0 | ||||||||
| \(191\) | − 6.48074i | − 0.468930i | −0.972125 | − | 0.234465i | \(-0.924666\pi\) | ||||
| 0.972125 | − | 0.234465i | \(-0.0753338\pi\) | |||||||
| \(192\) | 0 | 0 | ||||||||
| \(193\) | 4.00000 | 0.287926 | 0.143963 | − | 0.989583i | \(-0.454015\pi\) | ||||
| 0.143963 | + | 0.989583i | \(0.454015\pi\) | |||||||
| \(194\) | 0 | 0 | ||||||||
| \(195\) | 0 | 0 | ||||||||
| \(196\) | 0 | 0 | ||||||||
| \(197\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(198\) | 0 | 0 | ||||||||
| \(199\) | −5.29150 | −0.375105 | −0.187552 | − | 0.982255i | \(-0.560055\pi\) | ||||
| −0.187552 | + | 0.982255i | \(0.560055\pi\) | |||||||
| \(200\) | 0 | 0 | ||||||||
| \(201\) | 0 | 0 | ||||||||
| \(202\) | 0 | 0 | ||||||||
| \(203\) | 0 | 0 | ||||||||
| \(204\) | 0 | 0 | ||||||||
| \(205\) | −30.0000 | −2.09529 | ||||||||
| \(206\) | 0 | 0 | ||||||||
| \(207\) | 0 | 0 | ||||||||
| \(208\) | 0 | 0 | ||||||||
| \(209\) | − 34.2929i | − 2.37209i | ||||||||
| \(210\) | 0 | 0 | ||||||||
| \(211\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(212\) | 0 | 0 | ||||||||
| \(213\) | 0 | 0 | ||||||||
| \(214\) | 0 | 0 | ||||||||
| \(215\) | 0 | 0 | ||||||||
| \(216\) | 0 | 0 | ||||||||
| \(217\) | 28.0000 | 1.90076 | ||||||||
| \(218\) | 0 | 0 | ||||||||
| \(219\) | 0 | 0 | ||||||||
| \(220\) | 0 | 0 | ||||||||
| \(221\) | 0 | 0 | ||||||||
| \(222\) | 0 | 0 | ||||||||
| \(223\) | 26.4575 | 1.77173 | 0.885863 | − | 0.463947i | \(-0.153567\pi\) | ||||
| 0.885863 | + | 0.463947i | \(0.153567\pi\) | |||||||
| \(224\) | 0 | 0 | ||||||||
| \(225\) | 0 | 0 | ||||||||
| \(226\) | 0 | 0 | ||||||||
| \(227\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(228\) | 0 | 0 | ||||||||
| \(229\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(230\) | 0 | 0 | ||||||||
| \(231\) | 0 | 0 | ||||||||
| \(232\) | 0 | 0 | ||||||||
| \(233\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(234\) | 0 | 0 | ||||||||
| \(235\) | 0 | 0 | ||||||||
| \(236\) | 0 | 0 | ||||||||
| \(237\) | 0 | 0 | ||||||||
| \(238\) | 0 | 0 | ||||||||
| \(239\) | 19.4422i | 1.25761i | 0.777562 | + | 0.628806i | \(0.216456\pi\) | ||||
| −0.777562 | + | 0.628806i | \(0.783544\pi\) | |||||||
| \(240\) | 0 | 0 | ||||||||
| \(241\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(242\) | 0 | 0 | ||||||||
| \(243\) | 0 | 0 | ||||||||
| \(244\) | 0 | 0 | ||||||||
| \(245\) | 17.1464i | 1.09545i | ||||||||
| \(246\) | 0 | 0 | ||||||||
| \(247\) | 0 | 0 | ||||||||
| \(248\) | 0 | 0 | ||||||||
| \(249\) | 0 | 0 | ||||||||
| \(250\) | 0 | 0 | ||||||||
| \(251\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(252\) | 0 | 0 | ||||||||
| \(253\) | 42.0000 | 2.64052 | ||||||||
| \(254\) | 0 | 0 | ||||||||
| \(255\) | 0 | 0 | ||||||||
| \(256\) | 0 | 0 | ||||||||
| \(257\) | 31.8434i | 1.98633i | 0.116699 | + | 0.993167i | \(0.462769\pi\) | ||||
| −0.116699 | + | 0.993167i | \(0.537231\pi\) | |||||||
| \(258\) | 0 | 0 | ||||||||
| \(259\) | 21.1660 | 1.31519 | ||||||||
| \(260\) | 0 | 0 | ||||||||
| \(261\) | 0 | 0 | ||||||||
| \(262\) | 0 | 0 | ||||||||
| \(263\) | 32.4037i | 1.99810i | 0.0436021 | + | 0.999049i | \(0.486117\pi\) | ||||
| −0.0436021 | + | 0.999049i | \(0.513883\pi\) | |||||||
| \(264\) | 0 | 0 | ||||||||
| \(265\) | 0 | 0 | ||||||||
| \(266\) | 0 | 0 | ||||||||
| \(267\) | 0 | 0 | ||||||||
| \(268\) | 0 | 0 | ||||||||
| \(269\) | 26.9444i | 1.64283i | 0.570332 | + | 0.821414i | \(0.306814\pi\) | ||||
| −0.570332 | + | 0.821414i | \(0.693186\pi\) | |||||||
| \(270\) | 0 | 0 | ||||||||
| \(271\) | −10.5830 | −0.642872 | −0.321436 | − | 0.946931i | \(-0.604165\pi\) | ||||
| −0.321436 | + | 0.946931i | \(0.604165\pi\) | |||||||
| \(272\) | 0 | 0 | ||||||||
| \(273\) | 0 | 0 | ||||||||
| \(274\) | 0 | 0 | ||||||||
| \(275\) | − 6.48074i | − 0.390803i | ||||||||
| \(276\) | 0 | 0 | ||||||||
| \(277\) | −32.0000 | −1.92269 | −0.961347 | − | 0.275340i | \(-0.911209\pi\) | ||||
| −0.961347 | + | 0.275340i | \(0.911209\pi\) | |||||||
| \(278\) | 0 | 0 | ||||||||
| \(279\) | 0 | 0 | ||||||||
| \(280\) | 0 | 0 | ||||||||
| \(281\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(282\) | 0 | 0 | ||||||||
| \(283\) | 26.4575 | 1.57274 | 0.786368 | − | 0.617758i | \(-0.211959\pi\) | ||||
| 0.786368 | + | 0.617758i | \(0.211959\pi\) | |||||||
| \(284\) | 0 | 0 | ||||||||
| \(285\) | 0 | 0 | ||||||||
| \(286\) | 0 | 0 | ||||||||
| \(287\) | − 32.4037i | − 1.91273i | ||||||||
