# Properties

 Label 10000.2.a.c Level $10000$ Weight $2$ Character orbit 10000.a Self dual yes Analytic conductor $79.850$ Analytic rank $0$ Dimension $2$ CM no Inner twists $1$

# Related objects

Show commands: Magma / PariGP / SageMath

## Newspace parameters

comment: Compute space of new eigenforms

[N,k,chi] = [10000,2,Mod(1,10000)]

mf = mfinit([N,k,chi],0)

lf = mfeigenbasis(mf)

from sage.modular.dirichlet import DirichletCharacter

H = DirichletGroup(10000, base_ring=CyclotomicField(2))

chi = DirichletCharacter(H, H._module([0, 0, 0]))

N = Newforms(chi, 2, names="a")

//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code

chi := DirichletCharacter("10000.1");

S:= CuspForms(chi, 2);

N := Newforms(S);

 Level: $$N$$ $$=$$ $$10000 = 2^{4} \cdot 5^{4}$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 10000.a (trivial)

## Newform invariants

comment: select newform

sage: f = N[0] # Warning: the index may be different

gp: f = lf[1] \\ Warning: the index may be different

 Self dual: yes Analytic conductor: $$79.8504020213$$ Analytic rank: $$0$$ Dimension: $$2$$ Coefficient field: $$\Q(\sqrt{5})$$ comment: defining polynomial  gp: f.mod \\ as an extension of the character field Defining polynomial: $$x^{2} - x - 1$$ x^2 - x - 1 Coefficient ring: $$\Z[a_1, \ldots, a_{7}]$$ Coefficient ring index: $$1$$ Twist minimal: no (minimal twist has level 25) Fricke sign: $$-1$$ Sato-Tate group: $\mathrm{SU}(2)$

## $q$-expansion

comment: q-expansion

sage: f.q_expansion() # note that sage often uses an isomorphic number field

gp: mfcoefs(f, 20)

Coefficients of the $$q$$-expansion are expressed in terms of $$\beta = \frac{1}{2}(1 + \sqrt{5})$$. We also show the integral $$q$$-expansion of the trace form.

 $$f(q)$$ $$=$$ $$q - q^{3} + \beta q^{7} - 2 q^{9}+O(q^{10})$$ q - q^3 + b * q^7 - 2 * q^9 $$q - q^{3} + \beta q^{7} - 2 q^{9} + ( - 2 \beta + 4) q^{11} - 3 \beta q^{13} + (2 \beta - 4) q^{17} + (3 \beta + 1) q^{19} - \beta q^{21} + ( - 2 \beta - 5) q^{23} + 5 q^{27} + (\beta - 3) q^{29} + 3 q^{31} + (2 \beta - 4) q^{33} + (2 \beta + 1) q^{37} + 3 \beta q^{39} + ( - 2 \beta - 2) q^{41} + ( - 3 \beta + 3) q^{43} + \beta q^{47} + (\beta - 6) q^{49} + ( - 2 \beta + 4) q^{51} + (4 \beta - 1) q^{53} + ( - 3 \beta - 1) q^{57} + ( - 3 \beta + 9) q^{59} + ( - 6 \beta + 5) q^{61} - 2 \beta q^{63} + ( - 2 \beta - 6) q^{67} + (2 \beta + 5) q^{69} + ( - \beta + 6) q^{71} - 9 q^{73} + (2 \beta - 2) q^{77} + ( - 5 \beta + 5) q^{79} + q^{81} + ( - 2 \beta + 5) q^{83} + ( - \beta + 3) q^{87} + (8 \beta - 4) q^{89} + ( - 3 \beta - 3) q^{91} - 3 q^{93} + (3 \beta - 2) q^{97} + (4 \beta - 8) q^{99} +O(q^{100})$$ q - q^3 + b * q^7 - 2 * q^9 + (-2*b + 4) * q^11 - 3*b * q^13 + (2*b - 4) * q^17 + (3*b + 1) * q^19 - b * q^21 + (-2*b - 5) * q^23 + 5 * q^27 + (b - 3) * q^29 + 3 * q^31 + (2*b - 4) * q^33 + (2*b + 1) * q^37 + 3*b * q^39 + (-2*b - 2) * q^41 + (-3*b + 3) * q^43 + b * q^47 + (b - 6) * q^49 + (-2*b + 4) * q^51 + (4*b - 1) * q^53 + (-3*b - 1) * q^57 + (-3*b + 9) * q^59 + (-6*b + 5) * q^61 - 2*b * q^63 + (-2*b - 6) * q^67 + (2*b + 5) * q^69 + (-b + 6) * q^71 - 9 * q^73 + (2*b - 2) * q^77 + (-5*b + 5) * q^79 + q^81 + (-2*b + 5) * q^83 + (-b + 3) * q^87 + (8*b - 4) * q^89 + (-3*b - 3) * q^91 - 3 * q^93 + (3*b - 2) * q^97 + (4*b - 8) * q^99 $$\operatorname{Tr}(f)(q)$$ $$=$$ $$2 q - 2 q^{3} + q^{7} - 4 q^{9}+O(q^{10})$$ 2 * q - 2 * q^3 + q^7 - 4 * q^9 $$2 q - 2 q^{3} + q^{7} - 4 q^{9} + 6 q^{11} - 3 q^{13} - 6 q^{17} + 5 q^{19} - q^{21} - 12 q^{23} + 10 q^{27} - 5 q^{29} + 6 q^{31} - 6 q^{33} + 4 q^{37} + 3 q^{39} - 6 q^{41} + 3 q^{43} + q^{47} - 11 q^{49} + 6 q^{51} + 2 q^{53} - 5 q^{57} + 15 q^{59} + 4 q^{61} - 2 q^{63} - 14 q^{67} + 12 q^{69} + 11 q^{71} - 18 q^{73} - 2 q^{77} + 5 q^{79} + 2 q^{81} + 8 q^{83} + 5 q^{87} - 9 q^{91} - 6 q^{93} - q^{97} - 12 q^{99}+O(q^{100})$$ 2 * q - 2 * q^3 + q^7 - 4 * q^9 + 6 * q^11 - 3 * q^13 - 6 * q^17 + 5 * q^19 - q^21 - 12 * q^23 + 10 * q^27 - 5 * q^29 + 6 * q^31 - 6 * q^33 + 4 * q^37 + 3 * q^39 - 6 * q^41 + 3 * q^43 + q^47 - 11 * q^49 + 6 * q^51 + 2 * q^53 - 5 * q^57 + 15 * q^59 + 4 * q^61 - 2 * q^63 - 14 * q^67 + 12 * q^69 + 11 * q^71 - 18 * q^73 - 2 * q^77 + 5 * q^79 + 2 * q^81 + 8 * q^83 + 5 * q^87 - 9 * q^91 - 6 * q^93 - q^97 - 12 * q^99

