Properties

Label 1000.2.o.a.949.5
Level $1000$
Weight $2$
Character 1000.949
Analytic conductor $7.985$
Analytic rank $0$
Dimension $112$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1000,2,Mod(149,1000)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1000.149"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1000, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([0, 5, 1])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 1000 = 2^{3} \cdot 5^{3} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1000.o (of order \(10\), degree \(4\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [112] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.98504020213\)
Analytic rank: \(0\)
Dimension: \(112\)
Relative dimension: \(28\) over \(\Q(\zeta_{10})\)
Twist minimal: no (minimal twist has level 200)
Sato-Tate group: $\mathrm{SU}(2)[C_{10}]$

Embedding invariants

Embedding label 949.5
Character \(\chi\) \(=\) 1000.949
Dual form 1000.2.o.a.549.5

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.22823 - 0.701037i) q^{2} +(-0.970606 + 2.98722i) q^{3} +(1.01709 + 1.72207i) q^{4} +(3.28628 - 2.98856i) q^{6} -1.71800i q^{7} +(-0.0419895 - 2.82812i) q^{8} +(-5.55435 - 4.03547i) q^{9} +(-1.35234 - 1.86134i) q^{11} +(-6.13139 + 1.36683i) q^{12} +(4.80828 + 3.49342i) q^{13} +(-1.20438 + 2.11009i) q^{14} +(-1.93104 + 3.50301i) q^{16} +(2.53693 - 0.824300i) q^{17} +(3.99300 + 8.85029i) q^{18} +(5.48112 - 1.78092i) q^{19} +(5.13203 + 1.66750i) q^{21} +(0.356118 + 3.23419i) q^{22} +(0.393834 + 0.542066i) q^{23} +(8.48896 + 2.61955i) q^{24} +(-3.45665 - 7.66150i) q^{26} +(9.82268 - 7.13660i) q^{27} +(2.95851 - 1.74736i) q^{28} +(1.22579 + 0.398283i) q^{29} +(0.362926 + 1.11697i) q^{31} +(4.82750 - 2.94877i) q^{32} +(6.87282 - 2.23312i) q^{33} +(-3.69380 - 0.766057i) q^{34} +(1.30007 - 13.6694i) q^{36} +(2.95345 + 2.14581i) q^{37} +(-7.98057 - 1.65509i) q^{38} +(-15.1026 + 10.9726i) q^{39} +(6.21636 + 4.51645i) q^{41} +(-5.13434 - 5.64582i) q^{42} -3.75396 q^{43} +(1.82990 - 4.22198i) q^{44} +(-0.103710 - 0.941873i) q^{46} +(-8.51974 - 2.76823i) q^{47} +(-8.58998 - 9.16849i) q^{48} +4.04848 q^{49} +8.37845i q^{51} +(-1.12544 + 11.8333i) q^{52} +(1.09116 - 3.35825i) q^{53} +(-17.0675 + 1.87931i) q^{54} +(-4.85870 + 0.0721379i) q^{56} +18.1019i q^{57} +(-1.22634 - 1.34851i) q^{58} +(-3.58141 + 4.92938i) q^{59} +(-0.542140 - 0.746192i) q^{61} +(0.337282 - 1.62632i) q^{62} +(-6.93293 + 9.54236i) q^{63} +(-7.99647 + 0.237503i) q^{64} +(-10.0069 - 2.07533i) q^{66} +(4.74089 + 14.5910i) q^{67} +(3.99980 + 3.53039i) q^{68} +(-2.00153 + 0.650336i) q^{69} +(1.92683 - 5.93017i) q^{71} +(-11.1796 + 15.8778i) q^{72} +(-3.14398 - 4.32732i) q^{73} +(-2.12322 - 4.70603i) q^{74} +(8.64169 + 7.62750i) q^{76} +(-3.19778 + 2.32332i) q^{77} +(26.2416 - 2.88947i) q^{78} +(-0.125628 + 0.386644i) q^{79} +(5.41990 + 16.6807i) q^{81} +(-4.46891 - 9.90513i) q^{82} +(-0.356893 - 1.09840i) q^{83} +(2.34821 + 10.5337i) q^{84} +(4.61072 + 2.63166i) q^{86} +(-2.37952 + 3.27513i) q^{87} +(-5.20730 + 3.90274i) q^{88} +(3.34918 - 2.43332i) q^{89} +(6.00168 - 8.26061i) q^{91} +(-0.532909 + 1.22954i) q^{92} -3.68890 q^{93} +(8.52356 + 9.37268i) q^{94} +(4.12301 + 17.2829i) q^{96} +(14.4383 + 4.69127i) q^{97} +(-4.97247 - 2.83814i) q^{98} +15.7959i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 112 q + 5 q^{2} - 3 q^{4} + q^{6} - 10 q^{8} - 30 q^{9} + 5 q^{12} - 3 q^{14} - 15 q^{16} + 10 q^{17} + 30 q^{22} + 10 q^{23} - 16 q^{24} - 14 q^{26} - 15 q^{28} - 18 q^{31} + 10 q^{33} + 9 q^{34} + 41 q^{36}+ \cdots - 90 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1000\mathbb{Z}\right)^\times\).

\(n\) \(377\) \(501\) \(751\)
\(\chi(n)\) \(e\left(\frac{3}{10}\right)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.22823 0.701037i −0.868489 0.495708i
\(3\) −0.970606 + 2.98722i −0.560380 + 1.72467i 0.120915 + 0.992663i \(0.461417\pi\)
−0.681295 + 0.732009i \(0.738583\pi\)
\(4\) 1.01709 + 1.72207i 0.508547 + 0.861034i
\(5\) 0 0
\(6\) 3.28628 2.98856i 1.34162 1.22007i
\(7\) 1.71800i 0.649342i −0.945827 0.324671i \(-0.894746\pi\)
0.945827 0.324671i \(-0.105254\pi\)
\(8\) −0.0419895 2.82812i −0.0148455 0.999890i
\(9\) −5.55435 4.03547i −1.85145 1.34516i
\(10\) 0 0
\(11\) −1.35234 1.86134i −0.407747 0.561215i 0.554920 0.831903i \(-0.312749\pi\)
−0.962667 + 0.270688i \(0.912749\pi\)
\(12\) −6.13139 + 1.36683i −1.76998 + 0.394570i
\(13\) 4.80828 + 3.49342i 1.33358 + 0.968900i 0.999654 + 0.0262994i \(0.00837233\pi\)
0.333922 + 0.942601i \(0.391628\pi\)
\(14\) −1.20438 + 2.11009i −0.321884 + 0.563947i
\(15\) 0 0
\(16\) −1.93104 + 3.50301i −0.482760 + 0.875752i
\(17\) 2.53693 0.824300i 0.615297 0.199922i 0.0152459 0.999884i \(-0.495147\pi\)
0.600051 + 0.799962i \(0.295147\pi\)
\(18\) 3.99300 + 8.85029i 0.941159 + 2.08603i
\(19\) 5.48112 1.78092i 1.25746 0.408572i 0.396868 0.917876i \(-0.370097\pi\)
0.860587 + 0.509304i \(0.170097\pi\)
\(20\) 0 0
\(21\) 5.13203 + 1.66750i 1.11990 + 0.363878i
\(22\) 0.356118 + 3.23419i 0.0759246 + 0.689533i
\(23\) 0.393834 + 0.542066i 0.0821200 + 0.113029i 0.848101 0.529835i \(-0.177746\pi\)
−0.765981 + 0.642864i \(0.777746\pi\)
\(24\) 8.48896 + 2.61955i 1.73280 + 0.534714i
\(25\) 0 0
\(26\) −3.45665 7.66150i −0.677905 1.50254i
\(27\) 9.82268 7.13660i 1.89038 1.37344i
\(28\) 2.95851 1.74736i 0.559106 0.330221i
\(29\) 1.22579 + 0.398283i 0.227624 + 0.0739594i 0.420608 0.907242i \(-0.361817\pi\)
−0.192985 + 0.981202i \(0.561817\pi\)
\(30\) 0 0
\(31\) 0.362926 + 1.11697i 0.0651834 + 0.200614i 0.978344 0.206986i \(-0.0663656\pi\)
−0.913160 + 0.407600i \(0.866366\pi\)
\(32\) 4.82750 2.94877i 0.853390 0.521273i
\(33\) 6.87282 2.23312i 1.19640 0.388735i
\(34\) −3.69380 0.766057i −0.633482 0.131378i
\(35\) 0 0
\(36\) 1.30007 13.6694i 0.216678 2.27824i
\(37\) 2.95345 + 2.14581i 0.485545 + 0.352769i 0.803468 0.595347i \(-0.202986\pi\)
−0.317924 + 0.948116i \(0.602986\pi\)
\(38\) −7.98057 1.65509i −1.29462 0.268491i
\(39\) −15.1026 + 10.9726i −2.41834 + 1.75703i
\(40\) 0 0
\(41\) 6.21636 + 4.51645i 0.970832 + 0.705351i 0.955641 0.294534i \(-0.0951643\pi\)
0.0151912 + 0.999885i \(0.495164\pi\)
\(42\) −5.13434 5.64582i −0.792245 0.871169i
\(43\) −3.75396 −0.572473 −0.286236 0.958159i \(-0.592404\pi\)
−0.286236 + 0.958159i \(0.592404\pi\)
\(44\) 1.82990 4.22198i 0.275867 0.636488i
\(45\) 0 0
\(46\) −0.103710 0.941873i −0.0152912 0.138872i
\(47\) −8.51974 2.76823i −1.24273 0.403788i −0.387421 0.921903i \(-0.626634\pi\)
−0.855311 + 0.518115i \(0.826634\pi\)
\(48\) −8.58998 9.16849i −1.23986 1.32336i
\(49\) 4.04848 0.578355
\(50\) 0 0
\(51\) 8.37845i 1.17322i
\(52\) −1.12544 + 11.8333i −0.156070 + 1.64099i
\(53\) 1.09116 3.35825i 0.149882 0.461291i −0.847724 0.530438i \(-0.822028\pi\)
0.997607 + 0.0691467i \(0.0220277\pi\)
\(54\) −17.0675 + 1.87931i −2.32260 + 0.255742i
\(55\) 0 0
\(56\) −4.85870 + 0.0721379i −0.649270 + 0.00963984i
\(57\) 18.1019i 2.39765i
\(58\) −1.22634 1.34851i −0.161026 0.177068i
\(59\) −3.58141 + 4.92938i −0.466259 + 0.641751i −0.975792 0.218700i \(-0.929818\pi\)