| \(288\) | 0 | 0 | ||||||||
| \(289\) | −37.0000 | −2.17647 | ||||||||
| \(290\) | 0 | 0 | ||||||||
| \(291\) | 0 | 0 | ||||||||
| \(292\) | 0 | 0 | ||||||||
| \(293\) | − 22.0454i | − 1.28791i | −0.765065 | − | 0.643953i | \(-0.777293\pi\) | ||||
| 0.765065 | − | 0.643953i | \(-0.222707\pi\) | |||||||
| \(294\) | 0 | 0 | ||||||||
| \(295\) | 0 | 0 | ||||||||
| \(296\) | 0 | 0 | ||||||||
| \(297\) | 0 | 0 | ||||||||
| \(298\) | 0 | 0 | ||||||||
| \(299\) | 0 | 0 | ||||||||
| \(300\) | 0 | 0 | ||||||||
| \(301\) | 0 | 0 | ||||||||
| \(302\) | 0 | 0 | ||||||||
| \(303\) | 0 | 0 | ||||||||
| \(304\) | 0 | 0 | ||||||||
| \(305\) | 0 | 0 | ||||||||
| \(306\) | 0 | 0 | ||||||||
| \(307\) | −5.29150 | −0.302002 | −0.151001 | − | 0.988534i | \(-0.548250\pi\) | ||||
| −0.151001 | + | 0.988534i | \(0.548250\pi\) | |||||||
| \(308\) | 0 | 0 | ||||||||
| \(309\) | 0 | 0 | ||||||||
| \(310\) | 0 | 0 | ||||||||
| \(311\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(312\) | 0 | 0 | ||||||||
| \(313\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(314\) | 0 | 0 | ||||||||
| \(315\) | 0 | 0 | ||||||||
| \(316\) | 0 | 0 | ||||||||
| \(317\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(318\) | 0 | 0 | ||||||||
| \(319\) | 0 | 0 | ||||||||
| \(320\) | 0 | 0 | ||||||||
| \(321\) | 0 | 0 | ||||||||
| \(322\) | 0 | 0 | ||||||||
| \(323\) | 38.8844i | 2.16359i | ||||||||
| \(324\) | 0 | 0 | ||||||||
| \(325\) | 0 | 0 | ||||||||
| \(326\) | 0 | 0 | ||||||||
| \(327\) | 0 | 0 | ||||||||
| \(328\) | 0 | 0 | ||||||||
| \(329\) | 0 | 0 | ||||||||
| \(330\) | 0 | 0 | ||||||||
| \(331\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(332\) | 0 | 0 | ||||||||
| \(333\) | 0 | 0 | ||||||||
| \(334\) | 0 | 0 | ||||||||
| \(335\) | 0 | 0 | ||||||||
| \(336\) | 0 | 0 | ||||||||
| \(337\) | 2.00000 | 0.108947 | 0.0544735 | − | 0.998515i | \(-0.482652\pi\) | ||||
| 0.0544735 | + | 0.998515i | \(0.482652\pi\) | |||||||
| \(338\) | 0 | 0 | ||||||||
| \(339\) | 0 | 0 | ||||||||
| \(340\) | 0 | 0 | ||||||||
| \(341\) | − 68.5857i | − 3.71412i | ||||||||
| \(342\) | 0 | 0 | ||||||||
| \(343\) | −18.5203 | −1.00000 | ||||||||
| \(344\) | 0 | 0 | ||||||||
| \(345\) | 0 | 0 | ||||||||
| \(346\) | 0 | 0 | ||||||||
| \(347\) | 32.4037i | 1.73952i | 0.493473 | + | 0.869761i | \(0.335727\pi\) | ||||
| −0.493473 | + | 0.869761i | \(0.664273\pi\) | |||||||
| \(348\) | 0 | 0 | ||||||||
| \(349\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(350\) | 0 | 0 | ||||||||
| \(351\) | 0 | 0 | ||||||||
| \(352\) | 0 | 0 | ||||||||
| \(353\) | 26.9444i | 1.43411i | 0.697019 | + | 0.717053i | \(0.254509\pi\) | ||||
| −0.697019 | + | 0.717053i | \(0.745491\pi\) | |||||||
| \(354\) | 0 | 0 | ||||||||
| \(355\) | −15.8745 | −0.842531 | ||||||||
| \(356\) | 0 | 0 | ||||||||
| \(357\) | 0 | 0 | ||||||||
| \(358\) | 0 | 0 | ||||||||
| \(359\) | − 19.4422i | − 1.02612i | −0.858352 | − | 0.513061i | \(-0.828512\pi\) | ||||
| 0.858352 | − | 0.513061i | \(-0.171488\pi\) | |||||||
| \(360\) | 0 | 0 | ||||||||
| \(361\) | 9.00000 | 0.473684 | ||||||||
| \(362\) | 0 | 0 | ||||||||
| \(363\) | 0 | 0 | ||||||||
| \(364\) | 0 | 0 | ||||||||
| \(365\) | 0 | 0 | ||||||||
| \(366\) | 0 | 0 | ||||||||
| \(367\) | 26.4575 | 1.38107 | 0.690535 | − | 0.723299i | \(-0.257375\pi\) | ||||
| 0.690535 | + | 0.723299i | \(0.257375\pi\) | |||||||
| \(368\) | 0 | 0 | ||||||||
| \(369\) | 0 | 0 | ||||||||
| \(370\) | 0 | 0 | ||||||||
| \(371\) | 0 | 0 | ||||||||
| \(372\) | 0 | 0 | ||||||||
| \(373\) | −34.0000 | −1.76045 | −0.880227 | − | 0.474554i | \(-0.842610\pi\) | ||||
| −0.880227 | + | 0.474554i | \(0.842610\pi\) | |||||||
| \(374\) | 0 | 0 | ||||||||
| \(375\) | 0 | 0 | ||||||||
| \(376\) | 0 | 0 | ||||||||
| \(377\) | 0 | 0 | ||||||||
| \(378\) | 0 | 0 | ||||||||
| \(379\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(380\) | 0 | 0 | ||||||||
| \(381\) | 0 | 0 | ||||||||
| \(382\) | 0 | 0 | ||||||||
| \(383\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(384\) | 0 | 0 | ||||||||
| \(385\) | 42.0000 | 2.14052 | ||||||||
| \(386\) | 0 | 0 | ||||||||
| \(387\) | 0 | 0 | ||||||||
| \(388\) | 0 | 0 | ||||||||
| \(389\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(390\) | 0 | 0 | ||||||||
| \(391\) | −47.6235 | −2.40843 | ||||||||
| \(392\) | 0 | 0 | ||||||||
| \(393\) | 0 | 0 | ||||||||
| \(394\) | 0 | 0 | ||||||||
| \(395\) | 0 | 0 | ||||||||
| \(396\) | 0 | 0 | ||||||||
