Properties

Label 100.6.a.b
Level $100$
Weight $6$
Character orbit 100.a
Self dual yes
Analytic conductor $16.038$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [100,6,Mod(1,100)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(100, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("100.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 100 = 2^{2} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 100.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(16.0383819813\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 4)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q + 12 q^{3} + 88 q^{7} - 99 q^{9} + 540 q^{11} + 418 q^{13} - 594 q^{17} + 836 q^{19} + 1056 q^{21} + 4104 q^{23} - 4104 q^{27} - 594 q^{29} + 4256 q^{31} + 6480 q^{33} + 298 q^{37} + 5016 q^{39} + 17226 q^{41}+ \cdots - 53460 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
0 12.0000 0 0 0 88.0000 0 −99.0000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(5\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 100.6.a.b 1
3.b odd 2 1 900.6.a.h 1
4.b odd 2 1 400.6.a.d 1
5.b even 2 1 4.6.a.a 1
5.c odd 4 2 100.6.c.b 2
15.d odd 2 1 36.6.a.a 1
15.e even 4 2 900.6.d.a 2
20.d odd 2 1 16.6.a.b 1
20.e even 4 2 400.6.c.f 2
35.c odd 2 1 196.6.a.e 1
35.i odd 6 2 196.6.e.d 2
35.j even 6 2 196.6.e.g 2
40.e odd 2 1 64.6.a.b 1
40.f even 2 1 64.6.a.f 1
45.h odd 6 2 324.6.e.d 2
45.j even 6 2 324.6.e.a 2
55.d odd 2 1 484.6.a.a 1
60.h even 2 1 144.6.a.c 1
65.d even 2 1 676.6.a.a 1
65.g odd 4 2 676.6.d.a 2
80.k odd 4 2 256.6.b.c 2
80.q even 4 2 256.6.b.g 2
120.i odd 2 1 576.6.a.bc 1
120.m even 2 1 576.6.a.bd 1
140.c even 2 1 784.6.a.d 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
4.6.a.a 1 5.b even 2 1
16.6.a.b 1 20.d odd 2 1
36.6.a.a 1 15.d odd 2 1
64.6.a.b 1 40.e odd 2 1
64.6.a.f 1 40.f even 2 1
100.6.a.b 1 1.a even 1 1 trivial
100.6.c.b 2 5.c odd 4 2
144.6.a.c 1 60.h even 2 1
196.6.a.e 1 35.c odd 2 1
196.6.e.d 2 35.i odd 6 2
196.6.e.g 2 35.j even 6 2
256.6.b.c 2 80.k odd 4 2
256.6.b.g 2 80.q even 4 2
324.6.e.a 2 45.j even 6 2
324.6.e.d 2 45.h odd 6 2
400.6.a.d 1 4.b odd 2 1
400.6.c.f 2 20.e even 4 2
484.6.a.a 1 55.d odd 2 1
576.6.a.bc 1 120.i odd 2 1
576.6.a.bd 1 120.m even 2 1
676.6.a.a 1 65.d even 2 1
676.6.d.a 2 65.g odd 4 2
784.6.a.d 1 140.c even 2 1
900.6.a.h 1 3.b odd 2 1
900.6.d.a 2 15.e even 4 2

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3} - 12 \) acting on \(S_{6}^{\mathrm{new}}(\Gamma_0(100))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T \) Copy content Toggle raw display
$3$ \( T - 12 \) Copy content Toggle raw display
$5$ \( T \) Copy content Toggle raw display
$7$ \( T - 88 \) Copy content Toggle raw display
$11$ \( T - 540 \) Copy content Toggle raw display
$13$ \( T - 418 \) Copy content Toggle raw display
$17$ \( T + 594 \) Copy content Toggle raw display
$19$ \( T - 836 \) Copy content Toggle raw display
$23$ \( T - 4104 \) Copy content Toggle raw display
$29$ \( T + 594 \) Copy content Toggle raw display
$31$ \( T - 4256 \) Copy content Toggle raw display
$37$ \( T - 298 \) Copy content Toggle raw display
$41$ \( T - 17226 \) Copy content Toggle raw display
$43$ \( T - 12100 \) Copy content Toggle raw display
$47$ \( T - 1296 \) Copy content Toggle raw display
$53$ \( T + 19494 \) Copy content Toggle raw display
$59$ \( T + 7668 \) Copy content Toggle raw display
$61$ \( T + 34738 \) Copy content Toggle raw display
$67$ \( T + 21812 \) Copy content Toggle raw display
$71$ \( T + 46872 \) Copy content Toggle raw display
$73$ \( T + 67562 \) Copy content Toggle raw display
$79$ \( T + 76912 \) Copy content Toggle raw display
$83$ \( T + 67716 \) Copy content Toggle raw display
$89$ \( T - 29754 \) Copy content Toggle raw display
$97$ \( T - 122398 \) Copy content Toggle raw display
show more
show less