0.509533 + 0.860451i \(0.329818\pi\)
\(60\) 0 0
\(61\) −0.542140 0.746192i −0.0694139 0.0955401i 0.772898 0.634530i \(-0.218806\pi\)
−0.842312 + 0.538990i \(0.818806\pi\)
\(62\) 0.337282 1.62632i 0.0428349 0.206543i
\(63\) −6.93293 + 9.54236i −0.873467 + 1.20222i
\(64\) −7.99647 + 0.237503i −0.999559 + 0.0296878i
\(65\) 0 0
\(66\) −10.0069 2.07533i −1.23176 0.255455i
\(67\) 4.74089 + 14.5910i 0.579192 + 1.78257i 0.621440 + 0.783462i \(0.286548\pi\)
−0.0422481 + 0.999107i \(0.513452\pi\)
\(68\) 3.99980 + 3.53039i 0.485047 + 0.428122i
\(69\) −2.00153 + 0.650336i −0.240956 + 0.0782912i
\(70\) 0 0
\(71\) 1.92683 5.93017i 0.228673 0.703782i −0.769225 0.638978i \(-0.779358\pi\)
0.997898 0.0648044i \(-0.0206424\pi\)
\(72\) −11.1796 + 15.8778i −1.31752 + 1.87122i
\(73\) −3.14398 4.32732i −0.367975 0.506475i 0.584374 0.811485i \(-0.301340\pi\)
−0.952349 + 0.305010i \(0.901340\pi\)
\(74\) −2.12322 4.70603i −0.246820 0.547064i
\(75\) 0 0
\(76\) 8.64169 + 7.62750i 0.991269 + 0.874934i
\(77\) −3.19778 + 2.32332i −0.364421 + 0.264767i
\(78\) 26.2416 2.88947i 2.97128 0.327168i
\(79\) −0.125628 + 0.386644i −0.0141343 + 0.0435008i −0.957875 0.287186i \(-0.907280\pi\)
0.943741 + 0.330687i \(0.107280\pi\)
\(80\) 0 0
\(81\) 5.41990 + 16.6807i 0.602211 + 1.85342i
\(82\) −4.46891 9.90513i −0.493509 1.09384i
\(83\) −0.356893 1.09840i −0.0391741 0.120565i 0.929557 0.368678i \(-0.120190\pi\)
−0.968731 + 0.248113i \(0.920190\pi\)
\(84\) 2.34821 + 10.5337i 0.256211 + 1.14932i
\(85\) 0 0
\(86\) 4.61072 + 2.63166i 0.497186 + 0.283779i
\(87\) −2.37952 + 3.27513i −0.255111 + 0.351131i
\(88\) −5.20730 + 3.90274i −0.555100 + 0.416033i
\(89\) 3.34918 2.43332i 0.355013 0.257932i −0.395956 0.918269i \(-0.629587\pi\)
0.750969 + 0.660338i \(0.229587\pi\)
\(90\) 0 0
\(91\) 6.00168 8.26061i 0.629148 0.865947i
\(92\) −0.532909 + 1.22954i −0.0555596 + 0.128188i
\(93\) −3.68890 −0.382521
\(94\) 8.52356 + 9.37268i 0.879138 + 0.966718i
\(95\) 0 0
\(96\) 4.12301 + 17.2829i 0.420803 + 1.76393i
\(97\) 14.4383 + 4.69127i 1.46598 + 0.476327i 0.929892 0.367833i \(-0.119900\pi\)
0.536091 + 0.844160i \(0.319900\pi\)
\(98\) −4.97247 2.83814i −0.502295 0.286695i
\(99\) 15.7959i 1.58754i
\(100\) 0 0
\(101\) 13.7524i 1.36842i 0.729286 + 0.684209i \(0.239852\pi\)
−0.729286 + 0.684209i \(0.760148\pi\)
\(102\) 5.87361 10.2907i 0.581574 1.01893i
\(103\) −8.32817 2.70599i −0.820599 0.266629i −0.131519 0.991314i \(-0.541985\pi\)
−0.689081 + 0.724685i \(0.741985\pi\)
\(104\) 9.67789 13.7451i 0.948996 1.34781i
\(105\) 0 0
\(106\) −3.69445 + 3.35975i −0.358837 + 0.326328i
\(107\) −3.49350 −0.337729 −0.168865 0.985639i \(-0.554010\pi\)
−0.168865 + 0.985639i \(0.554010\pi\)
\(108\) 22.2803 + 9.65675i 2.14392 + 0.929221i
\(109\) −2.56568 + 3.53135i −0.245747 + 0.338242i −0.914016 0.405678i \(-0.867036\pi\)
0.668269 + 0.743920i \(0.267036\pi\)
\(110\) 0 0
\(111\) −9.27664 + 6.73988i −0.880500 + 0.639721i
\(112\) 6.01816 + 3.31752i 0.568663 + 0.313477i
\(113\) 0.895884 1.23308i 0.0842776 0.115998i −0.764796 0.644272i \(-0.777161\pi\)
0.849074 + 0.528274i \(0.177161\pi\)
\(114\) 12.6901 22.2333i 1.18854 2.08234i
\(115\) 0 0
\(116\) 0.560872 + 2.51599i 0.0520757 + 0.233604i
\(117\) −12.6093 38.8073i −1.16573 3.58774i
\(118\) 7.85447 3.54371i 0.723062 0.326225i
\(119\) −1.41615 4.35845i −0.129818 0.399538i
\(120\) 0 0
\(121\) 1.76343 5.42728i 0.160312 0.493389i
\(122\) 0.142764 + 1.29656i 0.0129252 + 0.117385i
\(123\) −19.5253 + 14.1859i −1.76053 + 1.27910i
\(124\) −1.55437 + 1.76105i −0.139587 + 0.158147i
\(125\) 0 0
\(126\) 15.2048 6.85996i 1.35455 0.611134i
\(127\) 9.99210 + 13.7529i 0.886655 + 1.22038i 0.974533 + 0.224245i \(0.0719915\pi\)
−0.0878777 + 0.996131i \(0.528008\pi\)
\(128\) 9.98800 + 5.31412i 0.882823 + 0.469706i
\(129\) 3.64361 11.2139i 0.320802 0.987328i
\(130\) 0 0
\(131\) 5.71604 1.85725i 0.499413 0.162269i −0.0484693 0.998825i \(-0.515434\pi\)
0.547882 + 0.836556i \(0.315434\pi\)
\(132\) 10.8359 + 9.56419i 0.943142 + 0.832455i
\(133\) −3.05962 9.41655i −0.265303 0.816519i
\(134\) 4.40591 21.2446i 0.380612 1.83525i
\(135\) 0 0
\(136\) −2.43774 7.14013i −0.209035 0.612261i
\(137\) 2.43382 3.34986i 0.207935 0.286198i −0.692293 0.721616i \(-0.743400\pi\)
0.900228 + 0.435418i \(0.143400\pi\)
\(138\) 2.91424 + 0.604384i 0.248077 + 0.0514486i
\(139\) −5.91784 8.14520i −0.501944 0.690867i 0.480591 0.876945i \(-0.340422\pi\)
−0.982535 + 0.186078i \(0.940422\pi\)
\(140\) 0 0
\(141\) 16.5386 22.7635i 1.39280 1.91703i
\(142\) −6.52386 + 5.93283i −0.547470 + 0.497872i
\(143\) 13.6741i 1.14349i
\(144\) 24.8620 11.6643i 2.07183 0.972023i
\(145\) 0 0
\(146\) 0.827918 + 7.51899i 0.0685190 + 0.622276i
\(147\) −3.92948 + 12.0937i −0.324098 + 0.997472i
\(148\) −0.691293 + 7.26854i −0.0568239 + 0.597470i
\(149\) 13.6951i 1.12195i 0.827834 + 0.560973i \(0.189573\pi\)
−0.827834 + 0.560973i \(0.810427\pi\)
\(150\) 0 0
\(151\) −12.0927 −0.984088 −0.492044 0.870570i \(-0.663750\pi\)
−0.492044 + 0.870570i \(0.663750\pi\)
\(152\) −5.26681 15.4265i −0.427195 1.25125i
\(153\) −17.4175 5.65928i −1.40812 0.457525i
\(154\) 5.55634 0.611810i 0.447742 0.0493010i
\(155\) 0 0
\(156\) −34.2564 14.8474i −2.74270 1.18875i
\(157\) 12.6051 1.00599 0.502997 0.864288i \(-0.332231\pi\)
0.502997 + 0.864288i \(0.332231\pi\)
\(158\) 0.425352 0.386817i 0.0338392 0.0307735i
\(159\) 8.97273 + 6.51907i 0.711584 + 0.516996i
\(160\) 0 0
\(161\) 0.931268 0.676606i 0.0733942 0.0533240i
\(162\) 5.03694 24.2873i 0.395739 1.90819i
\(163\) 9.55541 + 6.94241i 0.748438 + 0.543772i 0.895342 0.445379i \(-0.146931\pi\)
−0.146904 + 0.989151i \(0.546931\pi\)
\(164\) −1.45502 + 15.2987i −0.113618 + 1.19462i
\(165\) 0 0
\(166\) −0.331676 + 1.59929i −0.0257430 + 0.124129i
\(167\) −10.4420 + 3.39280i −0.808023 + 0.262543i −0.683760 0.729707i \(-0.739657\pi\)
−0.124263 + 0.992249i \(0.539657\pi\)
\(168\) 4.50039 14.5840i 0.347213 1.12518i
\(169\) 6.89835 + 21.2309i 0.530642 + 1.63315i
\(170\) 0 0
\(171\) −37.6309 12.2270i −2.87771 0.935024i
\(172\) −3.81812 6.46457i −0.291129 0.492919i
\(173\) 12.2681 8.91328i 0.932725 0.677664i −0.0139334 0.999903i \(-0.504435\pi\)
0.946659 + 0.322238i \(0.104435\pi\)
\(174\) 5.21858 2.35448i 0.395620 0.178492i
\(175\) 0 0
\(176\) 9.13172 1.14294i 0.688329 0.0861527i
\(177\) −11.2490 15.4829i −0.845527 1.16377i
\(178\) −5.81941 + 0.640777i −0.436183 + 0.0480283i
\(179\) 20.5530 + 6.67808i 1.53620 + 0.499143i 0.950326 0.311256i \(-0.100750\pi\)
0.585878 + 0.810399i \(0.300750\pi\)
\(180\) 0 0
\(181\) 8.26366 2.68502i 0.614233 0.199576i 0.0146547 0.999893i \(-0.495335\pi\)
0.599578 + 0.800316i \(0.295335\pi\)
\(182\) −13.1624 + 5.93852i −0.975665 + 0.440192i
\(183\) 2.75524 0.895233i 0.203673 0.0661775i
\(184\) 1.51649 1.13657i 0.111797 0.0837890i
\(185\) 0 0
\(186\) 4.53081 + 2.58605i 0.332215 + 0.189619i
\(187\) −4.96511 3.60736i −0.363085 0.263796i
\(188\) −3.89829 17.4871i −0.284312 1.27538i
\(189\) −12.2607 16.8753i −0.891831 1.22750i
\(190\) 0 0
\(191\) 0.689197 + 0.500731i 0.0498686 + 0.0362316i 0.612440 0.790517i \(-0.290188\pi\)