| \(397\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(398\) | 0 | 0 | ||||||||
| \(399\) | 0 | 0 | ||||||||
| \(400\) | 0 | 0 | ||||||||
| \(401\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(402\) | 0 | 0 | ||||||||
| \(403\) | 0 | 0 | ||||||||
| \(404\) | 0 | 0 | ||||||||
| \(405\) | 0 | 0 | ||||||||
| \(406\) | 0 | 0 | ||||||||
| \(407\) | − 51.8459i | − 2.56991i | ||||||||
| \(408\) | 0 | 0 | ||||||||
| \(409\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(410\) | 0 | 0 | ||||||||
| \(411\) | 0 | 0 | ||||||||
| \(412\) | 0 | 0 | ||||||||
| \(413\) | 0 | 0 | ||||||||
| \(414\) | 0 | 0 | ||||||||
| \(415\) | 0 | 0 | ||||||||
| \(416\) | 0 | 0 | ||||||||
| \(417\) | 0 | 0 | ||||||||
| \(418\) | 0 | 0 | ||||||||
| \(419\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(420\) | 0 | 0 | ||||||||
| \(421\) | 40.0000 | 1.94948 | 0.974740 | − | 0.223341i | \(-0.0716964\pi\) | ||||
| 0.974740 | + | 0.223341i | \(0.0716964\pi\) | |||||||
| \(422\) | 0 | 0 | ||||||||
| \(423\) | 0 | 0 | ||||||||
| \(424\) | 0 | 0 | ||||||||
| \(425\) | 7.34847i | 0.356453i | ||||||||
| \(426\) | 0 | 0 | ||||||||
| \(427\) | 0 | 0 | ||||||||
| \(428\) | 0 | 0 | ||||||||
| \(429\) | 0 | 0 | ||||||||
| \(430\) | 0 | 0 | ||||||||
| \(431\) | − 6.48074i | − 0.312166i | −0.987744 | − | 0.156083i | \(-0.950113\pi\) | ||||
| 0.987744 | − | 0.156083i | \(-0.0498868\pi\) | |||||||
| \(432\) | 0 | 0 | ||||||||
| \(433\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(434\) | 0 | 0 | ||||||||
| \(435\) | 0 | 0 | ||||||||
| \(436\) | 0 | 0 | ||||||||
| \(437\) | 34.2929i | 1.64045i | ||||||||
| \(438\) | 0 | 0 | ||||||||
| \(439\) | −5.29150 | −0.252550 | −0.126275 | − | 0.991995i | \(-0.540302\pi\) | ||||
| −0.126275 | + | 0.991995i | \(0.540302\pi\) | |||||||
| \(440\) | 0 | 0 | ||||||||
| \(441\) | 0 | 0 | ||||||||
| \(442\) | 0 | 0 | ||||||||
| \(443\) | − 32.4037i | − 1.53955i | −0.638317 | − | 0.769773i | \(-0.720369\pi\) | ||||
| 0.638317 | − | 0.769773i | \(-0.279631\pi\) | |||||||
| \(444\) | 0 | 0 | ||||||||
| \(445\) | 6.00000 | 0.284427 | ||||||||
| \(446\) | 0 | 0 | ||||||||
| \(447\) | 0 | 0 | ||||||||
| \(448\) | 0 | 0 | ||||||||
| \(449\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(450\) | 0 | 0 | ||||||||
| \(451\) | −79.3725 | −3.73751 | ||||||||
| \(452\) | 0 | 0 | ||||||||
| \(453\) | 0 | 0 | ||||||||
| \(454\) | 0 | 0 | ||||||||
| \(455\) | 0 | 0 | ||||||||
| \(456\) | 0 | 0 | ||||||||
| \(457\) | −22.0000 | −1.02912 | −0.514558 | − | 0.857455i | \(-0.672044\pi\) | ||||
| −0.514558 | + | 0.857455i | \(0.672044\pi\) | |||||||
| \(458\) | 0 | 0 | ||||||||
| \(459\) | 0 | 0 | ||||||||
| \(460\) | 0 | 0 | ||||||||
| \(461\) | 12.2474i | 0.570421i | 0.958465 | + | 0.285210i | \(0.0920634\pi\) | ||||
| −0.958465 | + | 0.285210i | \(0.907937\pi\) | |||||||
| \(462\) | 0 | 0 | ||||||||
| \(463\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(464\) | 0 | 0 | ||||||||
| \(465\) | 0 | 0 | ||||||||
| \(466\) | 0 | 0 | ||||||||
| \(467\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(468\) | 0 | 0 | ||||||||
| \(469\) | 0 | 0 | ||||||||
| \(470\) | 0 | 0 | ||||||||
| \(471\) | 0 | 0 | ||||||||
| \(472\) | 0 | 0 | ||||||||
| \(473\) | 0 | 0 | ||||||||
| \(474\) | 0 | 0 | ||||||||
| \(475\) | 5.29150 | 0.242791 | ||||||||
| \(476\) | 0 | 0 | ||||||||
| \(477\) | 0 | 0 | ||||||||
| \(478\) | 0 | 0 | ||||||||
| \(479\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(480\) | 0 | 0 | ||||||||
| \(481\) | 0 | 0 | ||||||||
| \(482\) | 0 | 0 | ||||||||
| \(483\) | 0 | 0 | ||||||||
| \(484\) | 0 | 0 | ||||||||
| \(485\) | 0 | 0 | ||||||||
| \(486\) | 0 | 0 | ||||||||
| \(487\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(488\) | 0 | 0 | ||||||||
| \(489\) | 0 | 0 | ||||||||
| \(490\) | 0 | 0 | ||||||||
| \(491\) | − 6.48074i | − 0.292472i | −0.989250 | − | 0.146236i | \(-0.953284\pi\) | ||||
| 0.989250 | − | 0.146236i | \(-0.0467158\pi\) | |||||||
| \(492\) | 0 | 0 | ||||||||
| \(493\) | 0 | 0 | ||||||||
| \(494\) | 0 | 0 | ||||||||
| \(495\) | 0 | 0 | ||||||||
| \(496\) | 0 | 0 | ||||||||
| \(497\) | − 17.1464i | − 0.769122i | ||||||||
| \(498\) | 0 | 0 | ||||||||
| \(499\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(500\) | 0 | 0 | ||||||||
| \(501\) | 0 | 0 | ||||||||
| \(502\) | 0 | 0 | ||||||||
| \(503\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(504\) | 0 | 0 | ||||||||