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field

gp: mfembed(f)

Label   $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
1.1
 −0.618034 1.61803
0 −1.00000 0 0 0 −0.618034 0 −2.00000 0
1.2 0 −1.00000 0 0 0 1.61803 0 −2.00000 0
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Atkin-Lehner signs

$$p$$ Sign
$$2$$ $$-1$$
$$5$$ $$1$$

## Inner twists

This newform does not admit any (nontrivial) inner twists.

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 10000.2.a.c 2
4.b odd 2 1 625.2.a.b 2
5.b even 2 1 10000.2.a.l 2
12.b even 2 1 5625.2.a.f 2
20.d odd 2 1 625.2.a.c 2
20.e even 4 2 625.2.b.a 4
25.d even 5 2 400.2.u.b 4
60.h even 2 1 5625.2.a.d 2
100.h odd 10 2 125.2.d.a 4
100.h odd 10 2 625.2.d.b 4
100.j odd 10 2 25.2.d.a 4
100.j odd 10 2 625.2.d.h 4
100.l even 20 4 125.2.e.a 8
100.l even 20 4 625.2.e.c 8
300.n even 10 2 225.2.h.b 4

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
25.2.d.a 4 100.j odd 10 2
125.2.d.a 4 100.h odd 10 2
125.2.e.a 8 100.l even 20 4
225.2.h.b 4 300.n even 10 2
400.2.u.b 4 25.d even 5 2
625.2.a.b 2 4.b odd 2 1
625.2.a.c 2 20.d odd 2 1
625.2.b.a 4 20.e even 4 2
625.2.d.b 4 100.h odd 10 2
625.2.d.h 4 100.j odd 10 2
625.2.e.c 8 100.l even 20 4
5625.2.a.d 2 60.h even 2 1
5625.2.a.f 2 12.b even 2 1
10000.2.a.c 2 1.a even 1 1 trivial
10000.2.a.l 2 5.b even 2 1

## Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{2}^{\mathrm{new}}(\Gamma_0(10000))$$:

 $$T_{3} + 1$$ T3 + 1 $$T_{7}^{2} - T_{7} - 1$$ T7^2 - T7 - 1 $$T_{11}^{2} - 6T_{11} + 4$$ T11^2 - 6*T11 + 4

## Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$T^{2}$$
$3$ $$(T + 1)^{2}$$
$5$ $$T^{2}$$
$7$ $$T^{2} - T - 1$$
$11$ $$T^{2} - 6T + 4$$
$13$ $$T^{2} + 3T - 9$$
$17$ $$T^{2} + 6T + 4$$
$19$ $$T^{2} - 5T - 5$$
$23$ $$T^{2} + 12T + 31$$
$29$ $$T^{2} + 5T + 5$$
$31$ $$(T - 3)^{2}$$
$37$ $$T^{2} - 4T - 1$$
$41$ $$T^{2} + 6T + 4$$
$43$ $$T^{2} - 3T - 9$$
$47$ $$T^{2} - T - 1$$
$53$ $$T^{2} - 2T - 19$$
$59$ $$T^{2} - 15T + 45$$
$61$ $$T^{2} - 4T - 41$$
$67$ $$T^{2} + 14T + 44$$
$71$ $$T^{2} - 11T + 29$$
$73$ $$(T + 9)^{2}$$
$79$ $$T^{2} - 5T - 25$$
$83$ $$T^{2} - 8T + 11$$
$89$ $$T^{2} - 80$$
$97$ $$T^{2} + T - 11$$