gp:[N,k,chi] = [100129,2,Mod(1,100129)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("100129.1");
S:= CuspForms(chi, 2);
N := Newforms(S);
sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(100129, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0]))
N = Newforms(chi, 2, names="a")
Newform invariants
sage:traces = [4229]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
gp:f = lf[1] \\ Warning: the index may be different
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
| \( p \) |
Sign
|
| \(100129\) |
\( -1 \) |
This newform does not admit any (nontrivial) inner twists.