| \(505\) | −18.0000 | −0.800989 | ||||||||
| \(506\) | 0 | 0 | ||||||||
| \(507\) | 0 | 0 | ||||||||
| \(508\) | 0 | 0 | ||||||||
| \(509\) | 36.7423i | 1.62858i | 0.580461 | + | 0.814288i | \(0.302872\pi\) | ||||
| −0.580461 | + | 0.814288i | \(0.697128\pi\) | |||||||
| \(510\) | 0 | 0 | ||||||||
| \(511\) | 0 | 0 | ||||||||
| \(512\) | 0 | 0 | ||||||||
| \(513\) | 0 | 0 | ||||||||
| \(514\) | 0 | 0 | ||||||||
| \(515\) | − 25.9230i | − 1.14230i | ||||||||
| \(516\) | 0 | 0 | ||||||||
| \(517\) | 0 | 0 | ||||||||
| \(518\) | 0 | 0 | ||||||||
| \(519\) | 0 | 0 | ||||||||
| \(520\) | 0 | 0 | ||||||||
| \(521\) | − 41.6413i | − 1.82434i | −0.409812 | − | 0.912170i | \(-0.634406\pi\) | ||||
| 0.409812 | − | 0.912170i | \(-0.365594\pi\) | |||||||
| \(522\) | 0 | 0 | ||||||||
| \(523\) | −42.3320 | −1.85105 | −0.925525 | − | 0.378686i | \(-0.876376\pi\) | ||||
| −0.925525 | + | 0.378686i | \(0.876376\pi\) | |||||||
| \(524\) | 0 | 0 | ||||||||
| \(525\) | 0 | 0 | ||||||||
| \(526\) | 0 | 0 | ||||||||
| \(527\) | 77.7689i | 3.38767i | ||||||||
| \(528\) | 0 | 0 | ||||||||
| \(529\) | −19.0000 | −0.826087 | ||||||||
| \(530\) | 0 | 0 | ||||||||
| \(531\) | 0 | 0 | ||||||||
| \(532\) | 0 | 0 | ||||||||
| \(533\) | 0 | 0 | ||||||||
| \(534\) | 0 | 0 | ||||||||
| \(535\) | −47.6235 | −2.05894 | ||||||||
| \(536\) | 0 | 0 | ||||||||
| \(537\) | 0 | 0 | ||||||||
| \(538\) | 0 | 0 | ||||||||
| \(539\) | 45.3652i | 1.95402i | ||||||||
| \(540\) | 0 | 0 | ||||||||
| \(541\) | −8.00000 | −0.343947 | −0.171973 | − | 0.985102i | \(-0.555014\pi\) | ||||
| −0.171973 | + | 0.985102i | \(0.555014\pi\) | |||||||
| \(542\) | 0 | 0 | ||||||||
| \(543\) | 0 | 0 | ||||||||
| \(544\) | 0 | 0 | ||||||||
| \(545\) | − 24.4949i | − 1.04925i | ||||||||
| \(546\) | 0 | 0 | ||||||||
| \(547\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(548\) | 0 | 0 | ||||||||
| \(549\) | 0 | 0 | ||||||||
| \(550\) | 0 | 0 | ||||||||
| \(551\) | 0 | 0 | ||||||||
| \(552\) | 0 | 0 | ||||||||
| \(553\) | 0 | 0 | ||||||||
| \(554\) | 0 | 0 | ||||||||
| \(555\) | 0 | 0 | ||||||||
| \(556\) | 0 | 0 | ||||||||
| \(557\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(558\) | 0 | 0 | ||||||||
| \(559\) | 0 | 0 | ||||||||
| \(560\) | 0 | 0 | ||||||||
| \(561\) | 0 | 0 | ||||||||
| \(562\) | 0 | 0 | ||||||||
| \(563\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(564\) | 0 | 0 | ||||||||
| \(565\) | 0 | 0 | ||||||||
| \(566\) | 0 | 0 | ||||||||
| \(567\) | 0 | 0 | ||||||||
| \(568\) | 0 | 0 | ||||||||
| \(569\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(570\) | 0 | 0 | ||||||||
| \(571\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(572\) | 0 | 0 | ||||||||
| \(573\) | 0 | 0 | ||||||||
| \(574\) | 0 | 0 | ||||||||
| \(575\) | 6.48074i | 0.270266i | ||||||||
| \(576\) | 0 | 0 | ||||||||
| \(577\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(578\) | 0 | 0 | ||||||||
| \(579\) | 0 | 0 | ||||||||
| \(580\) | 0 | 0 | ||||||||
| \(581\) | 0 | 0 | ||||||||
| \(582\) | 0 | 0 | ||||||||
| \(583\) | 0 | 0 | ||||||||
| \(584\) | 0 | 0 | ||||||||
| \(585\) | 0 | 0 | ||||||||
| \(586\) | 0 | 0 | ||||||||
| \(587\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(588\) | 0 | 0 | ||||||||
| \(589\) | 56.0000 | 2.30744 | ||||||||
| \(590\) | 0 | 0 | ||||||||
| \(591\) | 0 | 0 | ||||||||
| \(592\) | 0 | 0 | ||||||||
| \(593\) | 2.44949i | 0.100588i | 0.998734 | + | 0.0502942i | \(0.0160159\pi\) | ||||
| −0.998734 | + | 0.0502942i | \(0.983984\pi\) | |||||||
| \(594\) | 0 | 0 | ||||||||
| \(595\) | −47.6235 | −1.95237 | ||||||||
| \(596\) | 0 | 0 | ||||||||
| \(597\) | 0 | 0 | ||||||||
| \(598\) | 0 | 0 | ||||||||
| \(599\) | − 45.3652i | − 1.85357i | −0.375591 | − | 0.926786i | \(-0.622560\pi\) | ||||
| 0.375591 | − | 0.926786i | \(-0.377440\pi\) | |||||||
| \(600\) | 0 | 0 | ||||||||
| \(601\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(602\) | 0 | 0 | ||||||||
| \(603\) | 0 | 0 | ||||||||
| \(604\) | 0 | 0 | ||||||||
| \(605\) | − 75.9342i | − 3.08716i | ||||||||
| \(606\) | 0 | 0 | ||||||||
| \(607\) | 26.4575 | 1.07388 | 0.536939 | − | 0.843621i | \(-0.319581\pi\) | ||||
| 0.536939 | + | 0.843621i | \(0.319581\pi\) | |||||||
| \(608\) | 0 | 0 | ||||||||
| \(609\) | 0 | 0 | ||||||||
| \(610\) | 0 | 0 | ||||||||
| \(611\) | 0 | 0 | ||||||||
| \(612\) | 0 | 0 | ||||||||
| \(613\) | −46.0000 | −1.85792 | −0.928961 | − | 0.370177i | \(-0.879297\pi\) | ||||
