Defining parameters
Level: | \( N \) | \(=\) | \( 100 = 2^{2} \cdot 5^{2} \) |
Weight: | \( k \) | \(=\) | \( 6 \) |
Character orbit: | \([\chi]\) | \(=\) | 100.c (of order \(2\) and degree \(1\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 5 \) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 3 \) | ||
Sturm bound: | \(90\) | ||
Trace bound: | \(9\) | ||
Distinguishing \(T_p\): | \(3\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{6}(100, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 84 | 8 | 76 |
Cusp forms | 66 | 8 | 58 |
Eisenstein series | 18 | 0 | 18 |
Trace form
Decomposition of \(S_{6}^{\mathrm{new}}(100, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
100.6.c.a | $2$ | $16.038$ | \(\Q(\sqrt{-1}) \) | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q+11iq^{3}-109iq^{7}-241q^{9}-480q^{11}+\cdots\) |
100.6.c.b | $2$ | $16.038$ | \(\Q(\sqrt{-1}) \) | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q+6iq^{3}-44iq^{7}+99q^{9}+540q^{11}+\cdots\) |
100.6.c.c | $4$ | $16.038$ | \(\Q(i, \sqrt{409})\) | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q+(-\beta _{1}+2\beta _{2})q^{3}+(-6\beta _{1}+4\beta _{2}+\cdots)q^{7}+\cdots\) |
Decomposition of \(S_{6}^{\mathrm{old}}(100, [\chi])\) into lower level spaces
\( S_{6}^{\mathrm{old}}(100, [\chi]) \simeq \) \(S_{6}^{\mathrm{new}}(5, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(10, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(20, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(25, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(50, [\chi])\)\(^{\oplus 2}\)