−0.562572 + 0.826748i \(0.690188\pi\)
\(192\) 7.05196 24.1177i 0.508931 1.74055i
\(193\) 10.7404i 0.773113i 0.922266 + 0.386557i \(0.126336\pi\)
−0.922266 + 0.386557i \(0.873664\pi\)
\(194\) −14.4447 15.8837i −1.03707 1.14038i
\(195\) 0 0
\(196\) 4.11769 + 6.97177i 0.294121 + 0.497983i
\(197\) −6.98882 + 21.5094i −0.497933 + 1.53248i 0.314403 + 0.949290i \(0.398196\pi\)
−0.812336 + 0.583190i \(0.801804\pi\)
\(198\) 11.0735 19.4010i 0.786959 1.37877i
\(199\) 0.706769 0.0501015 0.0250508 0.999686i \(-0.492025\pi\)
0.0250508 + 0.999686i \(0.492025\pi\)
\(200\) 0 0
\(201\) −48.1879 −3.39891
\(202\) 9.64096 16.8911i 0.678336 1.18846i
\(203\) 0.684250 2.10590i 0.0480249 0.147806i
\(204\) −14.4283 + 8.52167i −1.01018 + 0.596636i
\(205\) 0 0
\(206\) 8.33191 + 9.16193i 0.580511 + 0.638342i
\(207\) 4.60013i 0.319731i
\(208\) −21.5225 + 10.0975i −1.49231 + 0.700136i
\(209\) −10.7273 7.79381i −0.742020 0.539109i
\(210\) 0 0
\(211\) 10.7903 + 14.8516i 0.742834 + 1.02242i 0.998451 + 0.0556452i \(0.0177216\pi\)
−0.255616 + 0.966778i \(0.582278\pi\)
\(212\) 6.89295 1.53660i 0.473409 0.105534i
\(213\) 15.8445 + 11.5117i 1.08565 + 0.788770i
\(214\) 4.29082 + 2.44907i 0.293314 + 0.167415i
\(215\) 0 0
\(216\) −20.5956 27.4800i −1.40135 1.86978i
\(217\) 1.91895 0.623506i 0.130267 0.0423263i
\(218\) 5.62685 2.53868i 0.381098 0.171941i
\(219\) 15.9782 5.19164i 1.07971 0.350818i
\(220\) 0 0
\(221\) 15.0779 + 4.89911i 1.01425 + 0.329550i
\(222\) 16.1187 1.77484i 1.08182 0.119119i
\(223\) 4.51123 + 6.20918i 0.302094 + 0.415797i 0.932895 0.360147i \(-0.117274\pi\)
−0.630801 + 0.775945i \(0.717274\pi\)
\(224\) −5.06597 8.29364i −0.338485 0.554142i
\(225\) 0 0
\(226\) −1.96478 + 0.886455i −0.130695 + 0.0589661i
\(227\) 9.47829 6.88638i 0.629096 0.457065i −0.226991 0.973897i \(-0.572889\pi\)
0.856087 + 0.516832i \(0.172889\pi\)
\(228\) −31.1727 + 18.4113i −2.06446 + 1.21932i
\(229\) −25.6372 8.33003i −1.69415 0.550464i −0.706582 0.707631i \(-0.749764\pi\)
−0.987572 + 0.157167i \(0.949764\pi\)
\(230\) 0 0
\(231\) −3.83649 11.8075i −0.252422 0.776876i
\(232\) 1.07492 3.48340i 0.0705720 0.228696i
\(233\) −13.2560 + 4.30712i −0.868426 + 0.282169i −0.709144 0.705064i \(-0.750918\pi\)
−0.159283 + 0.987233i \(0.550918\pi\)
\(234\) −11.7183 + 56.5039i −0.766050 + 3.69377i
\(235\) 0 0
\(236\) −12.1314 1.15378i −0.789684 0.0751049i
\(237\) −1.03305 0.750558i −0.0671041 0.0487540i
\(238\) −1.31608 + 6.34594i −0.0853090 + 0.411346i
\(239\) 7.73830 5.62220i 0.500549 0.363670i −0.308678 0.951167i \(-0.599886\pi\)
0.809227 + 0.587497i \(0.199886\pi\)
\(240\) 0 0
\(241\) 20.3460 + 14.7823i 1.31060 + 0.952210i 0.999999 + 0.00167085i \(0.000531849\pi\)
0.310606 + 0.950539i \(0.399468\pi\)
\(242\) −5.97063 + 5.42972i −0.383806 + 0.349035i
\(243\) −18.6651 −1.19737
\(244\) 0.733587 1.69255i 0.0469631 0.108354i
\(245\) 0 0
\(246\) 33.9264 3.73564i 2.16307 0.238176i
\(247\) 32.5763 + 10.5847i 2.07278 + 0.673486i
\(248\) 3.14369 1.07330i 0.199624 0.0681545i
\(249\) 3.62757 0.229888
\(250\) 0 0
\(251\) 6.91776i 0.436645i −0.975877 0.218323i \(-0.929941\pi\)
0.975877 0.218323i \(-0.0700585\pi\)
\(252\) −23.4840 2.23351i −1.47936 0.140698i
\(253\) 0.476370 1.46612i 0.0299492 0.0921740i
\(254\) −2.63126 23.8966i −0.165100 1.49941i
\(255\) 0 0
\(256\) −8.54216 13.5289i −0.533885 0.845557i
\(257\) 29.8090i 1.85943i −0.368277 0.929716i \(-0.620052\pi\)
0.368277 0.929716i \(-0.379948\pi\)
\(258\) −12.3365 + 11.2189i −0.768040 + 0.698459i
\(259\) 3.68650 5.07403i 0.229068 0.315285i
\(260\) 0 0
\(261\) −5.20121 7.15885i −0.321947 0.443122i
\(262\) −8.32261 1.72602i −0.514173 0.106634i
\(263\) 15.5573 21.4128i 0.959304 1.32037i 0.0120353 0.999928i \(-0.496169\pi\)
0.947269 0.320441i \(-0.103831\pi\)
\(264\) −6.60409 19.3434i −0.406454 1.19050i
\(265\) 0 0
\(266\) −2.84344 + 13.7106i −0.174342 + 0.840650i
\(267\) 4.01813 + 12.3665i 0.245906 + 0.756820i
\(268\) −20.3047 + 23.0045i −1.24031 + 1.40522i
\(269\) −7.64014 + 2.48243i −0.465827 + 0.151357i −0.532521 0.846417i \(-0.678755\pi\)
0.0666932 + 0.997774i \(0.478755\pi\)
\(270\) 0 0
\(271\) 2.87827 8.85842i 0.174843 0.538111i −0.824784 0.565449i \(-0.808703\pi\)
0.999626 + 0.0273381i \(0.00870306\pi\)
\(272\) −2.01140 + 10.4787i −0.121959 + 0.635362i
\(273\) 18.8510 + 25.9461i 1.14091 + 1.57033i
\(274\) −5.33766 + 2.40820i −0.322460 + 0.145485i
\(275\) 0 0
\(276\) −3.15566 2.78531i −0.189949 0.167656i
\(277\) −3.05174 + 2.21722i −0.183361 + 0.133220i −0.675679 0.737196i \(-0.736150\pi\)
0.492318 + 0.870415i \(0.336150\pi\)
\(278\) 1.55837 + 14.1528i 0.0934647 + 0.848829i
\(279\) 2.49169 7.66863i 0.149173 0.459109i
\(280\) 0 0
\(281\) −6.62409 20.3869i −0.395160 1.21618i −0.928837 0.370489i \(-0.879190\pi\)
0.533676 0.845689i \(-0.320810\pi\)
\(282\) −36.2713 + 16.3646i −2.15992 + 0.974495i
\(283\) 0.286114 + 0.880568i 0.0170077 + 0.0523443i 0.959200 0.282728i \(-0.0912393\pi\)
−0.942192 + 0.335072i \(0.891239\pi\)
\(284\) 12.1719 2.71341i 0.722271 0.161011i
\(285\) 0 0
\(286\) −9.58608 + 16.7950i −0.566837 + 0.993108i
\(287\) 7.75925 10.6797i 0.458014 0.630402i
\(288\) −38.7133 3.10276i −2.28120 0.182832i
\(289\) −7.99672 + 5.80996i −0.470395 + 0.341762i
\(290\) 0 0
\(291\) −28.0277 + 38.5769i −1.64301 + 2.26142i
\(292\) 4.25422 9.81544i 0.248959 0.574405i
\(293\) −13.3571 −0.780332 −0.390166 0.920744i \(-0.627582\pi\)
−0.390166 + 0.920744i \(0.627582\pi\)
\(294\) 13.3044 12.0991i 0.775931 0.705636i
\(295\) 0 0
\(296\) 5.94458 8.44281i 0.345522 0.490728i
\(297\) −26.5673 8.63223i −1.54159 0.500893i
\(298\) 9.60077 16.8207i 0.556157 0.974397i
\(299\) 3.98223i 0.230298i
\(300\) 0 0
\(301\) 6.44929i 0.371731i
\(302\) 14.8526 + 8.47742i 0.854670 + 0.487821i
\(303\) −41.0815 13.3482i −2.36007 0.766833i
\(304\) −4.34568 + 22.6395i −0.249242 + 1.29846i
\(305\) 0 0
\(306\) 17.4253 + 19.1612i 0.996137 + 1.09537i
\(307\) −14.1781 −0.809186 −0.404593 0.914497i \(-0.632587\pi\)
−0.404593 + 0.914497i \(0.632587\pi\)
\(308\) −7.25336 3.14376i −0.413298 0.179132i
\(309\) 16.1668 22.2516i 0.919695 1.26585i
\(310\) 0 0
\(311\) 0.386936 0.281125i 0.0219411 0.0159412i −0.576761 0.816913i \(-0.695683\pi\)
0.598702 + 0.800972i \(0.295683\pi\)
\(312\) 31.6661 + 42.2510i 1.79274 + 2.39199i
\(313\) 6.67701 9.19012i 0.377407 0.519456i −0.577488 0.816399i \(-0.695967\pi\)
0.954895 + 0.296943i \(0.0959671\pi\)
\(314\) −15.4819 8.83662i −0.873695 0.498679i
\(315\) 0 0
\(316\) −0.793603 + 0.176913i −0.0446436 + 0.00995211i
\(317\) −4.27173 13.1470i −0.239924 0.738411i −0.996430 0.0844241i \(-0.973095\pi\)
0.756505 0.653987i \(-0.226905\pi\)
\(318\) −6.45046 14.2971i −0.361724 0.801744i
\(319\) −0.916348 2.82023i −0.0513056 0.157902i
\(320\) 0 0
\(321\) 3.39081 10.4358i 0.189257 0.582472i
\(322\) −1.61814 + 0.178173i −0.0901752 + 0.00992921i
\(323\) 12.4372 9.03618i 0.692026 0.502786i
\(324\) −23.2128 + 26.2993i −1.28960 + 1.46107i
\(325\) 0 0
\(326\) −6.86935 15.2256i −0.380458 0.843267i
\(327\) −8.05866 11.0918i −0.445645 0.613378i
\(328\) 12.5120 17.7702i 0.690861 0.981197i