| −0.928961 | + | 0.370177i | \(0.879297\pi\) | |||||||
| \(614\) | 0 | 0 | ||||||||
| \(615\) | 0 | 0 | ||||||||
| \(616\) | 0 | 0 | ||||||||
| \(617\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(618\) | 0 | 0 | ||||||||
| \(619\) | 21.1660 | 0.850734 | 0.425367 | − | 0.905021i | \(-0.360145\pi\) | ||||
| 0.425367 | + | 0.905021i | \(0.360145\pi\) | |||||||
| \(620\) | 0 | 0 | ||||||||
| \(621\) | 0 | 0 | ||||||||
| \(622\) | 0 | 0 | ||||||||
| \(623\) | 6.48074i | 0.259645i | ||||||||
| \(624\) | 0 | 0 | ||||||||
| \(625\) | −29.0000 | −1.16000 | ||||||||
| \(626\) | 0 | 0 | ||||||||
| \(627\) | 0 | 0 | ||||||||
| \(628\) | 0 | 0 | ||||||||
| \(629\) | 58.7878i | 2.34402i | ||||||||
| \(630\) | 0 | 0 | ||||||||
| \(631\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(632\) | 0 | 0 | ||||||||
| \(633\) | 0 | 0 | ||||||||
| \(634\) | 0 | 0 | ||||||||
| \(635\) | 0 | 0 | ||||||||
| \(636\) | 0 | 0 | ||||||||
| \(637\) | 0 | 0 | ||||||||
| \(638\) | 0 | 0 | ||||||||
| \(639\) | 0 | 0 | ||||||||
| \(640\) | 0 | 0 | ||||||||
| \(641\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(642\) | 0 | 0 | ||||||||
| \(643\) | −37.0405 | −1.46074 | −0.730368 | − | 0.683054i | \(-0.760651\pi\) | ||||
| −0.730368 | + | 0.683054i | \(0.760651\pi\) | |||||||
| \(644\) | 0 | 0 | ||||||||
| \(645\) | 0 | 0 | ||||||||
| \(646\) | 0 | 0 | ||||||||
| \(647\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(648\) | 0 | 0 | ||||||||
| \(649\) | 0 | 0 | ||||||||
| \(650\) | 0 | 0 | ||||||||
| \(651\) | 0 | 0 | ||||||||
| \(652\) | 0 | 0 | ||||||||
| \(653\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(654\) | 0 | 0 | ||||||||
| \(655\) | 0 | 0 | ||||||||
| \(656\) | 0 | 0 | ||||||||
| \(657\) | 0 | 0 | ||||||||
| \(658\) | 0 | 0 | ||||||||
| \(659\) | 45.3652i | 1.76718i | 0.468264 | + | 0.883588i | \(0.344879\pi\) | ||||
| −0.468264 | + | 0.883588i | \(0.655121\pi\) | |||||||
| \(660\) | 0 | 0 | ||||||||
| \(661\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(662\) | 0 | 0 | ||||||||
| \(663\) | 0 | 0 | ||||||||
| \(664\) | 0 | 0 | ||||||||
| \(665\) | 34.2929i | 1.32982i | ||||||||
| \(666\) | 0 | 0 | ||||||||
| \(667\) | 0 | 0 | ||||||||
| \(668\) | 0 | 0 | ||||||||
| \(669\) | 0 | 0 | ||||||||
| \(670\) | 0 | 0 | ||||||||
| \(671\) | 0 | 0 | ||||||||
| \(672\) | 0 | 0 | ||||||||
| \(673\) | −44.0000 | −1.69608 | −0.848038 | − | 0.529936i | \(-0.822216\pi\) | ||||
| −0.848038 | + | 0.529936i | \(0.822216\pi\) | |||||||
| \(674\) | 0 | 0 | ||||||||
| \(675\) | 0 | 0 | ||||||||
| \(676\) | 0 | 0 | ||||||||
| \(677\) | 31.8434i | 1.22384i | 0.790920 | + | 0.611920i | \(0.209603\pi\) | ||||
| −0.790920 | + | 0.611920i | \(0.790397\pi\) | |||||||
| \(678\) | 0 | 0 | ||||||||
| \(679\) | 0 | 0 | ||||||||
| \(680\) | 0 | 0 | ||||||||
| \(681\) | 0 | 0 | ||||||||
| \(682\) | 0 | 0 | ||||||||
| \(683\) | − 32.4037i | − 1.23989i | −0.784644 | − | 0.619947i | \(-0.787154\pi\) | ||||
| 0.784644 | − | 0.619947i | \(-0.212846\pi\) | |||||||
| \(684\) | 0 | 0 | ||||||||
| \(685\) | 0 | 0 | ||||||||
| \(686\) | 0 | 0 | ||||||||
| \(687\) | 0 | 0 | ||||||||
| \(688\) | 0 | 0 | ||||||||
| \(689\) | 0 | 0 | ||||||||
| \(690\) | 0 | 0 | ||||||||
| \(691\) | −42.3320 | −1.61039 | −0.805193 | − | 0.593013i | \(-0.797938\pi\) | ||||
| −0.805193 | + | 0.593013i | \(0.797938\pi\) | |||||||
| \(692\) | 0 | 0 | ||||||||
| \(693\) | 0 | 0 | ||||||||
| \(694\) | 0 | 0 | ||||||||
| \(695\) | 51.8459i | 1.96663i | ||||||||
| \(696\) | 0 | 0 | ||||||||
| \(697\) | 90.0000 | 3.40899 | ||||||||
| \(698\) | 0 | 0 | ||||||||
| \(699\) | 0 | 0 | ||||||||
| \(700\) | 0 | 0 | ||||||||
| \(701\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(702\) | 0 | 0 | ||||||||
| \(703\) | 42.3320 | 1.59658 | ||||||||
| \(704\) | 0 | 0 | ||||||||
| \(705\) | 0 | 0 | ||||||||
| \(706\) | 0 | 0 | ||||||||
| \(707\) | − 19.4422i | − 0.731200i | ||||||||
| \(708\) | 0 | 0 | ||||||||
| \(709\) | 50.0000 | 1.87779 | 0.938895 | − | 0.344204i | \(-0.111851\pi\) | ||||
| 0.938895 | + | 0.344204i | \(0.111851\pi\) | |||||||
| \(710\) | 0 | 0 | ||||||||
| \(711\) | 0 | 0 | ||||||||
| \(712\) | 0 | 0 | ||||||||
| \(713\) | 68.5857i | 2.56856i | ||||||||
| \(714\) | 0 | 0 | ||||||||
| \(715\) | 0 | 0 | ||||||||
| \(716\) | 0 | 0 | ||||||||
| \(717\) | 0 | 0 | ||||||||
| \(718\) | 0 | 0 | ||||||||
| \(719\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(720\) | 0 | 0 | ||||||||
