Properties

Label 100.9.b.c
Level $100$
Weight $9$
Character orbit 100.b
Analytic conductor $40.738$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [100,9,Mod(51,100)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(100, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0]))
 
N = Newforms(chi, 9, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("100.51");
 
S:= CuspForms(chi, 9);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 100 = 2^{2} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 9 \)
Character orbit: \([\chi]\) \(=\) 100.b (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(40.7378610061\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-39}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 10 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 4)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = 2\sqrt{-39}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \beta + 10) q^{2} - 8 \beta q^{3} + ( - 20 \beta - 56) q^{4} + ( - 80 \beta - 1248) q^{6} - 112 \beta q^{7} + ( - 144 \beta - 3680) q^{8} - 3423 q^{9} - 1480 \beta q^{11} + (448 \beta - 24960) q^{12} + \cdots + 5066040 \beta q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 20 q^{2} - 112 q^{4} - 2496 q^{6} - 7360 q^{8} - 6846 q^{9} - 49920 q^{12} + 10940 q^{13} - 34944 q^{14} - 118528 q^{16} - 146180 q^{17} - 68460 q^{18} - 279552 q^{21} - 461760 q^{22} - 359424 q^{24}+ \cdots + 76158740 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/100\mathbb{Z}\right)^\times\).

\(n\) \(51\) \(77\)
\(\chi(n)\) \(-1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
51.1
0.500000 + 3.12250i
0.500000 3.12250i
10.0000 12.4900i 99.9200i −56.0000 249.800i 0 −1248.00 999.200i 1398.88i −3680.00 1798.56i −3423.00 0
51.2 10.0000 + 12.4900i 99.9200i −56.0000 + 249.800i 0 −1248.00 + 999.200i 1398.88i −3680.00 + 1798.56i −3423.00 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
4.b odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 100.9.b.c 2
4.b odd 2 1 inner 100.9.b.c 2
5.b even 2 1 4.9.b.b 2
5.c odd 4 2 100.9.d.b 4
15.d odd 2 1 36.9.d.b 2
20.d odd 2 1 4.9.b.b 2
20.e even 4 2 100.9.d.b 4
40.e odd 2 1 64.9.c.b 2
40.f even 2 1 64.9.c.b 2
60.h even 2 1 36.9.d.b 2
80.k odd 4 2 256.9.d.e 4
80.q even 4 2 256.9.d.e 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
4.9.b.b 2 5.b even 2 1
4.9.b.b 2 20.d odd 2 1
36.9.d.b 2 15.d odd 2 1
36.9.d.b 2 60.h even 2 1
64.9.c.b 2 40.e odd 2 1
64.9.c.b 2 40.f even 2 1
100.9.b.c 2 1.a even 1 1 trivial
100.9.b.c 2 4.b odd 2 1 inner
100.9.d.b 4 5.c odd 4 2
100.9.d.b 4 20.e even 4 2
256.9.d.e 4 80.k odd 4 2
256.9.d.e 4 80.q even 4 2

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{9}^{\mathrm{new}}(100, [\chi])\):

\( T_{3}^{2} + 9984 \) Copy content Toggle raw display
\( T_{13} - 5470 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} - 20T + 256 \) Copy content Toggle raw display
$3$ \( T^{2} + 9984 \) Copy content Toggle raw display
$5$ \( T^{2} \) Copy content Toggle raw display
$7$ \( T^{2} + 1956864 \) Copy content Toggle raw display
$11$ \( T^{2} + 341702400 \) Copy content Toggle raw display
$13$ \( (T - 5470)^{2} \) Copy content Toggle raw display
$17$ \( (T + 73090)^{2} \) Copy content Toggle raw display
$19$ \( T^{2} + 379641600 \) Copy content Toggle raw display
$23$ \( T^{2} + 56268585984 \) Copy content Toggle raw display
$29$ \( (T + 128222)^{2} \) Copy content Toggle raw display
$31$ \( T^{2} + 4616601600 \) Copy content Toggle raw display
$37$ \( (T - 3472030)^{2} \) Copy content Toggle raw display
$41$ \( (T - 2146882)^{2} \) Copy content Toggle raw display
$43$ \( T^{2} + 35142983526144 \) Copy content Toggle raw display
$47$ \( T^{2} + 58160324112384 \) Copy content Toggle raw display
$53$ \( (T + 824290)^{2} \) Copy content Toggle raw display
$59$ \( T^{2} + 13879469510400 \) Copy content Toggle raw display
$61$ \( (T + 14746078)^{2} \) Copy content Toggle raw display
$67$ \( T^{2} + 232766284318464 \) Copy content Toggle raw display
$71$ \( T^{2} + 1430516505600 \) Copy content Toggle raw display
$73$ \( (T - 5725630)^{2} \) Copy content Toggle raw display
$79$ \( T^{2} + 12\!\cdots\!00 \) Copy content Toggle raw display
$83$ \( T^{2} + 26\!\cdots\!24 \) Copy content Toggle raw display
$89$ \( (T + 83324222)^{2} \) Copy content Toggle raw display
$97$ \( (T + 120619010)^{2} \) Copy content Toggle raw display
show more
show less