\(329\) −4.75581 + 14.6369i −0.262197 + 0.806958i
\(330\) 0 0
\(331\) 6.42804 2.08860i 0.353317 0.114800i −0.126981 0.991905i \(-0.540529\pi\)
0.480298 + 0.877105i \(0.340529\pi\)
\(332\) 1.52853 1.73177i 0.0838891 0.0950434i
\(333\) −7.74516 23.8372i −0.424432 1.30627i
\(334\) 15.2036 + 3.15307i 0.831904 + 0.172528i
\(335\) 0 0
\(336\) −15.7514 + 14.7576i −0.859311 + 0.805091i
\(337\) 9.77379 13.4525i 0.532412 0.732803i −0.455083 0.890449i \(-0.650391\pi\)
0.987496 + 0.157646i \(0.0503905\pi\)
\(338\) 6.41092 30.9124i 0.348708 1.68141i
\(339\) 2.81392 + 3.87303i 0.152831 + 0.210354i
\(340\) 0 0
\(341\) 1.58826 2.18606i 0.0860093 0.118382i
\(342\) 37.6478 + 41.3983i 2.03576 + 2.23856i
\(343\) 18.9813i 1.02489i
\(344\) 0.157627 + 10.6166i 0.00849867 + 0.572410i
\(345\) 0 0
\(346\) −21.3166 + 2.34717i −1.14599 + 0.126185i
\(347\) 0.155098 0.477342i 0.00832608 0.0256250i −0.946807 0.321801i \(-0.895712\pi\)
0.955133 + 0.296176i \(0.0957116\pi\)
\(348\) −8.06019 0.766585i −0.432072 0.0410933i
\(349\) 1.38740i 0.0742660i 0.999310 + 0.0371330i \(0.0118225\pi\)
−0.999310 + 0.0371330i \(0.988177\pi\)
\(350\) 0 0
\(351\) 72.1613 3.85169
\(352\) −12.0171 4.99788i −0.640513 0.266388i
\(353\) 27.1323 + 8.81582i 1.44411 + 0.469218i 0.923175 0.384380i \(-0.125585\pi\)
0.520931 + 0.853599i \(0.325585\pi\)
\(354\) 2.96225 + 26.9026i 0.157442 + 1.42985i
\(355\) 0 0
\(356\) 7.59678 + 3.29260i 0.402629 + 0.174508i
\(357\) 14.3942 0.761820
\(358\) −20.5622 22.6106i −1.08675 1.19501i
\(359\) −18.7073 13.5917i −0.987336 0.717342i −0.0279998 0.999608i \(-0.508914\pi\)
−0.959336 + 0.282266i \(0.908914\pi\)
\(360\) 0 0
\(361\) 11.4997 8.35500i 0.605246 0.439737i
\(362\) −12.0320 2.49531i −0.632386 0.131150i
\(363\) 14.5009 + 10.5355i 0.761099 + 0.552971i
\(364\) 20.3296 + 1.93350i 1.06556 + 0.101343i
\(365\) 0 0
\(366\) −4.01166 0.831977i −0.209693 0.0434881i
\(367\) −26.8195 + 8.71417i −1.39996 + 0.454876i −0.909179 0.416405i \(-0.863290\pi\)
−0.490785 + 0.871281i \(0.663290\pi\)
\(368\) −2.65937 + 0.332852i −0.138629 + 0.0173511i
\(369\) −16.3018 50.1719i −0.848640 2.61184i
\(370\) 0 0
\(371\) −5.76946 1.87461i −0.299535 0.0973250i
\(372\) −3.75195 6.35253i −0.194530 0.329364i
\(373\) −14.5528 + 10.5732i −0.753515 + 0.547461i −0.896914 0.442204i \(-0.854197\pi\)
0.143399 + 0.989665i \(0.454197\pi\)
\(374\) 3.56939 + 7.91139i 0.184569 + 0.409088i
\(375\) 0 0
\(376\) −7.47114 + 24.2110i −0.385295 + 1.24859i
\(377\) 4.50257 + 6.19726i 0.231894 + 0.319175i
\(378\) 3.22865 + 29.3220i 0.166064 + 1.50816i
\(379\) −5.18753 1.68553i −0.266466 0.0865799i 0.172737 0.984968i \(-0.444739\pi\)
−0.439203 + 0.898388i \(0.644739\pi\)
\(380\) 0 0
\(381\) −50.7814 + 16.4999i −2.60161 + 0.845315i
\(382\) −0.495461 1.09817i −0.0253500 0.0561870i
\(383\) 13.2382 4.30135i 0.676440 0.219789i 0.0494042 0.998779i \(-0.484268\pi\)
0.627036 + 0.778990i \(0.284268\pi\)
\(384\) −25.5689 + 24.6784i −1.30480 + 1.25937i
\(385\) 0 0
\(386\) 7.52944 13.1917i 0.383239 0.671441i
\(387\) 20.8508 + 15.1490i 1.05990 + 0.770066i
\(388\) 6.60636 + 29.6351i 0.335387 + 1.50450i
\(389\) −21.7230 29.8991i −1.10140 1.51594i −0.833518 0.552492i \(-0.813677\pi\)
−0.267880 0.963452i \(-0.586323\pi\)
\(390\) 0 0
\(391\) 1.44596 + 1.05055i 0.0731251 + 0.0531285i
\(392\) −0.169994 11.4496i −0.00858599 0.578291i
\(393\) 18.8777i 0.952255i
\(394\) 23.6627 21.5190i 1.19211 1.08411i
\(395\) 0 0
\(396\) −27.2016 + 16.0659i −1.36693 + 0.807341i
\(397\) 7.32490 22.5437i 0.367626 1.13144i −0.580694 0.814122i \(-0.697219\pi\)
0.948320 0.317315i \(-0.102781\pi\)
\(398\) −0.868074 0.495471i −0.0435126 0.0248357i
\(399\) 31.0990 1.55690
\(400\) 0 0
\(401\) −0.881338 −0.0440119 −0.0220060 0.999758i \(-0.507005\pi\)
−0.0220060 + 0.999758i \(0.507005\pi\)
\(402\) 59.1858 + 33.7815i 2.95192 + 1.68487i
\(403\) −2.15700 + 6.63856i −0.107448 + 0.330690i
\(404\) −23.6826 + 13.9875i −1.17825 + 0.695904i
\(405\) 0 0
\(406\) −2.31673 + 2.10685i −0.114978 + 0.104561i
\(407\) 8.39925i 0.416335i
\(408\) 23.6952 0.351807i 1.17309 0.0174171i
\(409\) 28.9714 + 21.0489i 1.43254 + 1.04080i 0.989536 + 0.144283i \(0.0460876\pi\)
0.443005 + 0.896519i \(0.353912\pi\)
\(410\) 0 0
\(411\) 7.64449 + 10.5217i 0.377075 + 0.518999i
\(412\) −3.81063 17.0939i −0.187737 0.842158i
\(413\) 8.46866 + 6.15285i 0.416716 + 0.302762i
\(414\) −3.22486 + 5.65001i −0.158493 + 0.277683i
\(415\) 0 0
\(416\) 33.5132 + 2.68599i 1.64312 + 0.131692i
\(417\) 30.0754 9.77209i 1.47280 0.478541i
\(418\) 7.71178 + 17.0928i 0.377196 + 0.836036i
\(419\) −18.1069 + 5.88329i −0.884581 + 0.287418i −0.715858 0.698246i \(-0.753964\pi\)
−0.168723 + 0.985664i \(0.553964\pi\)
\(420\) 0 0
\(421\) 8.42477 + 2.73737i 0.410598 + 0.133411i 0.507031 0.861928i \(-0.330743\pi\)
−0.0964323 + 0.995340i \(0.530743\pi\)
\(422\) −2.84145 25.8055i −0.138320 1.25619i
\(423\) 36.1505 + 49.7569i 1.75770 + 2.41926i
\(424\) −9.54333 2.94492i −0.463465 0.143018i
\(425\) 0 0
\(426\) −11.3906 25.2466i −0.551875 1.22320i
\(427\) −1.28196 + 0.931395i −0.0620382 + 0.0450734i
\(428\) −3.55322 6.01605i −0.171751 0.290797i
\(429\) 40.8476 + 13.2722i 1.97214 + 0.640788i
\(430\) 0 0
\(431\) 0.956566 + 2.94401i 0.0460762 + 0.141808i 0.971448 0.237253i \(-0.0762471\pi\)
−0.925372 + 0.379061i \(0.876247\pi\)
\(432\) 6.03156 + 48.1900i 0.290194 + 2.31854i
\(433\) −8.67407 + 2.81837i −0.416849 + 0.135442i −0.509930 0.860216i \(-0.670329\pi\)
0.0930806 + 0.995659i \(0.470329\pi\)
\(434\) −2.79402 0.579450i −0.134117 0.0278145i
\(435\) 0 0
\(436\) −8.69077 0.826558i −0.416212 0.0395849i
\(437\) 3.12403 + 2.26974i 0.149443 + 0.108576i
\(438\) −23.2645 4.82481i −1.11162 0.230538i
\(439\) 31.0958 22.5924i 1.48412 1.07828i 0.507920 0.861404i \(-0.330415\pi\)
0.976200 0.216872i \(-0.0695854\pi\)
\(440\) 0 0
\(441\) −22.4867 16.3375i −1.07080 0.777978i
\(442\) −15.0847 16.5874i −0.717505 0.788983i
\(443\) 33.8214 1.60690 0.803451 0.595371i \(-0.202995\pi\)
0.803451 + 0.595371i \(0.202995\pi\)
\(444\) −21.0417 9.11993i −0.998597 0.432813i
\(445\) 0 0
\(446\) −1.18796 10.7888i −0.0562516 0.510866i
\(447\) −40.9102 13.2925i −1.93499 0.628715i
\(448\) 0.408029 + 13.7379i 0.0192775 + 0.649056i
\(449\) 11.7494 0.554489 0.277245 0.960799i \(-0.410579\pi\)
0.277245 + 0.960799i \(0.410579\pi\)
\(450\) 0 0
\(451\) 17.6785i 0.832450i
\(452\) 3.03464 + 0.288618i 0.142738 + 0.0135754i
\(453\) 11.7372 36.1235i 0.551463 1.69723i
\(454\) −16.4691 + 1.81342i −0.772934 + 0.0851080i
\(455\) 0 0
\(456\) 51.1942 0.760090i 2.39739 0.0355945i
\(457\) 12.5132i 0.585342i 0.956213 + 0.292671i \(0.0945441\pi\)
−0.956213 + 0.292671i \(0.905456\pi\)
\(458\) 25.6487 + 28.2038i 1.19848 + 1.31788i
\(459\) 19.0368 26.2019i 0.888562 1.22300i
\(460\) 0 0
\(461\) 7.24736 + 9.97513i 0.337543 + 0.464588i 0.943722 0.330740i \(-0.107298\pi\)
−0.606179 + 0.795328i \(0.707298\pi\)
\(462\) −3.56541 + 17.1918i −0.165878 + 0.799836i
\(463\) 9.71829 13.3761i 0.451647 0.621639i −0.521103 0.853494i \(-0.674479\pi\)
0.972751 + 0.231854i \(0.0744793\pi\)
\(464\) −3.76224 + 3.52485i −0.174658 + 0.163637i