| \(721\) | 28.0000 | 1.04277 | ||||||||
| \(722\) | 0 | 0 | ||||||||
| \(723\) | 0 | 0 | ||||||||
| \(724\) | 0 | 0 | ||||||||
| \(725\) | 0 | 0 | ||||||||
| \(726\) | 0 | 0 | ||||||||
| \(727\) | 52.9150 | 1.96251 | 0.981255 | − | 0.192715i | \(-0.0617292\pi\) | ||||
| 0.981255 | + | 0.192715i | \(0.0617292\pi\) | |||||||
| \(728\) | 0 | 0 | ||||||||
| \(729\) | 0 | 0 | ||||||||
| \(730\) | 0 | 0 | ||||||||
| \(731\) | 0 | 0 | ||||||||
| \(732\) | 0 | 0 | ||||||||
| \(733\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(734\) | 0 | 0 | ||||||||
| \(735\) | 0 | 0 | ||||||||
| \(736\) | 0 | 0 | ||||||||
| \(737\) | 0 | 0 | ||||||||
| \(738\) | 0 | 0 | ||||||||
| \(739\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(740\) | 0 | 0 | ||||||||
| \(741\) | 0 | 0 | ||||||||
| \(742\) | 0 | 0 | ||||||||
| \(743\) | − 32.4037i | − 1.18878i | −0.804178 | − | 0.594388i | \(-0.797394\pi\) | ||||
| 0.804178 | − | 0.594388i | \(-0.202606\pi\) | |||||||
| \(744\) | 0 | 0 | ||||||||
| \(745\) | 0 | 0 | ||||||||
| \(746\) | 0 | 0 | ||||||||
| \(747\) | 0 | 0 | ||||||||
| \(748\) | 0 | 0 | ||||||||
| \(749\) | − 51.4393i | − 1.87955i | ||||||||
| \(750\) | 0 | 0 | ||||||||
| \(751\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(752\) | 0 | 0 | ||||||||
| \(753\) | 0 | 0 | ||||||||
| \(754\) | 0 | 0 | ||||||||
| \(755\) | 0 | 0 | ||||||||
| \(756\) | 0 | 0 | ||||||||
| \(757\) | 2.00000 | 0.0726912 | 0.0363456 | − | 0.999339i | \(-0.488428\pi\) | ||||
| 0.0363456 | + | 0.999339i | \(0.488428\pi\) | |||||||
| \(758\) | 0 | 0 | ||||||||
| \(759\) | 0 | 0 | ||||||||
| \(760\) | 0 | 0 | ||||||||
| \(761\) | − 36.7423i | − 1.33191i | −0.745992 | − | 0.665955i | \(-0.768024\pi\) | ||||
| 0.745992 | − | 0.665955i | \(-0.231976\pi\) | |||||||
| \(762\) | 0 | 0 | ||||||||
| \(763\) | 26.4575 | 0.957826 | ||||||||
| \(764\) | 0 | 0 | ||||||||
| \(765\) | 0 | 0 | ||||||||
| \(766\) | 0 | 0 | ||||||||
| \(767\) | 0 | 0 | ||||||||
| \(768\) | 0 | 0 | ||||||||
| \(769\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(770\) | 0 | 0 | ||||||||
| \(771\) | 0 | 0 | ||||||||
| \(772\) | 0 | 0 | ||||||||
| \(773\) | − 26.9444i | − 0.969122i | −0.874757 | − | 0.484561i | \(-0.838979\pi\) | ||||
| 0.874757 | − | 0.484561i | \(-0.161021\pi\) | |||||||
| \(774\) | 0 | 0 | ||||||||
| \(775\) | 10.5830 | 0.380153 | ||||||||
| \(776\) | 0 | 0 | ||||||||
| \(777\) | 0 | 0 | ||||||||
| \(778\) | 0 | 0 | ||||||||
| \(779\) | − 64.8074i | − 2.32197i | ||||||||
| \(780\) | 0 | 0 | ||||||||
| \(781\) | −42.0000 | −1.50288 | ||||||||
| \(782\) | 0 | 0 | ||||||||
| \(783\) | 0 | 0 | ||||||||
| \(784\) | 0 | 0 | ||||||||
| \(785\) | 0 | 0 | ||||||||
| \(786\) | 0 | 0 | ||||||||
| \(787\) | 21.1660 | 0.754487 | 0.377243 | − | 0.926114i | \(-0.376872\pi\) | ||||
| 0.377243 | + | 0.926114i | \(0.376872\pi\) | |||||||
| \(788\) | 0 | 0 | ||||||||
| \(789\) | 0 | 0 | ||||||||
| \(790\) | 0 | 0 | ||||||||
| \(791\) | 0 | 0 | ||||||||
| \(792\) | 0 | 0 | ||||||||
| \(793\) | 0 | 0 | ||||||||
| \(794\) | 0 | 0 | ||||||||
| \(795\) | 0 | 0 | ||||||||
| \(796\) | 0 | 0 | ||||||||
| \(797\) | − 56.3383i | − 1.99560i | −0.0662682 | − | 0.997802i | \(-0.521109\pi\) | ||||
| 0.0662682 | − | 0.997802i | \(-0.478891\pi\) | |||||||
| \(798\) | 0 | 0 | ||||||||
| \(799\) | 0 | 0 | ||||||||
| \(800\) | 0 | 0 | ||||||||
| \(801\) | 0 | 0 | ||||||||
| \(802\) | 0 | 0 | ||||||||
| \(803\) | 0 | 0 | ||||||||
| \(804\) | 0 | 0 | ||||||||
| \(805\) | −42.0000 | −1.48031 | ||||||||
| \(806\) | 0 | 0 | ||||||||
| \(807\) | 0 | 0 | ||||||||
| \(808\) | 0 | 0 | ||||||||
| \(809\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(810\) | 0 | 0 | ||||||||
| \(811\) | −42.3320 | −1.48648 | −0.743239 | − | 0.669026i | \(-0.766712\pi\) | ||||
| −0.743239 | + | 0.669026i | \(0.766712\pi\) | |||||||
| \(812\) | 0 | 0 | ||||||||
| \(813\) | 0 | 0 | ||||||||
| \(814\) | 0 | 0 | ||||||||
| \(815\) | 0 | 0 | ||||||||
| \(816\) | 0 | 0 | ||||||||
| \(817\) | 0 | 0 | ||||||||
| \(818\) | 0 | 0 | ||||||||
| \(819\) | 0 | 0 | ||||||||
| \(820\) | 0 | 0 | ||||||||
| \(821\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(822\) | 0 | 0 | ||||||||
| \(823\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(824\) | 0 | 0 | ||||||||
| \(825\) | 0 | 0 | ||||||||
| \(826\) | 0 | 0 | ||||||||
| \(827\) | − 45.3652i | − 1.57750i | −0.614713 | − | 0.788751i | \(-0.710728\pi\) | ||||
