gp:[N,k,chi] = [10005,2,Mod(1,10005)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("10005.1");
S:= CuspForms(chi, 2);
N := Newforms(S);
sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(10005, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
N = Newforms(chi, 2, names="a")
Newform invariants
sage:traces = [1,1,-1,-1,1,-1,0,-3,1,1,4,1,-2,0,-1,-1,-6,1,4,-1,0,4,-1,3,1,
-2,-1,0,1,-1,4,5,-4,-6,0,-1,-2,4,2,-3,-6,0,0,-4,1,-1,0,1,-7,1,6,2,-10,
-1,4,0,-4,1,12,1,-6,4,0,7,-2,-4,4,6,1,0,0,-3,-10,-2,-1,-4,0,2,8,-1,1,-6,
12,0,-6,0,-1,-12,6,1,0,1,-4,0,4,-5,-6,-7,4,-1]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(None)] == traces)
gp:f = lf[1] \\ Warning: the index may be different
sage:f.q_expansion() # note that sage often uses an isomorphic number field
gp:mfcoefs(f, 20)
| \( p \) |
Sign
|
| \(3\) |
\( +1 \) |
| \(5\) |
\( -1 \) |
| \(23\) |
\( +1 \) |
| \(29\) |
\( -1 \) |
This newform does not admit any (nontrivial) inner twists.
Twists of this newform have not been computed.