\(465\) 0 0
\(466\) 19.3008 + 4.00279i 0.894092 + 0.185426i
\(467\) 4.96826 + 15.2907i 0.229904 + 0.707571i 0.997757 + 0.0669450i \(0.0213252\pi\)
−0.767853 + 0.640626i \(0.778675\pi\)
\(468\) 54.0041 61.1847i 2.49634 2.82826i
\(469\) 25.0672 8.14484i 1.15750 0.376094i
\(470\) 0 0
\(471\) −12.2346 + 37.6541i −0.563739 + 1.73501i
\(472\) 14.0912 + 9.92164i 0.648602 + 0.456681i
\(473\) 5.07663 + 6.98739i 0.233424 + 0.321280i
\(474\) 0.742658 + 1.64607i 0.0341114 + 0.0756063i
\(475\) 0 0
\(476\) 6.06519 6.87165i 0.277998 0.314962i
\(477\) −19.6128 + 14.2495i −0.898008 + 0.652441i
\(478\) −13.4458 + 1.48052i −0.614995 + 0.0677173i
\(479\) −6.65413 + 20.4793i −0.304035 + 0.935723i 0.676001 + 0.736901i \(0.263712\pi\)
−0.980036 + 0.198822i \(0.936288\pi\)
\(480\) 0 0
\(481\) 6.70481 + 20.6353i 0.305713 + 0.940889i
\(482\) −14.6267 32.4194i −0.666227 1.47666i
\(483\) 1.11727 + 3.43862i 0.0508378 + 0.156463i
\(484\) 11.1397 2.48330i 0.506351 0.112877i
\(485\) 0 0
\(486\) 22.9250 + 13.0849i 1.03990 + 0.593545i
\(487\) −15.7256 + 21.6444i −0.712593 + 0.980800i 0.287144 + 0.957887i \(0.407294\pi\)
−0.999737 + 0.0229129i \(0.992706\pi\)
\(488\) −2.08755 + 1.56457i −0.0944991 + 0.0708246i
\(489\) −30.0131 + 21.8058i −1.35724 + 0.986091i
\(490\) 0 0
\(491\) −0.191575 + 0.263680i −0.00864564 + 0.0118997i −0.813318 0.581820i \(-0.802341\pi\)
0.804672 + 0.593719i \(0.202341\pi\)
\(492\) −44.2882 19.1954i −1.99666 0.865397i
\(493\) 3.43806 0.154842
\(494\) −32.5909 35.8376i −1.46633 1.61241i
\(495\) 0 0
\(496\) −4.61359 0.885585i −0.207156 0.0397639i
\(497\) −10.1880 3.31029i −0.456995 0.148487i
\(498\) −4.45549 2.54306i −0.199655 0.113957i
\(499\) 23.2206i 1.03950i 0.854320 + 0.519748i \(0.173974\pi\)
−0.854320 + 0.519748i \(0.826026\pi\)
\(500\) 0 0
\(501\) 34.4855i 1.54070i
\(502\) −4.84961 + 8.49660i −0.216449 + 0.379222i
\(503\) 8.85545 + 2.87731i 0.394845 + 0.128293i 0.499708 0.866194i \(-0.333441\pi\)
−0.104863 + 0.994487i \(0.533441\pi\)
\(504\) 27.2780 + 19.2064i 1.21506 + 0.855523i
\(505\) 0 0
\(506\) −1.61289 + 1.46677i −0.0717019 + 0.0652061i
\(507\) −70.1170 −3.11401
\(508\) −13.5206 + 31.1951i −0.599880 + 1.38406i
\(509\) −11.8276 + 16.2793i −0.524249 + 0.721567i −0.986240 0.165318i \(-0.947135\pi\)
0.461992 + 0.886884i \(0.347135\pi\)
\(510\) 0 0
\(511\) −7.43433 + 5.40135i −0.328875 + 0.238942i
\(512\) 1.00745 + 22.6050i 0.0445236 + 0.999008i
\(513\) 41.1296 56.6100i 1.81592 2.49939i
\(514\) −20.8972 + 36.6122i −0.921736 + 1.61490i
\(515\) 0 0
\(516\) 23.0170 5.13102i 1.01327 0.225881i
\(517\) 6.36899 + 19.6017i 0.280108 + 0.862083i
\(518\) −8.08494 + 3.64770i −0.355232 + 0.160271i
\(519\) 14.7185 + 45.2987i 0.646068 + 1.98839i
\(520\) 0 0
\(521\) 5.18227 15.9494i 0.227039 0.698755i −0.771039 0.636788i \(-0.780263\pi\)
0.998078 0.0619670i \(-0.0197373\pi\)
\(522\) 1.36966 + 12.4389i 0.0599482 + 0.544438i
\(523\) 0.0366350 0.0266169i 0.00160194 0.00116388i −0.586984 0.809599i \(-0.699685\pi\)
0.588586 + 0.808435i \(0.299685\pi\)
\(524\) 9.01207 + 7.95441i 0.393694 + 0.347490i
\(525\) 0 0
\(526\) −34.1191 + 15.3936i −1.48766 + 0.671191i
\(527\) 1.84144 + 2.53452i 0.0802144 + 0.110406i
\(528\) −5.44908 + 28.3878i −0.237141 + 1.23542i
\(529\) 6.96866 21.4473i 0.302985 0.932493i
\(530\) 0 0
\(531\) 39.7848 12.9268i 1.72651 0.560978i
\(532\) 13.1040 14.8464i 0.568132 0.643673i
\(533\) 14.1121 + 43.4327i 0.611265 + 1.88128i
\(534\) 3.73422 18.0058i 0.161595 0.779187i
\(535\) 0 0
\(536\) 41.0658 14.0204i 1.77377 0.605591i
\(537\) −39.8978 + 54.9146i −1.72172 + 2.36974i
\(538\) 11.1241 + 2.30703i 0.479595 + 0.0994630i
\(539\) −5.47494 7.53561i −0.235822 0.324582i
\(540\) 0 0
\(541\) 10.3777 14.2837i 0.446173 0.614104i −0.525397 0.850857i \(-0.676083\pi\)
0.971570 + 0.236753i \(0.0760832\pi\)
\(542\) −9.74526 + 8.86239i −0.418595 + 0.380672i
\(543\) 27.2915i 1.17119i
\(544\) 9.81639 11.4601i 0.420874 0.491349i
\(545\) 0 0
\(546\) −4.96411 45.0831i −0.212444 1.92938i
\(547\) 10.9369 33.6604i 0.467630 1.43922i −0.388015 0.921653i \(-0.626839\pi\)
0.855645 0.517563i \(-0.173161\pi\)
\(548\) 8.24411 + 0.784077i 0.352171 + 0.0334941i
\(549\) 6.33240i 0.270260i
\(550\) 0 0
\(551\) 7.42802 0.316444
\(552\) 1.92327 + 5.63324i 0.0818597 + 0.239767i
\(553\) 0.664253 + 0.215829i 0.0282469 + 0.00917798i
\(554\) 5.30259 0.583869i 0.225285 0.0248062i
\(555\) 0 0
\(556\) 8.00761 18.4754i 0.339598 0.783530i
\(557\) −27.7529 −1.17593 −0.587964 0.808887i \(-0.700070\pi\)
−0.587964 + 0.808887i \(0.700070\pi\)
\(558\) −8.43636 + 7.67207i −0.357140 + 0.324784i
\(559\) −18.0501 13.1141i −0.763436 0.554669i
\(560\) 0 0
\(561\) 15.5951 11.3305i 0.658428 0.478376i
\(562\) −6.15605 + 29.6835i −0.259677 + 1.25212i
\(563\) −23.5565 17.1148i −0.992788 0.721303i −0.0322580 0.999480i \(-0.510270\pi\)
−0.960530 + 0.278177i \(0.910270\pi\)
\(564\) 56.0216 + 5.32808i 2.35893 + 0.224353i
\(565\) 0 0
\(566\) 0.265897 1.28212i 0.0111765 0.0538913i
\(567\) 28.6575 9.31138i 1.20350 0.391041i
\(568\) −16.8521 5.20029i −0.707099 0.218199i
\(569\) 5.68191 + 17.4871i 0.238198 + 0.733098i 0.996681 + 0.0814052i \(0.0259408\pi\)
−0.758483 + 0.651693i \(0.774059\pi\)
\(570\) 0 0
\(571\) −20.4740 6.65241i −0.856811 0.278395i −0.152515 0.988301i \(-0.548737\pi\)
−0.704296 + 0.709906i \(0.748737\pi\)
\(572\) 23.5478 13.9079i 0.984583 0.581518i
\(573\) −2.16473 + 1.57277i −0.0904330 + 0.0657034i
\(574\) −17.0170 + 7.67758i −0.710276 + 0.320456i
\(575\) 0 0
\(576\) 45.3736 + 30.9504i 1.89057 + 1.28960i
\(577\) −1.65018 2.27128i −0.0686978 0.0945545i 0.773285 0.634058i \(-0.218612\pi\)
−0.841983 + 0.539504i \(0.818612\pi\)
\(578\) 13.8948 1.52996i 0.577948 0.0636379i
\(579\) −32.0840 10.4247i −1.33337 0.433237i
\(580\) 0 0
\(581\) −1.88705 + 0.613141i −0.0782882 + 0.0254374i
\(582\) 61.4683 27.7327i 2.54794 1.14956i
\(583\) −7.72646 + 2.51048i −0.319997 + 0.103973i
\(584\) −12.1061 + 9.07325i −0.500956 + 0.375454i
\(585\) 0 0
\(586\) 16.4056 + 9.36385i 0.677710 + 0.386817i
\(587\) −9.41724 6.84202i −0.388691 0.282401i 0.376228 0.926527i \(-0.377221\pi\)
−0.764919 + 0.644127i \(0.777221\pi\)
\(588\) −24.8229 + 5.53359i −1.02368 + 0.228201i
\(589\) 3.97848 + 5.47591i 0.163931 + 0.225631i
\(590\) 0 0
\(591\) −57.4698 41.7543i −2.36399 1.71754i
\(592\) −13.2200 + 6.20233i −0.543340 + 0.254914i
\(593\) 12.6560i 0.519720i 0.965646 + 0.259860i \(0.0836765\pi\)
−0.965646 + 0.259860i \(0.916324\pi\)
\(594\) 26.5792 + 29.2270i 1.09056 + 1.19920i
\(595\) 0 0
\(596\) −23.5839 + 13.9292i −0.966033 + 0.570562i
\(597\) −0.685994 + 2.11127i −0.0280759 + 0.0864087i
\(598\) 2.79169 4.89109i 0.114161 0.200012i
\(599\) −20.9771 −0.857101 −0.428550 0.903518i \(-0.640976\pi\)
−0.428550 + 0.903518i \(0.640976\pi\)
\(600\) 0 0
\(601\) 23.0207 0.939032 0.469516 0.882924i \(-0.344428\pi\)
0.469516 + 0.882924i \(0.344428\pi\)
\(602\) 4.52119 7.92120i 0.184270 0.322844i
\(603\) 32.5488 100.175i 1.32549 4.07944i
\(604\) −12.2994 20.8244i −0.500455 0.847334i
\(605\) 0 0
\(606\) 41.0999 + 45.1943i 1.66957 + 1.83589i