| 0.614713 | − | 0.788751i | \(-0.289272\pi\) | |||||||
| \(828\) | 0 | 0 | ||||||||
| \(829\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(830\) | 0 | 0 | ||||||||
| \(831\) | 0 | 0 | ||||||||
| \(832\) | 0 | 0 | ||||||||
| \(833\) | − 51.4393i | − 1.78227i | ||||||||
| \(834\) | 0 | 0 | ||||||||
| \(835\) | 0 | 0 | ||||||||
| \(836\) | 0 | 0 | ||||||||
| \(837\) | 0 | 0 | ||||||||
| \(838\) | 0 | 0 | ||||||||
| \(839\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(840\) | 0 | 0 | ||||||||
| \(841\) | −29.0000 | −1.00000 | ||||||||
| \(842\) | 0 | 0 | ||||||||
| \(843\) | 0 | 0 | ||||||||
| \(844\) | 0 | 0 | ||||||||
| \(845\) | 31.8434i | 1.09545i | ||||||||
| \(846\) | 0 | 0 | ||||||||
| \(847\) | 82.0183 | 2.81818 | ||||||||
| \(848\) | 0 | 0 | ||||||||
| \(849\) | 0 | 0 | ||||||||
| \(850\) | 0 | 0 | ||||||||
| \(851\) | 51.8459i | 1.77726i | ||||||||
| \(852\) | 0 | 0 | ||||||||
| \(853\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(854\) | 0 | 0 | ||||||||
| \(855\) | 0 | 0 | ||||||||
| \(856\) | 0 | 0 | ||||||||
| \(857\) | 41.6413i | 1.42244i | 0.702969 | + | 0.711220i | \(0.251857\pi\) | ||||
| −0.702969 | + | 0.711220i | \(0.748143\pi\) | |||||||
| \(858\) | 0 | 0 | ||||||||
| \(859\) | 58.2065 | 1.98598 | 0.992991 | − | 0.118194i | \(-0.0377103\pi\) | ||||
| 0.992991 | + | 0.118194i | \(0.0377103\pi\) | |||||||
| \(860\) | 0 | 0 | ||||||||
| \(861\) | 0 | 0 | ||||||||
| \(862\) | 0 | 0 | ||||||||
| \(863\) | − 58.3267i | − 1.98546i | −0.120351 | − | 0.992731i | \(-0.538402\pi\) | ||||
| 0.120351 | − | 0.992731i | \(-0.461598\pi\) | |||||||
| \(864\) | 0 | 0 | ||||||||
| \(865\) | 6.00000 | 0.204006 | ||||||||
| \(866\) | 0 | 0 | ||||||||
| \(867\) | 0 | 0 | ||||||||
| \(868\) | 0 | 0 | ||||||||
| \(869\) | 0 | 0 | ||||||||
| \(870\) | 0 | 0 | ||||||||
| \(871\) | 0 | 0 | ||||||||
| \(872\) | 0 | 0 | ||||||||
| \(873\) | 0 | 0 | ||||||||
| \(874\) | 0 | 0 | ||||||||
| \(875\) | − 25.9230i | − 0.876356i | ||||||||
| \(876\) | 0 | 0 | ||||||||
| \(877\) | −22.0000 | −0.742887 | −0.371444 | − | 0.928456i | \(-0.621137\pi\) | ||||
| −0.371444 | + | 0.928456i | \(0.621137\pi\) | |||||||
| \(878\) | 0 | 0 | ||||||||
| \(879\) | 0 | 0 | ||||||||
| \(880\) | 0 | 0 | ||||||||
| \(881\) | 56.3383i | 1.89808i | 0.315149 | + | 0.949042i | \(0.397945\pi\) | ||||
| −0.315149 | + | 0.949042i | \(0.602055\pi\) | |||||||
| \(882\) | 0 | 0 | ||||||||
| \(883\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(884\) | 0 | 0 | ||||||||
| \(885\) | 0 | 0 | ||||||||
| \(886\) | 0 | 0 | ||||||||
| \(887\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(888\) | 0 | 0 | ||||||||
| \(889\) | 0 | 0 | ||||||||
| \(890\) | 0 | 0 | ||||||||
| \(891\) | 0 | 0 | ||||||||
| \(892\) | 0 | 0 | ||||||||
| \(893\) | 0 | 0 | ||||||||
| \(894\) | 0 | 0 | ||||||||
| \(895\) | 47.6235 | 1.59188 | ||||||||
| \(896\) | 0 | 0 | ||||||||
| \(897\) | 0 | 0 | ||||||||
| \(898\) | 0 | 0 | ||||||||
| \(899\) | 0 | 0 | ||||||||
| \(900\) | 0 | 0 | ||||||||
| \(901\) | 0 | 0 | ||||||||
| \(902\) | 0 | 0 | ||||||||
| \(903\) | 0 | 0 | ||||||||
| \(904\) | 0 | 0 | ||||||||
| \(905\) | 0 | 0 | ||||||||
| \(906\) | 0 | 0 | ||||||||
| \(907\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(908\) | 0 | 0 | ||||||||
| \(909\) | 0 | 0 | ||||||||
| \(910\) | 0 | 0 | ||||||||
| \(911\) | 58.3267i | 1.93245i | 0.257702 | + | 0.966224i | \(0.417035\pi\) | ||||
| −0.257702 | + | 0.966224i | \(0.582965\pi\) | |||||||
| \(912\) | 0 | 0 | ||||||||
| \(913\) | 0 | 0 | ||||||||
| \(914\) | 0 | 0 | ||||||||
| \(915\) | 0 | 0 | ||||||||
| \(916\) | 0 | 0 | ||||||||
| \(917\) | 0 | 0 | ||||||||
| \(918\) | 0 | 0 | ||||||||
| \(919\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(920\) | 0 | 0 | ||||||||
| \(921\) | 0 | 0 | ||||||||
| \(922\) | 0 | 0 | ||||||||
| \(923\) | 0 | 0 | ||||||||
| \(924\) | 0 | 0 | ||||||||
| \(925\) | 8.00000 | 0.263038 | ||||||||
| \(926\) | 0 | 0 | ||||||||
| \(927\) | 0 | 0 | ||||||||
| \(928\) | 0 | 0 | ||||||||
| \(929\) | − 36.7423i | − 1.20548i | −0.797939 | − | 0.602739i | \(-0.794076\pi\) | ||||
| 0.797939 | − | 0.602739i | \(-0.205924\pi\) | |||||||
| \(930\) | 0 | 0 | ||||||||
| \(931\) | −37.0405 | −1.21395 | ||||||||
| \(932\) | 0 | 0 | ||||||||
| \(933\) | 0 | 0 | ||||||||
| \(934\) | 0 | 0 | ||||||||
| \(935\) | 116.653i | 3.81497i | ||||||||
| \(936\) | 0 | 0 | ||||||||
