Properties

Label 100.6.l.a
Level $100$
Weight $6$
Character orbit 100.l
Analytic conductor $16.038$
Analytic rank $0$
Dimension $8$
CM discriminant -4
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [100,6,Mod(3,100)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(100, base_ring=CyclotomicField(20))
 
chi = DirichletCharacter(H, H._module([10, 7]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("100.3");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 100 = 2^{2} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 100.l (of order \(20\), degree \(8\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(16.0383819813\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\Q(\zeta_{20})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{6} + x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{U}(1)[D_{20}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{20}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (4 \zeta_{20}^{6} - 4 \zeta_{20}^{4} + \cdots - 4) q^{2}+ \cdots + 243 \zeta_{20}^{7} q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q + (4 \zeta_{20}^{6} - 4 \zeta_{20}^{4} + \cdots - 4) q^{2}+ \cdots + ( - 67228 \zeta_{20}^{6} + \cdots + 67228) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 8 q^{2} - 76 q^{5} + 256 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 8 q - 8 q^{2} - 76 q^{5} + 256 q^{8} + 24 q^{10} - 1438 q^{13} + 2048 q^{16} + 1434 q^{17} + 7776 q^{18} - 10496 q^{20} + 474 q^{25} - 11504 q^{26} - 32768 q^{32} - 61000 q^{34} - 15552 q^{36} - 32926 q^{37} + 20224 q^{40} - 9904 q^{41} - 19926 q^{45} + 26824 q^{50} - 46016 q^{52} + 153682 q^{53} + 68512 q^{58} + 109896 q^{61} + 163278 q^{65} - 45888 q^{68} - 62208 q^{72} + 68662 q^{73} + 77824 q^{80} + 118098 q^{81} - 39616 q^{82} + 608828 q^{85} - 255250 q^{89} - 153576 q^{90} - 68666 q^{97} + 134456 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/100\mathbb{Z}\right)^\times\).

\(n\) \(51\) \(77\)
\(\chi(n)\) \(-1\) \(\zeta_{20}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
3.1
−0.587785 + 0.809017i
−0.951057 0.309017i
0.951057 + 0.309017i
0.587785 0.809017i
0.951057 0.309017i
−0.587785 0.809017i
0.587785 + 0.809017i
−0.951057 + 0.309017i
−2.56816 5.04029i 0 −18.8091 + 25.8885i −6.64345 + 55.5055i 0 0 178.791 + 28.3177i −231.107 + 75.0911i 296.826 109.062i
23.1 −0.884927 + 5.58721i 0 −30.4338 9.88854i 50.7360 + 23.4705i 0 0 82.1811 161.289i 142.832 196.591i −176.032 + 262.703i
27.1 −5.58721 0.884927i 0 30.4338 + 9.88854i −27.2507 + 48.8098i 0 0 −161.289 82.1811i −142.832 + 196.591i 195.448 248.596i
47.1 5.04029 2.56816i 0 18.8091 25.8885i −54.8418 10.8339i 0 0 28.3177 178.791i 231.107 75.0911i −304.242 + 86.2367i
63.1 −5.58721 + 0.884927i 0 30.4338 9.88854i −27.2507 48.8098i 0 0 −161.289 + 82.1811i −142.832 196.591i 195.448 + 248.596i
67.1 −2.56816 + 5.04029i 0 −18.8091 25.8885i −6.64345 55.5055i 0 0 178.791 28.3177i −231.107 75.0911i 296.826 + 109.062i
83.1 5.04029 + 2.56816i 0 18.8091 + 25.8885i −54.8418 + 10.8339i 0 0 28.3177 + 178.791i 231.107 + 75.0911i −304.242 86.2367i
87.1 −0.884927 5.58721i 0 −30.4338 + 9.88854i 50.7360 23.4705i 0 0 82.1811 + 161.289i 142.832 + 196.591i −176.032 262.703i
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 3.1
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
4.b odd 2 1 CM by \(\Q(\sqrt{-1}) \)
25.f odd 20 1 inner
100.l even 20 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 100.6.l.a 8
4.b odd 2 1 CM 100.6.l.a 8
25.f odd 20 1 inner 100.6.l.a 8
100.l even 20 1 inner 100.6.l.a 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
100.6.l.a 8 1.a even 1 1 trivial
100.6.l.a 8 4.b odd 2 1 CM
100.6.l.a 8 25.f odd 20 1 inner
100.6.l.a 8 100.l even 20 1 inner

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3} \) acting on \(S_{6}^{\mathrm{new}}(100, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{8} + 8 T^{7} + \cdots + 1048576 \) Copy content Toggle raw display
$3$ \( T^{8} \) Copy content Toggle raw display
$5$ \( T^{8} + \cdots + 95367431640625 \) Copy content Toggle raw display
$7$ \( T^{8} \) Copy content Toggle raw display
$11$ \( T^{8} \) Copy content Toggle raw display
$13$ \( T^{8} + \cdots + 25\!\cdots\!01 \) Copy content Toggle raw display
$17$ \( T^{8} + \cdots + 14\!\cdots\!01 \) Copy content Toggle raw display
$19$ \( T^{8} \) Copy content Toggle raw display
$23$ \( T^{8} \) Copy content Toggle raw display
$29$ \( T^{8} + \cdots + 15\!\cdots\!01 \) Copy content Toggle raw display
$31$ \( T^{8} \) Copy content Toggle raw display
$37$ \( T^{8} + \cdots + 22\!\cdots\!01 \) Copy content Toggle raw display
$41$ \( T^{8} + \cdots + 28\!\cdots\!01 \) Copy content Toggle raw display
$43$ \( T^{8} \) Copy content Toggle raw display
$47$ \( T^{8} \) Copy content Toggle raw display
$53$ \( T^{8} + \cdots + 44\!\cdots\!01 \) Copy content Toggle raw display
$59$ \( T^{8} \) Copy content Toggle raw display
$61$ \( T^{8} + \cdots + 45\!\cdots\!01 \) Copy content Toggle raw display
$67$ \( T^{8} \) Copy content Toggle raw display
$71$ \( T^{8} \) Copy content Toggle raw display
$73$ \( T^{8} + \cdots + 68\!\cdots\!01 \) Copy content Toggle raw display
$79$ \( T^{8} \) Copy content Toggle raw display
$83$ \( T^{8} \) Copy content Toggle raw display
$89$ \( T^{8} + \cdots + 32\!\cdots\!01 \) Copy content Toggle raw display
$97$ \( T^{8} + \cdots + 74\!\cdots\!01 \) Copy content Toggle raw display
show more
show less