\(607\) 26.0419i 1.05701i 0.848931 + 0.528504i \(0.177247\pi\)
−0.848931 + 0.528504i \(0.822753\pi\)
\(608\) 21.2086 24.7600i 0.860122 1.00415i
\(609\) 5.62666 + 4.08801i 0.228004 + 0.165654i
\(610\) 0 0
\(611\) −31.2947 43.0734i −1.26605 1.74257i
\(612\) −7.96953 35.7501i −0.322149 1.44511i
\(613\) −13.6825 9.94089i −0.552629 0.401509i 0.276125 0.961122i \(-0.410950\pi\)
−0.828754 + 0.559613i \(0.810950\pi\)
\(614\) 17.4139 + 9.93937i 0.702770 + 0.401120i
\(615\) 0 0
\(616\) 6.70489 + 8.94613i 0.270148 + 0.360450i
\(617\) −5.20768 + 1.69208i −0.209653 + 0.0681205i −0.411961 0.911202i \(-0.635156\pi\)
0.202308 + 0.979322i \(0.435156\pi\)
\(618\) −35.4557 + 15.9966i −1.42624 + 0.643478i
\(619\) −15.1429 + 4.92021i −0.608643 + 0.197760i −0.597091 0.802173i \(-0.703677\pi\)
−0.0115514 + 0.999933i \(0.503677\pi\)
\(620\) 0 0
\(621\) 7.73701 + 2.51391i 0.310476 + 0.100880i
\(622\) −0.672325 + 0.0740299i −0.0269578 + 0.00296833i
\(623\) −4.18044 5.75389i −0.167486 0.230525i
\(624\) −9.27363 74.0930i −0.371242 2.96609i
\(625\) 0 0
\(626\) −14.6435 + 6.60673i −0.585272 + 0.264058i
\(627\) 33.6938 24.4799i 1.34560 0.977635i
\(628\) 12.8205 + 21.7068i 0.511595 + 0.866195i
\(629\) 9.26151 + 3.00925i 0.369281 + 0.119987i
\(630\) 0 0
\(631\) −15.0147 46.2106i −0.597727 1.83961i −0.540654 0.841245i \(-0.681823\pi\)
−0.0570726 0.998370i \(-0.518177\pi\)
\(632\) 1.09875 + 0.339056i 0.0437059 + 0.0134869i
\(633\) −54.8380 + 17.8179i −2.17961 + 0.708200i
\(634\) −3.96990 + 19.1422i −0.157665 + 0.760235i
\(635\) 0 0
\(636\) −2.10018 + 22.0822i −0.0832776 + 0.875615i
\(637\) 19.4662 + 14.1431i 0.771280 + 0.560368i
\(638\) −0.851600 + 4.10628i −0.0337152 + 0.162569i
\(639\) −34.6333 + 25.1626i −1.37007 + 0.995417i
\(640\) 0 0
\(641\) 15.1755 + 11.0256i 0.599396 + 0.435486i 0.845664 0.533715i \(-0.179205\pi\)
−0.246269 + 0.969202i \(0.579205\pi\)
\(642\) −11.4806 + 10.4405i −0.453104 + 0.412055i
\(643\) −37.8673 −1.49334 −0.746669 0.665195i \(-0.768348\pi\)
−0.746669 + 0.665195i \(0.768348\pi\)
\(644\) 2.11235 + 0.915536i 0.0832382 + 0.0360772i
\(645\) 0 0
\(646\) −21.6105 + 2.37953i −0.850252 + 0.0936215i
\(647\) 37.5073 + 12.1869i 1.47456 + 0.479115i 0.932484 0.361212i \(-0.117637\pi\)
0.542080 + 0.840327i \(0.317637\pi\)
\(648\) 46.9475 16.0285i 1.84427 0.629660i
\(649\) 14.0185 0.550276
\(650\) 0 0
\(651\) 6.33752i 0.248387i
\(652\) −2.23657 + 23.5162i −0.0875907 + 0.920964i
\(653\) −6.71891 + 20.6787i −0.262931 + 0.809219i 0.729232 + 0.684267i \(0.239878\pi\)
−0.992163 + 0.124952i \(0.960122\pi\)
\(654\) 2.12212 + 19.2727i 0.0829815 + 0.753622i
\(655\) 0 0
\(656\) −27.8252 + 13.0545i −1.08639 + 0.509693i
\(657\) 36.7229i 1.43270i
\(658\) 16.1022 14.6435i 0.627731 0.570861i
\(659\) −3.19947 + 4.40369i −0.124634 + 0.171543i −0.866774 0.498701i \(-0.833811\pi\)
0.742141 + 0.670244i \(0.233811\pi\)
\(660\) 0 0
\(661\) −26.8362 36.9368i −1.04381 1.43668i −0.894058 0.447951i \(-0.852154\pi\)
−0.149747 0.988724i \(-0.547846\pi\)
\(662\) −9.35929 1.94102i −0.363759 0.0754399i
\(663\) −29.2694 + 40.2859i −1.13673 + 1.56458i
\(664\) −3.09143 + 1.05546i −0.119971 + 0.0409596i
\(665\) 0 0
\(666\) −7.19790 + 34.7071i −0.278913 + 1.34487i
\(667\) 0.266862 + 0.821317i 0.0103329 + 0.0318015i
\(668\) −16.4631 14.5310i −0.636976 0.562221i
\(669\) −22.9268 + 7.44937i −0.886402 + 0.288009i
\(670\) 0 0
\(671\) −0.655758 + 2.01821i −0.0253152 + 0.0779123i
\(672\) 29.6920 7.08332i 1.14539 0.273245i
\(673\) −25.2847 34.8014i −0.974654 1.34150i −0.939661 0.342108i \(-0.888859\pi\)
−0.0349929 0.999388i \(-0.511141\pi\)
\(674\) −21.4351 + 9.67092i −0.825651 + 0.372510i
\(675\) 0 0
\(676\) −29.5448 + 33.4733i −1.13634 + 1.28743i
\(677\) −37.8808 + 27.5220i −1.45588 + 1.05776i −0.471466 + 0.881884i \(0.656275\pi\)
−0.984413 + 0.175873i \(0.943725\pi\)
\(678\) −0.741002 6.72964i −0.0284580 0.258450i
\(679\) 8.05960 24.8049i 0.309299 0.951924i
\(680\) 0 0
\(681\) 11.3714 + 34.9977i 0.435755 + 1.34111i
\(682\) −3.48326 + 1.57155i −0.133381 + 0.0601776i
\(683\) −0.331130 1.01911i −0.0126703 0.0389953i 0.944521 0.328450i \(-0.106526\pi\)
−0.957192 + 0.289454i \(0.906526\pi\)
\(684\) −17.2184 77.2391i −0.658362 2.95331i
\(685\) 0 0
\(686\) −13.3066 + 23.3133i −0.508047 + 0.890108i
\(687\) 49.7673 68.4988i 1.89874 2.61339i
\(688\) 7.24904 13.1501i 0.276367 0.501345i
\(689\) 16.9784 12.3355i 0.646824 0.469945i
\(690\) 0 0
\(691\) 8.71658 11.9973i 0.331595 0.456401i −0.610368 0.792118i \(-0.708979\pi\)
0.941963 + 0.335717i \(0.108979\pi\)
\(692\) 27.8271 + 12.0608i 1.05783 + 0.458484i
\(693\) 27.1373 1.03086
\(694\) −0.525130 + 0.477556i −0.0199337 + 0.0181278i
\(695\) 0 0
\(696\) 9.36235 + 6.59204i 0.354879 + 0.249870i
\(697\) 19.4934 + 6.33379i 0.738366 + 0.239910i
\(698\) 0.972622 1.70405i 0.0368143 0.0644992i
\(699\) 43.7790i 1.65587i
\(700\) 0 0
\(701\) 6.33651i 0.239327i −0.992815 0.119663i \(-0.961818\pi\)
0.992815 0.119663i \(-0.0381815\pi\)
\(702\) −88.6306 50.5878i −3.34515 1.90931i
\(703\) 20.0098 + 6.50156i 0.754682 + 0.245211i
\(704\) 11.2560 + 14.5630i 0.424228 + 0.548863i
\(705\) 0 0
\(706\) −27.1445 29.8486i −1.02159 1.12337i
\(707\) 23.6266 0.888571
\(708\) 15.2214 35.1192i 0.572054 1.31986i
\(709\) −25.4810 + 35.0716i −0.956960 + 1.31714i −0.00859395 + 0.999963i \(0.502736\pi\)
−0.948366 + 0.317179i \(0.897264\pi\)
\(710\) 0 0
\(711\) 2.25807 1.64059i 0.0846843 0.0615268i
\(712\) −7.02235 9.36970i −0.263174 0.351144i
\(713\) −0.462540 + 0.636631i −0.0173222 + 0.0238420i
\(714\) −17.6793 10.0908i −0.661632 0.377640i
\(715\) 0 0
\(716\) 9.40423 + 42.1859i 0.351452 + 1.57656i
\(717\) 9.28391 + 28.5729i 0.346714 + 1.06708i
\(718\) 13.4486 + 29.8082i 0.501898 + 1.11243i
\(719\) 2.82195 + 8.68507i 0.105241 + 0.323898i 0.989787 0.142555i \(-0.0455316\pi\)
−0.884546 + 0.466453i \(0.845532\pi\)
\(720\) 0 0
\(721\) −4.64888 + 14.3078i −0.173133 + 0.532850i
\(722\) −19.9814 + 2.20016i −0.743631 + 0.0818814i
\(723\) −63.9059 + 46.4303i −2.37669 + 1.72676i
\(724\) 13.0287 + 11.4997i 0.484208 + 0.427382i
\(725\) 0 0
\(726\) −10.4246 23.1057i −0.386894 0.857532i
\(727\) −24.3866 33.5653i −0.904449 1.24487i −0.969027 0.246955i \(-0.920570\pi\)
0.0645777 0.997913i \(-0.479430\pi\)
\(728\) −23.6140 16.6266i −0.875192 0.616223i
\(729\) 1.85677 5.71454i 0.0687691 0.211649i
\(730\) 0 0
\(731\) −9.52354 + 3.09439i −0.352241 + 0.114450i
\(732\) 4.34399 + 3.83418i 0.160559 + 0.141715i
\(733\) −11.2254 34.5481i −0.414619 1.27606i −0.912592 0.408872i \(-0.865922\pi\)
0.497973 0.867193i \(-0.334078\pi\)
\(734\) 39.0494 + 8.09844i 1.44134 + 0.298919i
\(735\) 0 0
\(736\) 3.49966 + 1.45550i 0.128999 + 0.0536504i
\(737\) 20.7474 28.5564i 0.764241 1.05189i
\(738\) −15.1500 + 73.0508i −0.557678 + 2.68904i
\(739\) −27.2866 37.5567i −1.00375 1.38155i −0.922995 0.384813i \(-0.874266\pi\)
−0.0807577 0.996734i \(-0.525734\pi\)
\(740\) 0 0
\(741\) −63.2375 + 87.0389i −2.32309 + 3.19745i
\(742\) 5.77205 + 6.34706i 0.211899 + 0.233008i
\(743\) 43.8156i 1.60744i 0.595008 + 0.803720i \(0.297149\pi\)
−0.595008 + 0.803720i \(0.702851\pi\)
