Properties

Label 100.6.c
Level $100$
Weight $6$
Character orbit 100.c
Rep. character $\chi_{100}(49,\cdot)$
Character field $\Q$
Dimension $8$
Newform subspaces $3$
Sturm bound $90$
Trace bound $9$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 100 = 2^{2} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 100.c (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 5 \)
Character field: \(\Q\)
Newform subspaces: \( 3 \)
Sturm bound: \(90\)
Trace bound: \(9\)
Distinguishing \(T_p\): \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{6}(100, [\chi])\).

Total New Old
Modular forms 84 8 76
Cusp forms 66 8 58
Eisenstein series 18 0 18

Trace form

\( 8 q - 1348 q^{9} + O(q^{10}) \) \( 8 q - 1348 q^{9} - 3448 q^{19} + 1088 q^{21} - 16968 q^{29} + 9448 q^{31} - 40328 q^{39} - 19212 q^{41} - 36576 q^{49} + 32496 q^{51} + 112224 q^{59} - 4664 q^{61} + 265056 q^{69} - 147336 q^{71} + 123776 q^{79} + 273232 q^{81} - 203892 q^{89} - 470008 q^{91} - 120600 q^{99} + O(q^{100}) \)

Decomposition of \(S_{6}^{\mathrm{new}}(100, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
100.6.c.a 100.c 5.b $2$ $16.038$ \(\Q(\sqrt{-1}) \) None 20.6.a.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+11iq^{3}-109iq^{7}-241q^{9}-480q^{11}+\cdots\)
100.6.c.b 100.c 5.b $2$ $16.038$ \(\Q(\sqrt{-1}) \) None 4.6.a.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+6iq^{3}-44iq^{7}+99q^{9}+540q^{11}+\cdots\)
100.6.c.c 100.c 5.b $4$ $16.038$ \(\Q(i, \sqrt{409})\) None 100.6.a.c \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+(-\beta _{1}+2\beta _{2})q^{3}+(-6\beta _{1}+4\beta _{2}+\cdots)q^{7}+\cdots\)

Decomposition of \(S_{6}^{\mathrm{old}}(100, [\chi])\) into lower level spaces

\( S_{6}^{\mathrm{old}}(100, [\chi]) \simeq \) \(S_{6}^{\mathrm{new}}(5, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(10, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(20, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(25, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(50, [\chi])\)\(^{\oplus 2}\)