Properties

Label 1008.1.dc.a
Level 10081008
Weight 11
Character orbit 1008.dc
Analytic conductor 0.5030.503
Analytic rank 00
Dimension 44
Projective image S4S_{4}
CM/RM no
Inner twists 44

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1008,1,Mod(305,1008)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1008, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 3, 4])) N = Newforms(chi, 1, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1008.305"); S:= CuspForms(chi, 1); N := Newforms(S);
 
Level: N N == 1008=24327 1008 = 2^{4} \cdot 3^{2} \cdot 7
Weight: k k == 1 1
Character orbit: [χ][\chi] == 1008.dc (of order 66, degree 22, not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 0.5030575327340.503057532734
Analytic rank: 00
Dimension: 44
Relative dimension: 22 over Q(ζ6)\Q(\zeta_{6})
Coefficient field: Q(2,3)\Q(\sqrt{-2}, \sqrt{-3})
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: x42x2+4 x^{4} - 2x^{2} + 4 Copy content Toggle raw display
Coefficient ring: Z[a1,,a7]\Z[a_1, \ldots, a_{7}]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 504)
Projective image: S4S_{4}
Projective field: Galois closure of 4.2.21168.2

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,β2,β31,\beta_1,\beta_2,\beta_3 for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+β1q5+(β21)q7+(β3+β1)q11q13+(β21)q19+β2q25β2q31+(β3β1)q35+(β21)q37++(β3β1)q95+O(q100) q + \beta_1 q^{5} + (\beta_{2} - 1) q^{7} + ( - \beta_{3} + \beta_1) q^{11} - q^{13} + (\beta_{2} - 1) q^{19} + \beta_{2} q^{25} - \beta_{2} q^{31} + (\beta_{3} - \beta_1) q^{35} + (\beta_{2} - 1) q^{37}+ \cdots + (\beta_{3} - \beta_1) q^{95}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 4q2q74q132q19+2q252q312q37+4q432q49+8q552q672q73+2q79+2q91+O(q100) 4 q - 2 q^{7} - 4 q^{13} - 2 q^{19} + 2 q^{25} - 2 q^{31} - 2 q^{37} + 4 q^{43} - 2 q^{49} + 8 q^{55} - 2 q^{67} - 2 q^{73} + 2 q^{79} + 2 q^{91}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x42x2+4 x^{4} - 2x^{2} + 4 : Copy content Toggle raw display

β1\beta_{1}== ν \nu Copy content Toggle raw display
β2\beta_{2}== (ν2)/2 ( \nu^{2} ) / 2 Copy content Toggle raw display
β3\beta_{3}== (ν3)/2 ( \nu^{3} ) / 2 Copy content Toggle raw display
ν\nu== β1 \beta_1 Copy content Toggle raw display
ν2\nu^{2}== 2β2 2\beta_{2} Copy content Toggle raw display
ν3\nu^{3}== 2β3 2\beta_{3} Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/1008Z)×\left(\mathbb{Z}/1008\mathbb{Z}\right)^\times.

nn 127127 577577 757757 785785
χ(n)\chi(n) 11 1+β2-1 + \beta_{2} 11 1-1

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
305.1
−1.22474 + 0.707107i
1.22474 0.707107i
−1.22474 0.707107i
1.22474 + 0.707107i
0 0 0 −1.22474 + 0.707107i 0 −0.500000 0.866025i 0 0 0
305.2 0 0 0 1.22474 0.707107i 0 −0.500000 0.866025i 0 0 0
737.1 0 0 0 −1.22474 0.707107i 0 −0.500000 + 0.866025i 0 0 0
737.2 0 0 0 1.22474 + 0.707107i 0 −0.500000 + 0.866025i 0 0 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 inner
7.c even 3 1 inner
21.h odd 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1008.1.dc.a 4
3.b odd 2 1 inner 1008.1.dc.a 4
4.b odd 2 1 504.1.cu.a 4
7.c even 3 1 inner 1008.1.dc.a 4
12.b even 2 1 504.1.cu.a 4
21.h odd 6 1 inner 1008.1.dc.a 4
28.d even 2 1 3528.1.cu.a 4
28.f even 6 1 3528.1.d.b 2
28.f even 6 1 3528.1.cu.a 4
28.g odd 6 1 504.1.cu.a 4
28.g odd 6 1 3528.1.d.a 2
84.h odd 2 1 3528.1.cu.a 4
84.j odd 6 1 3528.1.d.b 2
84.j odd 6 1 3528.1.cu.a 4
84.n even 6 1 504.1.cu.a 4
84.n even 6 1 3528.1.d.a 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
504.1.cu.a 4 4.b odd 2 1
504.1.cu.a 4 12.b even 2 1
504.1.cu.a 4 28.g odd 6 1
504.1.cu.a 4 84.n even 6 1
1008.1.dc.a 4 1.a even 1 1 trivial
1008.1.dc.a 4 3.b odd 2 1 inner
1008.1.dc.a 4 7.c even 3 1 inner
1008.1.dc.a 4 21.h odd 6 1 inner
3528.1.d.a 2 28.g odd 6 1
3528.1.d.a 2 84.n even 6 1
3528.1.d.b 2 28.f even 6 1
3528.1.d.b 2 84.j odd 6 1
3528.1.cu.a 4 28.d even 2 1
3528.1.cu.a 4 28.f even 6 1
3528.1.cu.a 4 84.h odd 2 1
3528.1.cu.a 4 84.j odd 6 1

Hecke kernels

This newform subspace is the entire newspace S1new(1008,[χ])S_{1}^{\mathrm{new}}(1008, [\chi]).

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T4 T^{4} Copy content Toggle raw display
33 T4 T^{4} Copy content Toggle raw display
55 T42T2+4 T^{4} - 2T^{2} + 4 Copy content Toggle raw display
77 (T2+T+1)2 (T^{2} + T + 1)^{2} Copy content Toggle raw display
1111 T42T2+4 T^{4} - 2T^{2} + 4 Copy content Toggle raw display
1313 (T+1)4 (T + 1)^{4} Copy content Toggle raw display
1717 T4 T^{4} Copy content Toggle raw display
1919 (T2+T+1)2 (T^{2} + T + 1)^{2} Copy content Toggle raw display
2323 T4 T^{4} Copy content Toggle raw display
2929 T4 T^{4} Copy content Toggle raw display
3131 (T2+T+1)2 (T^{2} + T + 1)^{2} Copy content Toggle raw display
3737 (T2+T+1)2 (T^{2} + T + 1)^{2} Copy content Toggle raw display
4141 (T2+2)2 (T^{2} + 2)^{2} Copy content Toggle raw display
4343 (T1)4 (T - 1)^{4} Copy content Toggle raw display
4747 T42T2+4 T^{4} - 2T^{2} + 4 Copy content Toggle raw display
5353 T4 T^{4} Copy content Toggle raw display
5959 T4 T^{4} Copy content Toggle raw display
6161 T4 T^{4} Copy content Toggle raw display
6767 (T2+T+1)2 (T^{2} + T + 1)^{2} Copy content Toggle raw display
7171 (T2+2)2 (T^{2} + 2)^{2} Copy content Toggle raw display
7373 (T2+T+1)2 (T^{2} + T + 1)^{2} Copy content Toggle raw display
7979 (T2T+1)2 (T^{2} - T + 1)^{2} Copy content Toggle raw display
8383 (T2+2)2 (T^{2} + 2)^{2} Copy content Toggle raw display
8989 T4 T^{4} Copy content Toggle raw display
9797 T4 T^{4} Copy content Toggle raw display
show more
show less