\(744\) 0.154895 + 10.4326i 0.00567873 + 0.382479i
\(745\) 0 0
\(746\) 25.2864 2.78429i 0.925801 0.101940i
\(747\) −2.45027 + 7.54115i −0.0896506 + 0.275916i
\(748\) 1.16215 12.2193i 0.0424923 0.446781i
\(749\) 6.00182i 0.219302i
\(750\) 0 0
\(751\) 0.0692442 0.00252676 0.00126338 0.999999i \(-0.499598\pi\)
0.00126338 + 0.999999i \(0.499598\pi\)
\(752\) 26.1491 24.4992i 0.953560 0.893393i
\(753\) 20.6649 + 6.71442i 0.753070 + 0.244687i
\(754\) −1.18568 10.7681i −0.0431799 0.392152i
\(755\) 0 0
\(756\) 16.5903 38.2775i 0.603382 1.39214i
\(757\) 17.1602 0.623700 0.311850 0.950131i \(-0.399051\pi\)
0.311850 + 0.950131i \(0.399051\pi\)
\(758\) 5.18986 + 5.70687i 0.188504 + 0.207283i
\(759\) 3.91725 + 2.84605i 0.142187 + 0.103305i
\(760\) 0 0
\(761\) 8.77922 6.37847i 0.318246 0.231220i −0.417180 0.908824i \(-0.636982\pi\)
0.735427 + 0.677604i \(0.236982\pi\)
\(762\) 73.9383 + 15.3340i 2.67850 + 0.555493i
\(763\) 6.06686 + 4.40783i 0.219635 + 0.159574i
\(764\) −0.161315 + 1.69614i −0.00583618 + 0.0613640i
\(765\) 0 0
\(766\) −19.2750 3.99743i −0.696432 0.144433i
\(767\) −34.4408 + 11.1905i −1.24358 + 0.404065i
\(768\) 48.7049 12.3860i 1.75749 0.446943i
\(769\) 5.30296 + 16.3208i 0.191230 + 0.588545i 1.00000 0.000419828i \(0.000133635\pi\)
−0.808770 + 0.588125i \(0.799866\pi\)
\(770\) 0 0
\(771\) 89.0459 + 28.9328i 3.20691 + 1.04199i
\(772\) −18.4958 + 10.9240i −0.665677 + 0.393164i
\(773\) −29.9036 + 21.7262i −1.07556 + 0.781437i −0.976903 0.213685i \(-0.931454\pi\)
−0.0986535 + 0.995122i \(0.531454\pi\)
\(774\) −14.9895 33.2236i −0.538788 1.19420i
\(775\) 0 0
\(776\) 12.6612 41.0300i 0.454511 1.47289i
\(777\) 11.5791 + 15.9372i 0.415398 + 0.571746i
\(778\) 5.72040 + 51.9516i 0.205086 + 1.86255i
\(779\) 42.1161 + 13.6843i 1.50896 + 0.490292i
\(780\) 0 0
\(781\) −13.6438 + 4.43314i −0.488214 + 0.158630i
\(782\) −1.03949 2.30398i −0.0371721 0.0823903i
\(783\) 14.8829 4.83576i 0.531873 0.172816i
\(784\) −7.81779 + 14.1819i −0.279207 + 0.506496i
\(785\) 0 0
\(786\) 13.2340 23.1862i 0.472041 0.827023i
\(787\) −19.5842 14.2288i −0.698102 0.507201i 0.181212 0.983444i \(-0.441998\pi\)
−0.879313 + 0.476244i \(0.841998\pi\)
\(788\) −44.1489 + 9.84182i −1.57274 + 0.350600i
\(789\) 48.8646 + 67.2564i 1.73963 + 2.39439i
\(790\) 0 0
\(791\) −2.11843 1.53913i −0.0753225 0.0547250i
\(792\) 44.6726 0.663261i 1.58737 0.0235680i
\(793\) 5.48182i 0.194665i
\(794\) −24.8006 + 22.5538i −0.880142 + 0.800405i
\(795\) 0 0
\(796\) 0.718850 + 1.21710i 0.0254790 + 0.0431391i
\(797\) −0.311905 + 0.959946i −0.0110483 + 0.0340030i −0.956429 0.291966i \(-0.905691\pi\)
0.945380 + 0.325969i \(0.105691\pi\)
\(798\) −38.1967 21.8016i −1.35215 0.771767i
\(799\) −23.8959 −0.845375
\(800\) 0 0
\(801\) −28.4221 −1.00425
\(802\) 1.08249 + 0.617851i 0.0382239 + 0.0218171i
\(803\) −3.80287 + 11.7040i −0.134200 + 0.413027i
\(804\) −49.0116 82.9829i −1.72851 2.92658i
\(805\) 0 0
\(806\) 7.30317 6.64154i 0.257243 0.233938i
\(807\) 25.2322i 0.888217i
\(808\) 38.8934 0.577458i 1.36827 0.0203149i
\(809\) −14.0834 10.2322i −0.495147 0.359745i 0.312013 0.950078i \(-0.398997\pi\)
−0.807160 + 0.590332i \(0.798997\pi\)
\(810\) 0 0
\(811\) 4.13632 + 5.69316i 0.145246 + 0.199914i 0.875441 0.483325i \(-0.160571\pi\)
−0.730195 + 0.683238i \(0.760571\pi\)
\(812\) 4.32246 0.963577i 0.151689 0.0338149i
\(813\) 23.6684 + 17.1961i 0.830086 + 0.603093i
\(814\) −5.88819 + 10.3162i −0.206381 + 0.361583i
\(815\) 0 0
\(816\) −29.3498 16.1791i −1.02745 0.566383i
\(817\) −20.5759 + 6.68551i −0.719859 + 0.233896i
\(818\) −20.8274 46.1629i −0.728212 1.61405i
\(819\) −66.6709 + 21.6627i −2.32967 + 0.756956i
\(820\) 0 0
\(821\) 24.4826 + 7.95489i 0.854450 + 0.277628i 0.703309 0.710884i \(-0.251705\pi\)
0.151141 + 0.988512i \(0.451705\pi\)
\(822\) −2.01305 18.2822i −0.0702134 0.637664i
\(823\) −24.5580 33.8012i −0.856038 1.17823i −0.982500 0.186264i \(-0.940362\pi\)
0.126462 0.991971i \(-0.459638\pi\)
\(824\) −7.30315 + 23.6667i −0.254417 + 0.824467i
\(825\) 0 0
\(826\) −6.08809 13.4940i −0.211832 0.469515i
\(827\) −21.0719 + 15.3096i −0.732741 + 0.532368i −0.890429 0.455121i \(-0.849596\pi\)
0.157688 + 0.987489i \(0.449596\pi\)
\(828\) 7.92174 4.67876i 0.275299 0.162598i
\(829\) −3.94736 1.28257i −0.137097 0.0445457i 0.239665 0.970856i \(-0.422963\pi\)
−0.376762 + 0.926310i \(0.622963\pi\)
\(830\) 0 0
\(831\) −3.66128 11.2683i −0.127008 0.390892i
\(832\) −39.2790 26.7931i −1.36175 0.928882i
\(833\) 10.2707 3.33717i 0.355860 0.115626i
\(834\) −43.7901 9.08161i −1.51633 0.314470i
\(835\) 0 0
\(836\) 2.51085 26.4001i 0.0868396 0.913067i
\(837\) 11.5363 + 8.38160i 0.398752 + 0.289710i
\(838\) 26.3639 + 5.46759i 0.910724 + 0.188875i
\(839\) −31.5974 + 22.9568i −1.09086 + 0.792557i −0.979545 0.201227i \(-0.935507\pi\)
−0.111317 + 0.993785i \(0.535507\pi\)
\(840\) 0 0
\(841\) −22.1176 16.0693i −0.762674 0.554115i
\(842\) −8.42855 9.26820i −0.290467 0.319403i
\(843\) 67.3294 2.31895
\(844\) −14.6007 + 33.6870i −0.502576 + 1.15956i
\(845\) 0 0
\(846\) −9.51966 86.4557i −0.327293 2.97241i
\(847\) −9.32406 3.02957i −0.320378 0.104097i
\(848\) 9.65690 + 10.3073i 0.331619 + 0.353953i
\(849\) −2.90815 −0.0998075
\(850\) 0 0
\(851\) 2.44606i 0.0838498i
\(852\) −3.70861 + 38.9939i −0.127055 + 1.33591i
\(853\) 3.09392 9.52211i 0.105934 0.326031i −0.884015 0.467459i \(-0.845169\pi\)
0.989948 + 0.141428i \(0.0451695\pi\)
\(854\) 2.22748 0.245268i 0.0762227 0.00839290i
\(855\) 0 0
\(856\) 0.146690 + 9.88002i 0.00501378 + 0.337692i
\(857\) 31.6591i 1.08146i −0.841198 0.540728i \(-0.818149\pi\)
0.841198 0.540728i \(-0.181851\pi\)
\(858\) −40.8660 44.9370i −1.39514 1.53412i
\(859\) 10.6822 14.7028i 0.364473 0.501654i −0.586915 0.809649i \(-0.699658\pi\)
0.951388 + 0.307994i \(0.0996577\pi\)
\(860\) 0 0
\(861\) 24.3714 + 33.5444i 0.830575 + 1.14319i
\(862\) 0.888977 4.28651i 0.0302787 0.145999i
\(863\) −1.06034 + 1.45943i −0.0360944 + 0.0496797i −0.826683 0.562668i \(-0.809775\pi\)
0.790588 + 0.612348i \(0.209775\pi\)
\(864\) 26.3749 63.4167i 0.897291 2.15748i
\(865\) 0 0
\(866\) 12.6295 + 2.61923i 0.429169 + 0.0890052i
\(867\) −9.59395 29.5271i −0.325828 1.00279i
\(868\) 3.02548 + 2.67041i 0.102691 + 0.0906395i
\(869\) 0.889568 0.289038i 0.0301765 0.00980495i
\(870\) 0 0
\(871\) −28.1768 + 86.7193i −0.954735 + 2.93837i
\(872\) 10.0948 + 7.10776i 0.341853 + 0.240699i
\(873\) −61.2636 84.3221i −2.07346 2.85387i
\(874\) −2.24585 4.97782i −0.0759671 0.168377i
\(875\) 0 0
\(876\) 25.1917 + 22.2352i 0.851149 + 0.751258i
\(877\) 25.8054 18.7487i 0.871387 0.633100i −0.0595719 0.998224i \(-0.518974\pi\)
0.930959 + 0.365124i \(0.118974\pi\)
\(878\) −54.0308 + 5.94935i −1.82345 + 0.200781i
\(879\) 12.9645 39.9007i 0.437282 1.34582i
\(880\) 0 0
\(881\) 5.46376 + 16.8157i 0.184079 + 0.566536i 0.999931 0.0117237i \(-0.00373186\pi\)
−0.815852 + 0.578260i \(0.803732\pi\)
\(882\) 16.1656 + 35.8303i 0.544324 + 1.20647i
\(883\) 3.19347 + 9.82850i 0.107469 + 0.330755i 0.990302 0.138932i \(-0.0443668\pi\)
−0.882833 + 0.469687i \(0.844367\pi\)
\(884\) 6.89904 + 30.9481i 0.232040 + 1.04090i