| \(937\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(938\) | 0 | 0 | ||||||||
| \(939\) | 0 | 0 | ||||||||
| \(940\) | 0 | 0 | ||||||||
| \(941\) | 61.2372i | 1.99628i | 0.0609873 | + | 0.998139i | \(0.480575\pi\) | ||||
| −0.0609873 | + | 0.998139i | \(0.519425\pi\) | |||||||
| \(942\) | 0 | 0 | ||||||||
| \(943\) | 79.3725 | 2.58473 | ||||||||
| \(944\) | 0 | 0 | ||||||||
| \(945\) | 0 | 0 | ||||||||
| \(946\) | 0 | 0 | ||||||||
| \(947\) | 32.4037i | 1.05298i | 0.850182 | + | 0.526489i | \(0.176492\pi\) | ||||
| −0.850182 | + | 0.526489i | \(0.823508\pi\) | |||||||
| \(948\) | 0 | 0 | ||||||||
| \(949\) | 0 | 0 | ||||||||
| \(950\) | 0 | 0 | ||||||||
| \(951\) | 0 | 0 | ||||||||
| \(952\) | 0 | 0 | ||||||||
| \(953\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(954\) | 0 | 0 | ||||||||
| \(955\) | 15.8745 | 0.513687 | ||||||||
| \(956\) | 0 | 0 | ||||||||
| \(957\) | 0 | 0 | ||||||||
| \(958\) | 0 | 0 | ||||||||
| \(959\) | 0 | 0 | ||||||||
| \(960\) | 0 | 0 | ||||||||
| \(961\) | 81.0000 | 2.61290 | ||||||||
| \(962\) | 0 | 0 | ||||||||
| \(963\) | 0 | 0 | ||||||||
| \(964\) | 0 | 0 | ||||||||
| \(965\) | 9.79796i | 0.315407i | ||||||||
| \(966\) | 0 | 0 | ||||||||
| \(967\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(968\) | 0 | 0 | ||||||||
| \(969\) | 0 | 0 | ||||||||
| \(970\) | 0 | 0 | ||||||||
| \(971\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(972\) | 0 | 0 | ||||||||
| \(973\) | −56.0000 | −1.79528 | ||||||||
| \(974\) | 0 | 0 | ||||||||
| \(975\) | 0 | 0 | ||||||||
| \(976\) | 0 | 0 | ||||||||
| \(977\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(978\) | 0 | 0 | ||||||||
| \(979\) | 15.8745 | 0.507351 | ||||||||
| \(980\) | 0 | 0 | ||||||||
| \(981\) | 0 | 0 | ||||||||
| \(982\) | 0 | 0 | ||||||||
| \(983\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(984\) | 0 | 0 | ||||||||
| \(985\) | 0 | 0 | ||||||||
| \(986\) | 0 | 0 | ||||||||
| \(987\) | 0 | 0 | ||||||||
| \(988\) | 0 | 0 | ||||||||
| \(989\) | 0 | 0 | ||||||||
| \(990\) | 0 | 0 | ||||||||
| \(991\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(992\) | 0 | 0 | ||||||||
| \(993\) | 0 | 0 | ||||||||
| \(994\) | 0 | 0 | ||||||||
| \(995\) | − 12.9615i | − 0.410907i | ||||||||
| \(996\) | 0 | 0 | ||||||||
| \(997\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(998\) | 0 | 0 | ||||||||
| \(999\) | 0 | 0 | ||||||||
(See \(a_n\) instead)
(See \(a_n\) instead)
(See \(a_n\) instead)
(See only \(a_p\))
(See only \(a_p\))
(See only \(a_p\))
Twists
| By twisting character | |||||||
|---|---|---|---|---|---|---|---|
| Char | Parity | Ord | Type | Twist | Min | Dim | |
| 1.1 | even | 1 | trivial | 1008.2.b.i.559.3 | yes | 4 | |
| 3.2 | odd | 2 | inner | 1008.2.b.i.559.1 | ✓ | 4 | |
| 4.3 | odd | 2 | inner | 1008.2.b.i.559.4 | yes | 4 | |
| 7.6 | odd | 2 | inner | 1008.2.b.i.559.2 | yes | 4 | |
| 8.3 | odd | 2 | 4032.2.b.l.3583.2 | 4 | |||
| 8.5 | even | 2 | 4032.2.b.l.3583.1 | 4 | |||
| 12.11 | even | 2 | inner | 1008.2.b.i.559.2 | yes | 4 | |
| 21.20 | even | 2 | inner | 1008.2.b.i.559.4 | yes | 4 | |
| 24.5 | odd | 2 | 4032.2.b.l.3583.3 | 4 | |||
| 24.11 | even | 2 | 4032.2.b.l.3583.4 | 4 | |||
| 28.27 | even | 2 | inner | 1008.2.b.i.559.1 | ✓ | 4 | |
| 56.13 | odd | 2 | 4032.2.b.l.3583.4 | 4 | |||
| 56.27 | even | 2 | 4032.2.b.l.3583.3 | 4 | |||
| 84.83 | odd | 2 | CM | 1008.2.b.i.559.3 | yes | 4 | |
| 168.83 | odd | 2 | 4032.2.b.l.3583.1 | 4 | |||
| 168.125 | even | 2 | 4032.2.b.l.3583.2 | 4 | |||
| By twisted newform | |||||||
|---|---|---|---|---|---|---|---|
| Twist | Min | Dim | Char | Parity | Ord | Type | |
| 1008.2.b.i.559.1 | ✓ | 4 | 3.2 | odd | 2 | inner | |
| 1008.2.b.i.559.1 | ✓ | 4 | 28.27 | even | 2 | inner | |
| 1008.2.b.i.559.2 | yes | 4 | 7.6 | odd | 2 | inner | |
| 1008.2.b.i.559.2 | yes | 4 | 12.11 | even | 2 | inner | |
| 1008.2.b.i.559.3 | yes | 4 | 1.1 | even | 1 | trivial | |
| 1008.2.b.i.559.3 | yes | 4 | 84.83 | odd | 2 | CM | |
| 1008.2.b.i.559.4 | yes | 4 | 4.3 | odd | 2 | inner | |
| 1008.2.b.i.559.4 | yes | 4 | 21.20 | even | 2 | inner | |
| 4032.2.b.l.3583.1 | 4 | 8.5 | even | 2 | |||
| 4032.2.b.l.3583.1 | 4 | 168.83 | odd | 2 | |||
| 4032.2.b.l.3583.2 | 4 | 8.3 | odd | 2 | |||
| 4032.2.b.l.3583.2 | 4 | 168.125 | even | 2 | |||
| 4032.2.b.l.3583.3 | 4 | 24.5 | odd | 2 | |||
| 4032.2.b.l.3583.3 | 4 | 56.27 | even | 2 | |||
| 4032.2.b.l.3583.4 | 4 | 24.11 | even | 2 | |||
| 4032.2.b.l.3583.4 | 4 | 56.13 | odd | 2 | |||