\(885\) 0 0
\(886\) −41.5404 23.7101i −1.39558 0.796555i
\(887\) −18.9891 + 26.1362i −0.637591 + 0.877568i −0.998484 0.0550388i \(-0.982472\pi\)
0.360894 + 0.932607i \(0.382472\pi\)
\(888\) 19.4507 + 25.9524i 0.652722 + 0.870906i
\(889\) 23.6275 17.1664i 0.792442 0.575742i
\(890\) 0 0
\(891\) 23.7190 32.6464i 0.794615 1.09369i
\(892\) −6.10429 + 14.0840i −0.204387 + 0.471566i
\(893\) −51.6277 −1.72766
\(894\) 40.9286 + 45.0059i 1.36886 + 1.50522i
\(895\) 0 0
\(896\) 9.12964 17.1594i 0.305000 0.573254i
\(897\) −11.8958 3.86518i −0.397189 0.129055i
\(898\) −14.4310 8.23678i −0.481568 0.274865i
\(899\) 1.51372i 0.0504854i
\(900\) 0 0
\(901\) 9.41910i 0.313796i
\(902\) −12.3933 + 21.7133i −0.412652 + 0.722974i
\(903\) −19.2654 6.25972i −0.641113 0.208310i
\(904\) −3.52490 2.48189i −0.117237 0.0825463i
\(905\) 0 0
\(906\) −39.7399 + 36.1397i −1.32027 + 1.20066i
\(907\) 38.2694 1.27071 0.635357 0.772219i \(-0.280853\pi\)
0.635357 + 0.772219i \(0.280853\pi\)
\(908\) 21.4991 + 9.31817i 0.713474 + 0.309234i
\(909\) 55.4975 76.3858i 1.84074 2.53356i
\(910\) 0 0
\(911\) −39.1122 + 28.4167i −1.29584 + 0.941486i −0.999906 0.0137212i \(-0.995632\pi\)
−0.295938 + 0.955207i \(0.595632\pi\)
\(912\) −63.4111 34.9555i −2.09975 1.15749i
\(913\) −1.56186 + 2.14972i −0.0516901 + 0.0711453i
\(914\) 8.77221 15.3691i 0.290159 0.508363i
\(915\) 0 0
\(916\) −11.7305 52.6214i −0.387588 1.73866i
\(917\) −3.19076 9.82014i −0.105368 0.324290i
\(918\) −41.7501 + 18.8364i −1.37796 + 0.621695i
\(919\) −2.97260 9.14872i −0.0980570 0.301788i 0.889981 0.455997i \(-0.150717\pi\)
−0.988038 + 0.154209i \(0.950717\pi\)
\(920\) 0 0
\(921\) 13.7613 42.3531i 0.453452 1.39558i
\(922\) −1.90848 17.3324i −0.0628523 0.570813i
\(923\) 29.9813 21.7827i 0.986847 0.716986i
\(924\) 16.4312 18.6160i 0.540548 0.612422i
\(925\) 0 0
\(926\) −21.3134 + 9.61601i −0.700403 + 0.316002i
\(927\) 35.3377 + 48.6381i 1.16064 + 1.59749i
\(928\) 7.09195 1.69186i 0.232805 0.0555379i
\(929\) 5.02685 15.4710i 0.164926 0.507589i −0.834105 0.551605i \(-0.814015\pi\)
0.999031 + 0.0440168i \(0.0140155\pi\)
\(930\) 0 0
\(931\) 22.1902 7.21004i 0.727255 0.236300i
\(932\) −20.8997 18.4469i −0.684593 0.604249i
\(933\) 0.464221 + 1.42872i 0.0151979 + 0.0467743i
\(934\) 4.61722 22.2635i 0.151080 0.728483i
\(935\) 0 0
\(936\) −109.222 + 37.2900i −3.57004 + 1.21886i
\(937\) −2.13418 + 2.93745i −0.0697207 + 0.0959623i −0.842453 0.538769i \(-0.818889\pi\)
0.772733 + 0.634732i \(0.218889\pi\)
\(938\) −36.4981 7.56934i −1.19171 0.247148i
\(939\) 20.9721 + 28.8657i 0.684400 + 0.941996i
\(940\) 0 0
\(941\) −23.9722 + 32.9948i −0.781470 + 1.07560i 0.213648 + 0.976911i \(0.431465\pi\)
−0.995118 + 0.0986904i \(0.968535\pi\)
\(942\) 41.4238 37.6710i 1.34966 1.22739i
\(943\) 5.14841i 0.167655i
\(944\) −10.3518 22.0645i −0.336923 0.718140i
\(945\) 0 0
\(946\) −1.33685 12.1410i −0.0434648 0.394739i
\(947\) 7.79156 23.9800i 0.253192 0.779244i −0.740989 0.671517i \(-0.765643\pi\)
0.994181 0.107727i \(-0.0343572\pi\)
\(948\) 0.241799 2.54238i 0.00785328 0.0825726i
\(949\) 31.7902i 1.03195i
\(950\) 0 0
\(951\) 43.4193 1.40797
\(952\) −12.2667 + 4.18803i −0.397567 + 0.135735i
\(953\) −22.2071 7.21551i −0.719357 0.233733i −0.0736128 0.997287i \(-0.523453\pi\)
−0.645745 + 0.763554i \(0.723453\pi\)
\(954\) 34.0785 3.75239i 1.10333 0.121488i
\(955\) 0 0
\(956\) 17.5524 + 7.60757i 0.567685 + 0.246047i
\(957\) 9.31405 0.301081
\(958\) 22.5295 20.4885i 0.727897 0.661953i
\(959\) −5.75505 4.18129i −0.185840 0.135021i
\(960\) 0 0
\(961\) 23.9636 17.4106i 0.773020 0.561632i
\(962\) 6.23106 30.0452i 0.200898 0.968696i
\(963\) 19.4041 + 14.0979i 0.625289 + 0.454299i
\(964\) −4.76225 + 50.0722i −0.153382 + 1.61272i
\(965\) 0 0
\(966\) 1.03833 5.00666i 0.0334077 0.161087i
\(967\) 23.8786 7.75862i 0.767883 0.249500i 0.101225 0.994864i \(-0.467724\pi\)
0.666659 + 0.745363i \(0.267724\pi\)
\(968\) −15.4230 4.75930i −0.495715 0.152970i
\(969\) 14.9214 + 45.9233i 0.479344 + 1.47527i
\(970\) 0 0
\(971\) 9.54087 + 3.10002i 0.306181 + 0.0994843i 0.458078 0.888912i \(-0.348538\pi\)
−0.151897 + 0.988396i \(0.548538\pi\)
\(972\) −18.9842 32.1426i −0.608917 1.03097i
\(973\) −13.9934 + 10.1668i −0.448609 + 0.325934i
\(974\) 34.4881 15.5600i 1.10507 0.498576i
\(975\) 0 0
\(976\) 3.66081 0.458195i 0.117180 0.0146665i
\(977\) −12.8529 17.6906i −0.411202 0.565971i 0.552309 0.833640i \(-0.313747\pi\)
−0.963511 + 0.267668i \(0.913747\pi\)
\(978\) 52.1496 5.74220i 1.66756 0.183615i
\(979\) −9.05848 2.94328i −0.289510 0.0940676i
\(980\) 0 0
\(981\) 28.5014 9.26065i 0.909978 0.295670i
\(982\) 0.420147 0.189558i 0.0134074 0.00604905i
\(983\) 17.7241 5.75890i 0.565311 0.183681i −0.0123987 0.999923i \(-0.503947\pi\)
0.577709 + 0.816243i \(0.303947\pi\)
\(984\) 40.9393 + 54.6240i 1.30510 + 1.74135i
\(985\) 0 0
\(986\) −4.22272 2.41021i −0.134479 0.0767566i
\(987\) −39.1076 28.4133i −1.24481 0.904406i
\(988\) 14.9056 + 66.8642i 0.474210 + 2.12723i
\(989\) −1.47843 2.03489i −0.0470115 0.0647058i
\(990\) 0 0
\(991\) 29.3074 + 21.2931i 0.930981 + 0.676398i 0.946233 0.323486i \(-0.104855\pi\)
−0.0152515 + 0.999884i \(0.504855\pi\)
\(992\) 5.04571 + 4.32200i 0.160202 + 0.137224i
\(993\) 21.2292i 0.673688i
\(994\) 10.1926 + 11.2080i 0.323289 + 0.355495i
\(995\) 0 0
\(996\) 3.68958 + 6.24693i 0.116909 + 0.197942i
\(997\) 5.62136 17.3008i 0.178030 0.547921i −0.821729 0.569879i \(-0.806990\pi\)
0.999759 + 0.0219581i \(0.00699003\pi\)
\(998\) 16.2785 28.5202i 0.515286 0.902791i
\(999\) 44.3246 1.40237
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1000.2.o.a.949.5 112
5.2 odd 4 1000.2.t.b.301.38 224
5.3 odd 4 1000.2.t.b.301.19 224
5.4 even 2 200.2.o.a.189.24 yes 112
8.5 even 2 inner 1000.2.o.a.949.12 112
20.19 odd 2 800.2.be.a.689.1 112
25.9 even 10 inner 1000.2.o.a.549.12 112
25.12 odd 20 1000.2.t.b.701.53 224
25.13 odd 20 1000.2.t.b.701.4 224
25.16 even 5 200.2.o.a.109.17 112
40.13 odd 4 1000.2.t.b.301.4 224
40.19 odd 2 800.2.be.a.689.28 112
40.29 even 2 200.2.o.a.189.17 yes 112
40.37 odd 4 1000.2.t.b.301.53 224
100.91 odd 10 800.2.be.a.209.28 112
200.13 odd 20 1000.2.t.b.701.19 224
200.37 odd 20 1000.2.t.b.701.38 224
200.91 odd 10 800.2.be.a.209.1 112
200.109 even 10 inner 1000.2.o.a.549.5 112
200.141 even 10 200.2.o.a.109.24 yes 112
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
200.2.o.a.109.17 112 25.16 even 5
200.2.o.a.109.24 yes 112 200.141 even 10
200.2.o.a.189.17 yes 112 40.29 even 2
200.2.o.a.189.24 yes 112 5.4 even 2
800.2.be.a.209.1 112 200.91 odd 10
800.2.be.a.209.28 112 100.91 odd 10
800.2.be.a.689.1 112 20.19 odd 2
800.2.be.a.689.28 112 40.19 odd 2
1000.2.o.a.549.5 112 200.109 even 10 inner
1000.2.o.a.549.12 112 25.9 even 10 inner
1000.2.o.a.949.5 112 1.1 even 1 trivial
1000.2.o.a.949.12 112 8.5 even 2 inner
1000.2.t.b.301.4 224 40.13 odd 4
1000.2.t.b.301.19 224 5.3 odd 4
1000.2.t.b.301.38 224 5.2 odd 4
1000.2.t.b.301.53 224 40.37 odd 4
1000.2.t.b.701.4 224 25.13 odd 20
1000.2.t.b.701.19 224 200.13 odd 20
1000.2.t.b.701.38 224 200.37 odd 20
1000.2.t.b.701.53 224 25.12 odd 20